/** * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ /** * Matrix multiplication: C = A * B. * Host code. * * This sample implements matrix multiplication as described in Chapter 3 * of the programming guide. * It has been written for clarity of exposition to illustrate various CUDA * programming principles, not with the goal of providing the most * performant generic kernel for matrix multiplication. * * See also: * V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra," * in Proc. 2008 ACM/IEEE Conf. on Supercomputing (SC '08), * Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11. */ // System includes #include #include // CUDA runtime #include // Helper functions and utilities to work with CUDA #include #include #include #if BUILD_TIMER == 1 static double timer; #endif /** * Matrix multiplication (CUDA Kernel) on the device: C = A * B * wA is A's width and wB is B's width * Every thread computes one element of C as a dot product * C[i][j] = A[i][:] * B[:][j] */ __global__ void matrixMulCUDA(float *C, float *A, float *B, int ldA, int ldB, int ldC) { // Thread global indexes int i = blockIdx.y * blockDim.y + threadIdx.y; int j = blockIdx.x * blockDim.x + threadIdx.x; // printf("**C[%d][%d]\n", i, j); float *ptrA = &A[i*ldA]; // Pointer to the first element of row i of A float tmp = 0.0f; for (int k = 0; k < ldA; k++) { tmp += (*ptrA++) * B[k*ldB+j]; } C[i*ldC+j] = tmp; // printf("C[%d][%d] = %f\n", i, j, tmp); } void constantInit(float *data, int size, float val) { for (int i = 0; i < size; ++i) { data[i] = val; } } double mysecond() { struct timeval tp; struct timezone tzp; int i = gettimeofday(&tp, &tzp); return ((double) tp.tv_sec + (double) tp.tv_usec * 1.e-6); } /** * Run a simple test of matrix multiplication using CUDA */ int matrixMultiply(int argc, char **argv, int block_size, dim3 &dimsA, dim3 &dimsB) { // Allocate host memory for matrices A and B unsigned int size_A = dimsA.x * dimsA.y; unsigned int mem_size_A = sizeof(float) * size_A; float *h_A = (float *) malloc(mem_size_A); unsigned int size_B = dimsB.x * dimsB.y; unsigned int mem_size_B = sizeof(float) * size_B; float *h_B = (float *) malloc(mem_size_B); // Initialize host memory const float valB = 0.01f; constantInit(h_A, size_A, 1.0f); constantInit(h_B, size_B, valB); // Allocate device memory float *d_A, *d_B, *d_C; // Allocate host matrix C dim3 dimsC(dimsB.x, dimsA.y, 1); unsigned int mem_size_C = dimsC.x * dimsC.y * sizeof(float); float *h_C = (float *) malloc(mem_size_C); if (h_C == NULL) { fprintf(stderr, "Failed to allocate host matrix C!\n"); exit (EXIT_FAILURE); } cudaError_t error; error = cudaMalloc((void **) &d_A, mem_size_A); if (error != cudaSuccess) { printf("cudaMalloc d_A returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit (EXIT_FAILURE); } error = cudaMalloc((void **) &d_B, mem_size_B); if (error != cudaSuccess) { printf("cudaMalloc d_B returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit (EXIT_FAILURE); } error = cudaMalloc((void **) &d_C, mem_size_C); if (error != cudaSuccess) { printf("cudaMalloc d_C returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit (EXIT_FAILURE); } // copy host memory to device error = cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice); if (error != cudaSuccess) { printf("cudaMemcpy (d_A,h_A) returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit (EXIT_FAILURE); } error = cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice); if (error != cudaSuccess) { printf("cudaMemcpy (d_B,h_B) returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit (EXIT_FAILURE); } // Setup execution parameters dim3 threads(block_size, block_size); dim3 grid(dimsB.x / threads.x, dimsA.y / threads.y); // Create and start timer printf("Computing result using CUDA Kernel...\n"); // Performs warmup operation using matrixMul CUDA kernel // if (block_size == 16) { // matrixMulCUDA<16> <<>>(d_C, d_A, d_B, dimsA.x, dimsB.x); // } else { // matrixMulCUDA<32> <<>>(d_C, d_A, d_B, dimsA.x, dimsB.x); // } // printf("done\n"); // // cudaDeviceSynchronize(); // Allocate CUDA events that we'll use for timing cudaEvent_t start; error = cudaEventCreate(&start); if (error != cudaSuccess) { fprintf(stderr, "Failed to create start event (error code %s)!\n", cudaGetErrorString(error)); exit (EXIT_FAILURE); } cudaEvent_t stop; error = cudaEventCreate(&stop); if (error != cudaSuccess) { fprintf(stderr, "Failed to create stop event (error code %s)!\n", cudaGetErrorString(error)); exit (EXIT_FAILURE); } // Record the start event error = cudaEventRecord(start, NULL); if (error != cudaSuccess) { fprintf(stderr, "Failed to record start event (error code %s)!\n", cudaGetErrorString(error)); exit (EXIT_FAILURE); } // Execute the kernel int nIter = 1; #if BUILD_TIMER == 1 printf("BEFORE START KERNEL %lf\n", mysecond() - timer); double t1 = mysecond(); #endif for (int j = 0; j < nIter; j++) { //matrixMulCUDA<32> <<>>(d_C, d_A, d_B, dimsA.x, dimsB.x); matrixMulCUDA <<>>(d_C, d_A, d_B, dimsA.x, dimsB.x, dimsC.x); cudaDeviceSynchronize(); } #if BUILD_TIMER == 1 double exec_time = mysecond() - t1; printf("KERNEL EXECUTION TIME %lf\n", exec_time); #endif // Record the stop event error = cudaEventRecord(stop, NULL); if (error != cudaSuccess) { fprintf(stderr, "Failed to record stop event (error code %s)!