MallTimes.py 5.46 KB
Newer Older
Iker Martín's avatar
Iker Martín committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import sys
import glob
import numpy as np
import pandas as pd

def getData(lineS, outData, tp, hasIter = False):
  for data in lineS:
    k_v = data.split('=')
    if k_v[0] == "time":
      time = float(k_v[1])
    elif k_v[0] == "iters" and hasIter:
      iters = int(k_v[1])

  outData[tp] = time
  if hasIter:
    outData[tp+1] = iters

#-----------------------------------------------
def record(f, observation, line):
  # Record first line - General info
  lineS = line.split()
  for j in range(1,7):
    observation[j] = int(lineS[j].split('=')[1])

  # Record procces number
  line = next(f)
  lineS = line.split()
  j = 7
  for key_values in lineS:
    k_v = key_values.split('=')
    observation[j] = int(k_v[1])
    j+=1

  # Record data
  j = 9
  for j in range(9, 13):
    line = next(f)
    lineS = line.split()  
    getData(lineS, observation, j)

  line = next(f)
  lineS = line.split()  
  #if observation[0] == "A":
  getData(lineS, observation, 13, True)
  #else:
   # getData(lineS, observation, 13)


#-----------------------------------------------
def read_file(f, dataA, dataB, it):
  recording = False
  resizes = 0
  timer = 0
  previousNP = 0

  for line in f: 
    lineS = line.split()

    if len(lineS) > 0:
      if lineS[0] == "Config": # CONFIG LINE
        recording = True
        it += 1
        dataA.append([None]*13)
        dataB.append([None]*15)
        #resizes = int(lineS[2].split('=')[1].split(',')[0])
        resizes = 2
        compute_tam = int(lineS[3].split('=')[1].split(',')[0])
        comm_tam = int(lineS[4].split('=')[1].split(',')[0])
        sdr = int(lineS[5].split('=')[1].split(',')[0])
        adr = int(lineS[6].split('=')[1].split(',')[0]) #TODO Que lo tome como porcentaje
        css = int(lineS[8].split('=')[1].split(',')[0])
        cst = int(lineS[9].split('=')[1].split(',')[0])
        # TODO Que obtenga Aib
        time = float(lineS[10].split('=')[1])

        dataB[it][0] = sdr
        dataB[it][1] = adr 
        dataB[it][4] = "" 
        dataB[it][5] = compute_tam
        dataB[it][6] = comm_tam
        dataB[it][7] = cst
        dataB[it][8] = css
        dataB[it][9] = time
        dataB[it][10] = "" 

        dataA[it][0] = sdr
        dataA[it][1] = adr 
        dataA[it][5] = ""
        dataA[it][6] = compute_tam
        dataA[it][7] = comm_tam
        dataA[it][8] = cst
        dataA[it][9] = css
        dataA[it][10] = time
        dataA[it][11] = ""

      elif recording and resizes != 0: # RESIZE LINE
        iters = int(lineS[2].split('=')[1].split(',')[0])
        npr = int(lineS[3].split('=')[1].split(',')[0])
        dist = lineS[5].split('=')[1]

        resizes = resizes - 1
        if resizes == 0:
          dataB[it][3] = npr
          dataB[it][4] += dist
          dataB[it][10] += str(iters)

          dataA[it][4] = npr #FIXME No sera correcta si hay mas de una reconfig
          dataA[it][2] = str(previousNP) + "," + str(npr)
          dataA[it][5] += dist
          dataA[it][11] += str(iters)
          timer = 4
        else:
          dataB[it][2] = npr
          dataB[it][4] += dist + ","
          dataB[it][10] += str(iters) + ","

          dataA[it][3] = npr
          dataA[it][5] += dist + ","
          dataA[it][11] += str(iters) + ","
          previousNP = npr

      else: # SAVE TIMES
        if timer == 4:
          dataB[it][11] = float(lineS[1])
        elif timer == 3:
          dataB[it][12] = float(lineS[1])
        elif timer == 2:
          dataB[it][13] = float(lineS[1])
        elif timer == 1:
          dataB[it][14] = float(lineS[1])
        else:
          dataA[it][12] = float(lineS[1])
        timer = timer - 1
          
  return it
#columnsA1 = ["N", "%Async", "Groups", "Dist", "Matrix", "CommTam", "Cst", "Css", "Time", "Iters", "TE"] #8
#columnsB1 = ["N", "%Async", "NP", "NS", "Dist", "Matrix", "CommTam", "Cst", "Css", "Time", "Iters", "TC", "TS", "TA"] #12
#Config loaded: resizes=2, matrix=1000, sdr=1000000000, adr=0, aib=0, time=2.000000 || grp=1
#Resize 0: Iters=100, Procs=2, Factors=1.000000, Phy=2
#Resize 1: Iters=100, Procs=4, Factors=0.500000, Phy=2
#Tspawn: 0.249393 
#Tthread: 0 
#Tsync: 0.330391 
#Tasync: 0
#Tex: 301.428615

#Config loaded: resizes=1, matrix=0, comm_tam=0, sdr=0, adr=0, aib=0, cst=3, css=1, time=1 || grp=1
#-----------------------------------------------

if len(sys.argv) < 2:
    print("The files name is missing\nUsage: python3 iterTimes.py resultsName directory csvOutName")
    exit(1)

if len(sys.argv) >= 3:
    BaseDir = sys.argv[2]
    print("Searching in directory: "+ BaseDir)
else:
    BaseDir = sys.argv[2]

if len(sys.argv) >= 4:
  print("Csv name will be: " + sys.argv[3] + "G.csv & " + sys.argv[3] + "M.csv")
  name = sys.argv[3]
else:
  name = "data"

insideDir = "Run"
lista = glob.glob("./" + BaseDir + insideDir + "*/" + sys.argv[1]+ "*Global.o*")
print("Number of files found: "+ str(len(lista)));

it = -1
dataA = []
dataB = []
columnsA = ["N", "%Async", "Groups", "NP", "NS", "Dist", "Matrix", "CommTam", "Cst", "Css", "Time", "Iters", "TE"] #13
columnsB = ["N", "%Async", "NP", "NS", "Dist", "Matrix", "CommTam", "Cst", "Css", "Time", "Iters", "TC", "TH", "TS", "TA"] #15

for elem in lista:
  f = open(elem, "r")
  it = read_file(f, dataA, dataB, it)
  f.close()

#print(data)
dfA = pd.DataFrame(dataA, columns=columnsA)
dfA.to_csv(name + 'G.csv')

dfB = pd.DataFrame(dataB, columns=columnsB)

#Poner en TC el valor real y en TH el necesario para la app
cond = dfB.TH != 0
dfB.loc[cond, ['TC', 'TH']] = dfB.loc[cond, ['TH', 'TC']].values
dfB.to_csv(name + 'M.csv')