{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import pandas as pd\n", "from pandas import DataFrame, Series\n", "import numpy as np\n", "import math\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "import matplotlib.patches as mpatches\n", "import matplotlib.colors as colors\n", "from matplotlib.legend_handler import HandlerLine2D, HandlerTuple\n", "from matplotlib.colors import LinearSegmentedColormap\n", "from scipy import stats\n", "import scikit_posthocs as sp\n", "import sys" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [], "source": [ "matrixMalEX=\"data_GG.csv\"\n", "matrixMal=\"data_GM.csv\"\n", "matrixIt=\"data_L.csv\"\n", "matrixIt_Total=\"data_L_Total.csv\"\n", "n_qty=2 #CAMBIAR SEGUN LA CANTIDAD DE NODOS USADOS\n", "n_groups= 2\n", "repet = 10 #CAMBIAR EL PRIMER NUMERO SEGUN NUMERO DE EJECUCIONES POR CONFIG\n", "\n", "p_value = 0.05\n", "values = [2, 10, 20, 40]\n", "# WORST BEST\n", "dist_names = ['null', 'BalancedFit', 'CompactFit']\n", "\n", "processes = [1,10,20,40,80,120]\n", "\n", "labelsP = [['(2,2)', '(2,10)', '(2,20)', '(2,40)'],['(10,2)', '(10,10)', '(10,20)', '(10,40)'],\n", " ['(20,2)', '(20,10)', '(20,20)', '(20,40)'],['(40,2)', '(40,10)', '(40,20)', '(40,40)']]\n", "labelsP_J = ['(2,2)', '(2,10)', '(2,20)', '(2,40)','(10,2)', '(10,10)', '(10,20)', '(10,40)',\n", " '(20,2)', '(20,10)', '(20,20)', '(20,40)','(40,2)', '(40,10)', '(40,20)', '(40,40)']\n", "positions = [321, 322, 323, 324, 325]\n", "positions_small = [221, 222, 223, 224]" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [], "source": [ "dfG = pd.read_csv( matrixMalEX )\n", "\n", "dfG = dfG.drop(columns=dfG.columns[0])\n", "dfG['S'] = dfG['N']\n", "dfG['N'] = dfG['S'] + dfG['%Async']\n", "dfG['%Async'] = (dfG['%Async'] / dfG['N']) * 100\n", "dfG['%Async'] = dfG['%Async'].fillna(0)\n", "\n", "if(n_qty == 1):\n", " group = dfG.groupby(['%Async', 'Cst', 'Css', 'Groups'])['TE']\n", " group2 = dfG.groupby(['%Async', 'Cst', 'Css', 'NP','NS'])['TE']\n", "else: \n", " group = dfG.groupby(['Dist', '%Async', 'Cst', 'Css', 'Groups'])['TE']\n", " group2 = dfG.groupby(['Dist', '%Async', 'Cst', 'Css', 'NP','NS'])['TE']\n", "\n", "grouped_aggG = group.agg(['median'])\n", "grouped_aggG.rename(columns={'median':'TE'}, inplace=True)\n", "\n", "grouped_aggG2 = group2.agg(['median'])\n", "grouped_aggG2.rename(columns={'median':'TE'}, inplace=True)" ] }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_3862/2056908859.py:18: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.\n", " groupM = dfM.groupby(['Dist', '%Async', 'Cst', 'Css', 'NP', 'NS'])['TC', 'TH', 'TS', 'TA', 'TR', 'alpha']\n" ] } ], "source": [ "dfM = pd.read_csv( matrixMal )\n", "dfM = dfM.drop(columns=dfM.columns[0])\n", "\n", "dfM['S'] = dfM['N']\n", "dfM['N'] = dfM['S'] + dfM['%Async']\n", "dfM[\"TR\"] = dfM[\"TC\"] + dfM[\"TH\"] + dfM[\"TS\"] + dfM[\"TA\"]\n", "dfM['%Async'] = (dfM['%Async'] / dfM['N']) * 100\n", "\n", "dfM['%Async'] = dfM['%Async'].fillna(0)\n", "dfM['alpha'] = 1\n", "\n", "#dfM = dfM.drop(dfM.loc[(dfM[\"Cst\"] == 3) & (dfM[\"Css\"] == 1) & (dfM[\"NP\"] > dfM[\"NS\"])].index)\n", "#dfM = dfM.drop(dfM.loc[(dfM[\"Cst\"] == 2) & (dfM[\"Css\"] == 1) & (dfM[\"NP\"] > dfM[\"NS\"])].index)\n", "\n", "if(n_qty == 1):\n", " groupM = dfM.groupby(['%Async', 