\n", cudaGetErrorString(error)); exit (EXIT_FAILURE); } // Wait for the stop event to complete error = cudaEventSynchronize(stop); if (error != cudaSuccess) { fprintf(stderr, "Failed to synchronize on the stop event (error code %s)!\n", cudaGetErrorString(error)); exit (EXIT_FAILURE); } float msecTotal = 0.0f; error = cudaEventElapsedTime(&msecTotal, start, stop); if (error != cudaSuccess) { fprintf(stderr, "Failed to get time elapsed between events (error code %s)!\n", cudaGetErrorString(error)); exit (EXIT_FAILURE); } #if BUILD_TIMER == 1 // Compute and print the performance float msecPerMatrixMul = msecTotal / nIter; double flopsPerMatrixMul = 2.0 * (double) dimsA.x * (double) dimsA.y * (double) dimsB.x; double gigaFlops = (flopsPerMatrixMul * 1.0e-9f) / (msecPerMatrixMul / 1000.0f); printf( "Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops, WorkgroupSize= %u threads/block\n", gigaFlops, msecPerMatrixMul, flopsPerMatrixMul, threads.x * threads.y); #endif // Copy result from device to host error = cudaMemcpy(h_C, d_C, mem_size_C, cudaMemcpyDeviceToHost); if (error != cudaSuccess) { printf("cudaMemcpy (h_C,d_C) returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit (EXIT_FAILURE); } printf("Checking computed result for correctness: "); bool correct = true; // test relative error by the formula // |_cpu - _gpu|/<|x|, |y|> < eps double eps = 1.e-6; // machine zero #if BUILD_TIMER == 1 t1 = mysecond(); #endif #pragma omp parallel for shared(h_C, correct) for (int i = 0; i < (int) (dimsC.x * dimsC.y); i++) { float abs_err = fabs(h_C[i] - float(dimsA.x * valB)); float dot_length = dimsA.x; float abs_val = fabs(h_C[i]); float rel_err = abs_err / abs_val / dot_length; if (rel_err > eps) { printf("Error! Matrix[%05d]=%.8f, ref=%.8f error term is > %E\n", i, h_C[i], dimsA.x * valB, eps); #pragma omp critical { correct = false; } } } #if BUILD_TIMER == 1 exec_time = mysecond() - t1; printf("CMP TIME %lf\n", exec_time); #endif printf("%s\n", correct ? "Result = PASS" : "Result = FAIL"); // Clean up memory free(h_A); free(h_B); free(h_C); cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); printf( "\nNOTE: The CUDA Samples are not meant for performance measurements. " "Results may vary when GPU Boost is enabled.\n"); if (correct) { return EXIT_SUCCESS; } else { return EXIT_FAILURE; } } /** * Program main */ int main(int argc, char **argv) { #if BUILD_TIMER == 1 timer = mysecond(); #endif printf("[Matrix Multiply Using CUDA] - Starting...\n"); if (checkCmdLineFlag(argc, (const char **) argv, "help") || checkCmdLineFlag(argc, (const char **) argv, "?")) { printf("Usage -device=n (n >= 0 for deviceID)\n"); printf(" -wA=WidthA -hA=HeightA (Width x Height of Matrix A)\n"); printf(" -wB=WidthB -hB=HeightB (Width x Height of Matrix B)\n"); printf( " Note: Outer matrix dimensions of A & B matrices must be equal.\n"); exit (EXIT_SUCCESS); } // By default, we use device 0, otherwise we override the device ID based on what is provided at the command line int devID = 0; if (checkCmdLineFlag(argc, (const char **) argv, "device")) { devID = getCmdLineArgumentInt(argc, (const char **) argv, "device"); cudaSetDevice(devID); } cudaError_t error; cudaDeviceProp deviceProp; error = cudaGetDevice(&devID); if (error != cudaSuccess) { printf("cudaGetDevice returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); } error = cudaGetDeviceProperties(&deviceProp, devID); if (deviceProp.computeMode == cudaComputeModeProhibited) { fprintf(stderr, "Error: device is running in , no threads can use ::cudaSetDevice().\n"); exit (EXIT_SUCCESS); } if (error != cudaSuccess) { printf( "cudaGetDeviceProperties returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); } else { printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, deviceProp.name, deviceProp.major, deviceProp.minor); } // Use a larger block size for Fermi and above int block_size = (deviceProp.major < 2) ? 16 : 32; dim3 dimsA(5 * 2 * block_size, 5 * 2 * block_size, 1); dim3 dimsB(5 * 4 * block_size, 5 * 2 * block_size, 1); // width of Matrix A if (checkCmdLineFlag(argc, (const char **) argv, "wA")) { dimsA.x = getCmdLineArgumentInt(argc, (const char **) argv, "wA"); } // height of Matrix A if (checkCmdLineFlag(argc, (const char **) argv, "hA")) { dimsA.y = getCmdLineArgumentInt(argc, (const char **) argv, "hA"); } // width of Matrix B if (checkCmdLineFlag(argc, (const char **) argv, "wB")) { dimsB.x = getCmdLineArgumentInt(argc, (const char **) argv, "wB"); } // height of Matrix B if (checkCmdLineFlag(argc, (const char **) argv, "hB")) { dimsB.y = getCmdLineArgumentInt(argc, (const char **) argv, "hB"); } if (dimsA.x != dimsB.y) { printf("Error: outer matrix dimensions must be equal. (%d != %d)\n", dimsA.x, dimsB.y); exit (EXIT_FAILURE); } printf("MatrixA(%d,%d), MatrixB(%d,%d)\n", dimsA.x, dimsA.y, dimsB.x, dimsB.y); int matrix_result = matrixMultiply(argc, argv, block_size, dimsA, dimsB); exit(matrix_result); }