'Cst', 'Css', 'NP', 'NS'])['TC', 'TH', 'TS', 'TA', 'TR', 'alpha']\n", "else:\n", " groupM = dfM.groupby(['Dist', '%Async', 'Cst', 'Css', 'NP', 'NS'])['TC', 'TH', 'TS', 'TA', 'TR', 'alpha']\n", "\n", "#group\n", "grouped_aggM = groupM.agg(['median'])\n", "grouped_aggM.columns = grouped_aggM.columns.get_level_values(0)\n", "\n", "for cst_aux in [1,3]:\n", " for css_aux in [0,1]:\n", " for np_aux in processes:\n", " for ns_aux in processes:\n", " if np_aux != ns_aux:\n", " grouped_aggM.loc[('2,2',0, cst_aux, css_aux, np_aux,ns_aux)]['alpha'] = \\\n", " grouped_aggM.loc[('2,2',0, cst_aux, css_aux, np_aux,ns_aux)]['TC'] / \\\n", " grouped_aggM.loc[('2,2',0, cst_aux-1, css_aux, np_aux,ns_aux)]['TC']\n", " " ] }, { "cell_type": "code", "execution_count": 87, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_3862/3029782824.py:13: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a list instead.\n", " groupL = dfL[dfL['NS'] != 0].groupby(['Tt', 'Dist', '%Async', 'Cst', 'Css', 'NP', 'NS'])['Ti', 'To', 'alpha']\n" ] } ], "source": [ "dfL = pd.read_csv( matrixIt )\n", "dfL = dfL.drop(columns=dfL.columns[0])\n", "\n", "dfL['%Async'] = dfL['%Async'].fillna(0)\n", "dfL['alpha'] = 1\n", "\n", "#dfL = dfL.drop(dfL.loc[(dfL[\"Cst\"] == 3) & (dfL[\"Css\"] == 1) & (dfL[\"NP\"] > dfL[\"NS\"])].index)\n", "#dfL = dfL.drop(dfL.loc[(dfL[\"Cst\"] == 2) & (dfL[\"Css\"] == 1) & (dfL[\"NP\"] > dfL[\"NS\"])].index)\n", "\n", "if(n_qty == 1):\n", " groupL = dfL[dfL['NS'] != 0].groupby(['Tt', '%Async', 'Cst', 'Css', 'NP', 'NS'])['Ti', 'To', 'alpha']\n", "else:\n", " groupL = dfL[dfL['NS'] != 0].groupby(['Tt', 'Dist', '%Async', 'Cst', 'Css', 'NP', 'NS'])['Ti', 'To', 'alpha']\n", "\n", "#group\n", "grouped_aggL = groupL.agg(['median', 'count'])\n", "grouped_aggL.columns = grouped_aggL.columns.get_level_values(0)\n", "grouped_aggL.set_axis(['Ti', 'Iters', 'To', 'Iters2', 'alpha', 'alpha2'], axis='columns', inplace=True)\n", "grouped_aggL['Iters'] = np.round(grouped_aggL['Iters']/repet)\n", "grouped_aggL['Iters2'] = np.round(grouped_aggL['Iters2']/repet)\n", "\n", "for cst_aux in [1,3]:\n", " for css_aux in [0,1]:\n", " for np_aux in processes:\n", " for ns_aux in processes:\n", " if np_aux != ns_aux:\n", " grouped_aggL.loc[(1,2,0, cst_aux, css_aux, np_aux,ns_aux), 'alpha'] = \\\n", " grouped_aggL.loc[(1,2,0, cst_aux, css_aux, np_aux,ns_aux)]['Ti'] / \\\n", " grouped_aggL.loc[(0,2,0, cst_aux, css_aux, np_aux,ns_aux)]['Ti']" ] }, { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [], "source": [ "dfLT = pd.read_csv( matrixIt_Total )\n", "dfLT = dfLT.drop(columns=dfLT.columns[0])\n", "\n", "dfLT['%Async'] = dfLT['%Async'].fillna(0)\n", "\n", "#dfL = dfL.drop(dfL.loc[(dfL[\"Cst\"] == 3) & (dfL[\"Css\"] == 1) & (dfL[\"NP\"] > dfL[\"NS\"])].index)\n", "#dfL = dfL.drop(dfL.loc[(dfL[\"Cst\"] == 2) & (dfL[\"Css\"] == 1) & (dfL[\"NP\"] > dfL[\"NS\"])].index)\n", "\n", "if(n_qty == 1):\n", " groupLT = dfLT[dfLT['NS'] != 0].groupby(['%Async', 'Cst', 'Css', 'NP', 'NS'])['Sum']\n", "else:\n", " groupLT = dfLT[dfLT['NS'] != 0].groupby(['Dist', '%Async', 'Cst', 'Css', 'NP', 'NS'])['Sum']\n", "\n", "#group\n", "grouped_aggLT = groupLT.agg(['median'])\n", "grouped_aggLT.columns = grouped_aggLT.columns.get_level_values(0)\n", "grouped_aggLT.set_axis(['Sum'], axis='columns', inplace=True)" ] }, { "cell_type": "code", "execution_count": 97, "metadata": {}, "outputs": [], "source": [ "coherent_check_df = grouped_aggL.copy()\n", "# Añadir suma total de iteraciones\n", "coherent_check_df['Sum'] = 0\n", "coherent_check_df.loc[(1,slice(None)),'Sum'] = grouped_aggLT[(grouped_aggLT['Sum'] != 0)].loc[(slice(None)),'Sum'].values\n", "coherent_check_df = coherent_check_df[(coherent_check_df['Sum'] != 0)]\n", "# Añadir tiempos TE y TC\n", "coherent_check_df['TE'] = 0\n", "coherent_check_df['TEA'] = 0\n", "coherent_check_df['TR'] = 0\n", "coherent_check_df['TRA'] = 0\n", "for cst_aux in [1,3]:\n", " coherent_check_df.loc[(1,2,0,cst_aux,slice(None)),'TE'] = grouped_aggG2.loc[('2,2',0,cst_aux-1,slice(None)),'TE'].values\n", " coherent_check_df.loc[(1,2,0,cst_aux,slice(None)),'TR'] = grouped_aggM.loc[('2,2',0,cst_aux-1,slice(None)),'TC'].values\n", " coherent_check_df.loc[(1,2,0,cst_aux,slice(None)),'TEA'] = grouped_aggG2.loc[('2,2',0,cst_aux,slice(None)),'TE'].values\n", " coherent_check_df.loc[(1,2,0,cst_aux,slice(None)),'TRA'] = grouped_aggM.loc[('2,2',0,cst_aux,slice(None)),'TC'].values\n", "# Calcular tiempos teoricos\n", "#coherent_check_df['Teorico-S'] = coherent_check_df['Ti'] * 3 + coherent_check_df['TR'] + TIEMPOITERNS * 97\n", "#coherent_check_df['Rel-S'] = np.round(coherent_check_df['Teorico-S'] / coherent_check_df['TE'],2)\n", "#coherent_check_df['Teorico-A'] = coherent_check_df['Ti'] * 3 + coherent_check_df['Sum'] + TIEMPOITERNS * (97 - coherent_check_df['Iters'])\n", "#coherent_check_df['Rel-A'] = np.round(coherent_check_df['Teorico-A'] / coherent_check_df['TEA'],2)\n", "coherent_check_df=coherent_check_df.droplevel('Tt').droplevel('%Async').droplevel('Dist')\n", "for cst_aux in [1,3]:\n", " for css_aux in [0,1]:\n", " aux_df = coherent_check_df.loc[(cst_aux, css_aux, slice(None))]\n", " aux_df.to_excel(\"coherent\"+str(cst_aux)+\"_\"+str(css_aux)+\".xlsx\")" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [], "source": [ "grouped_aggL.to_excel(\"resultL.xlsx\") \n", "grouped_aggLT.to_excel(\"resultLT.xlsx\")\n", "dfLT.to_excel(\"resultLT_all.xlsx\")\n", "grouped_aggM.to_excel(\"resultM.xlsx\") \n", "grouped_aggG2.to_excel(\"resultG.xlsx\") " ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Unnamed: 0 | \n", "N | \n", "%Async | \n", "Groups | \n", "NP | \n", "NS | \n", "Dist | \n", "Matrix | \n", "CommTam | \n", "Cst | \n", "Css | \n", "Time | \n", "Iters | \n", "TE | \n", "S | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0 | \n", "0 | \n", "0.0 | \n", "40,10 | \n", "40 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "38.877059 | \n", "0 | \n", "
1 | \n", "1 | \n", "0 | \n", "0.0 | \n", "40,10 | \n", "40 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "38.888270 | \n", "0 | \n", "
2 | \n", "2 | \n", "0 | \n", "0.0 | \n", "40,10 | \n", "40 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "38.902969 | \n", "0 | \n", "
3 | \n", "3 | \n", "0 | \n", "0.0 | \n", "40,10 | \n", "40 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "38.575118 | \n", "0 | \n", "
4 | \n", "4 | \n", "0 | \n", "0.0 | \n", "40,10 | \n", "40 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "38.733319 | \n", "0 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
2395 | \n", "795 | \n", "0 | \n", "0.0 | \n", "120,10 | \n", "120 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "38.333576 | \n", "0 | \n", "
2396 | \n", "796 | \n", "0 | \n", "0.0 | \n", "120,10 | \n", "120 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "38.551992 | \n", "0 | \n", "
2397 | \n", "797 | \n", "0 | \n", "0.0 | \n", "120,10 | \n", "120 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "38.096905 | \n", "0 | \n", "
2398 | \n", "798 | \n", "0 | \n", "0.0 | \n", "120,10 | \n", "120 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "38.306287 | \n", "0 | \n", "
2399 | \n", "799 | \n", "0 | \n", "0.0 | \n", "120,10 | \n", "120 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "35.718237 | \n", "0 | \n", "
2400 rows × 15 columns
\n", "\n", " | \n", " | \n", " | \n", " | \n", " | TE | \n", "
---|---|---|---|---|---|
Dist | \n", "%Async | \n", "Cst | \n", "Css | \n", "Groups | \n", "\n", " |
2,2 | \n", "0.0 | \n", "0 | \n", "0 | \n", "1,10 | \n", "51.155089 | \n", "
1,120 | \n", "16.272649 | \n", "||||
1,20 | \n", "32.424268 | \n", "||||
1,40 | \n", "22.743039 | \n", "||||
1,80 | \n", "18.062010 | \n", "||||
... | \n", "... | \n", "... | \n", "... | \n", "||
3 | \n", "1 | \n", "80,1 | \n", "380.120240 | \n", "||
80,10 | \n", "38.421356 | \n", "||||
80,120 | \n", "4.226927 | \n", "||||
80,20 | \n", "19.435148 | \n", "||||
80,40 | \n", "9.988482 | \n", "
240 rows × 1 columns
\n", "\n", " | Unnamed: 0 | \n", "N | \n", "%Async | \n", "NP | \n", "NS | \n", "Dist | \n", "Matrix | \n", "CommTam | \n", "Cst | \n", "Css | \n", "Time | \n", "Iters | \n", "TC | \n", "TH | \n", "TS | \n", "TA | \n", "S | \n", "TR | \n", "alpha | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0 | \n", "0 | \n", "0.0 | \n", "40 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "0.164909 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0.164909 | \n", "1 | \n", "
1 | \n", "1 | \n", "0 | \n", "0.0 | \n", "40 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "0.153193 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0.153193 | \n", "1 | \n", "
2 | \n", "2 | \n", "0 | \n", "0.0 | \n", "40 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "0.166233 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0.166233 | \n", "1 | \n", "
3 | \n", "3 | \n", "0 | \n", "0.0 | \n", "40 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "0.294920 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0.294920 | \n", "1 | \n", "
4 | \n", "4 | \n", "0 | \n", "0.0 | \n", "40 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "0.384164 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0.384164 | \n", "1 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
2395 | \n", "795 | \n", "0 | \n", "0.0 | \n", "120 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "0.180204 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0.180204 | \n", "1 | \n", "
2396 | \n", "796 | \n", "0 | \n", "0.0 | \n", "120 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "0.395571 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0.395571 | \n", "1 | \n", "
2397 | \n", "797 | \n", "0 | \n", "0.0 | \n", "120 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "0.333766 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0.333766 | \n", "1 | \n", "
2398 | \n", "798 | \n", "0 | \n", "0.0 | \n", "120 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "0.171306 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "0.171306 | \n", "1 | \n", "
2399 | \n", "799 | \n", "0 | \n", "0.0 | \n", "120 | \n", "10 | \n", "2,2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3,97 | \n", "1.258483 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0 | \n", "1.258483 | \n", "1 | \n", "
2400 rows × 19 columns
\n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " | TC | \n", "TH | \n", "TS | \n", "TA | \n", "TR | \n", "alpha | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|
Dist | \n", "%Async | \n", "Cst | \n", "Css | \n", "NP | \n", "NS | \n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " |
2,2 | \n", "0.0 | \n", "0 | \n", "0 | \n", "1 | \n", "10 | \n", "0.315527 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.315527 | \n", "1.000000 | \n", "
20 | \n", "0.860505 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.860505 | \n", "1.000000 | \n", "|||||
40 | \n", "0.861425 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.861425 | \n", "1.000000 | \n", "|||||
80 | \n", "0.988951 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.988951 | \n", "1.000000 | \n", "|||||
120 | \n", "0.911823 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.911823 | \n", "1.000000 | \n", "|||||
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "||
3 | \n", "1 | \n", "120 | \n", "1 | \n", "0.360395 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.360395 | \n", "1.550456 | \n", "||
10 | \n", "0.428876 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.428876 | \n", "2.692918 | \n", "|||||
20 | \n", "0.463684 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.463684 | \n", "2.264129 | \n", "|||||
40 | \n", "0.265142 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.265142 | \n", "0.864532 | \n", "|||||
80 | \n", "0.402624 | \n", "0.0 | \n", "0.0 | \n", "0.0 | \n", "0.402624 | \n", "0.987730 | \n", "
240 rows × 6 columns
\n", "\n", " | Unnamed: 0 | \n", "N | \n", "%Async | \n", "NP | \n", "N_par | \n", "NS | \n", "Dist | \n", "Compute_tam | \n", "Comm_tam | \n", "Cst | \n", "Css | \n", "Time | \n", "Iters | \n", "Ti | \n", "Tt | \n", "To | \n", "alpha | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "0 | \n", "0 | \n", "0.0 | \n", "40 | \n", "0 | \n", "10 | \n", "2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3 | \n", "0.099020 | \n", "0.0 | \n", "111.0 | \n", "1 | \n", "
1 | \n", "1 | \n", "0 | \n", "0.0 | \n", "40 | \n", "0 | \n", "10 | \n", "2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3 | \n", "0.099135 | \n", "0.0 | \n", "111.0 | \n", "1 | \n", "
2 | \n", "2 | \n", "0 | \n", "0.0 | \n", "40 | \n", "0 | \n", "10 | \n", "2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3 | \n", "0.099047 | \n", "0.0 | \n", "111.0 | \n", "1 | \n", "
3 | \n", "3 | \n", "0 | \n", "0.0 | \n", "40 | \n", "0 | \n", "10 | \n", "2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3 | \n", "0.162832 | \n", "1.0 | \n", "111.0 | \n", "1 | \n", "
4 | \n", "4 | \n", "0 | \n", "0.0 | \n", "40 | \n", "0 | \n", "10 | \n", "2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3 | \n", "0.100171 | \n", "0.0 | \n", "112.0 | \n", "1 | \n", "
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
239995 | \n", "79995 | \n", "0 | \n", "0.0 | \n", "120 | \n", "0 | \n", "10 | \n", "2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3 | \n", "0.103281 | \n", "1.0 | \n", "37.0 | \n", "1 | \n", "
239996 | \n", "79996 | \n", "0 | \n", "0.0 | \n", "120 | \n", "0 | \n", "10 | \n", "2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3 | \n", "0.093780 | \n", "1.0 | \n", "37.0 | \n", "1 | \n", "
239997 | \n", "79997 | \n", "0 | \n", "0.0 | \n", "120 | \n", "0 | \n", "10 | \n", "2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3 | \n", "0.107831 | \n", "1.0 | \n", "37.0 | \n", "1 | \n", "
239998 | \n", "79998 | \n", "0 | \n", "0.0 | \n", "120 | \n", "0 | \n", "10 | \n", "2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3 | \n", "0.099046 | \n", "1.0 | \n", "37.0 | \n", "1 | \n", "
239999 | \n", "79999 | \n", "0 | \n", "0.0 | \n", "120 | \n", "0 | \n", "10 | \n", "2 | \n", "100000 | \n", "0 | \n", "3 | \n", "0 | \n", "4.0 | \n", "3 | \n", "0.065008 | \n", "1.0 | \n", "37.0 | \n", "1 | \n", "
240000 rows × 17 columns
\n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " | \n", " | Ti | \n", "Iters | \n", "To | \n", "Iters2 | \n", "alpha | \n", "alpha2 | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tt | \n", "Dist | \n", "%Async | \n", "Cst | \n", "Css | \n", "NP | \n", "NS | \n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " |
0.0 | \n", "2 | \n", "0.0 | \n", "0 | \n", "0 | \n", "1 | \n", "10 | \n", "3.999165 | \n", "3.0 | \n", "4485.0 | \n", "3.0 | \n", "1.000000 | \n", "30 | \n", "
20 | \n", "3.999194 | \n", "3.0 | \n", "4485.0 | \n", "3.0 | \n", "1.000000 | \n", "30 | \n", "||||||
40 | \n", "3.999186 | \n", "3.0 | \n", "4485.0 | \n", "3.0 | \n", "1.000000 | \n", "30 | \n", "||||||
80 | \n", "3.999236 | \n", "3.0 | \n", "4485.0 | \n", "3.0 | \n", "1.000000 | \n", "30 | \n", "||||||
120 | \n", "3.999194 | \n", "3.0 | \n", "4485.0 | \n", "3.0 | \n", "1.000000 | \n", "30 | \n", "||||||
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "
1.0 | \n", "2 | \n", "0.0 | \n", "3 | \n", "1 | \n", "120 | \n", "1 | \n", "0.070046 | \n", "3.0 | \n", "37.0 | \n", "3.0 | \n", "2.108073 | \n", "30 | \n", "
10 | \n", "0.075896 | \n", "4.0 | \n", "37.0 | \n", "4.0 | \n", "2.292376 | \n", "40 | \n", "||||||
20 | \n", "0.090617 | \n", "5.0 | \n", "37.0 | \n", "5.0 | \n", "2.733503 | \n", "54 | \n", "||||||
40 | \n", "0.069103 | \n", "4.0 | \n", "37.0 | \n", "4.0 | \n", "2.089061 | \n", "37 | \n", "||||||
80 | \n", "0.068959 | \n", "4.0 | \n", "37.0 | \n", "4.0 | \n", "2.083952 | \n", "39 | \n", "
360 rows × 6 columns
\n", "\n", " | \n", " | \n", " | \n", " | \n", " | \n", " | Sum | \n", "
---|---|---|---|---|---|---|
Dist | \n", "%Async | \n", "Cst | \n", "Css | \n", "NP | \n", "NS | \n", "\n", " |
2 | \n", "0.0 | \n", "0 | \n", "0 | \n", "1 | \n", "10 | \n", "0.000000 | \n", "
20 | \n", "0.000000 | \n", "|||||
40 | \n", "0.000000 | \n", "|||||
80 | \n", "0.000000 | \n", "|||||
10 | \n", "1 | \n", "0.000000 | \n", "||||
... | \n", "... | \n", "... | \n", "... | \n", "... | \n", "||
3 | \n", "1 | \n", "40 | \n", "80 | \n", "1.427236 | \n", "||
80 | \n", "1 | \n", "0.173856 | \n", "||||
10 | \n", "0.207770 | \n", "|||||
20 | \n", "0.157496 | \n", "|||||
40 | \n", "0.184899 | \n", "
160 rows × 1 columns
\n", "