malleabilityManager.c 33 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
4
#include "malleabilityManager.h"
#include "malleabilityStates.h"
5
#include "malleabilityDataStructures.h"
6
#include "malleabilityTypes.h"
iker_martin's avatar
iker_martin committed
7
#include "malleabilityZombies.h"
8
#include "spawn_methods/GenericSpawn.h"
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "CommDist.h"

#define MALLEABILITY_USE_SYNCHRONOUS 0
#define MALLEABILITY_USE_ASYNCHRONOUS 1


void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

void Children_init();
int spawn_step();
int start_redistribution();
int check_redistribution();
int end_redistribution();
iker_martin's avatar
iker_martin committed
23
int shrink_redistribution();
24

25
26
27
void comm_node_data(int rootBcast, int is_child_group);
void def_nodeinfo_type(MPI_Datatype *node_type);

28
29
int thread_creation();
int thread_check();
30
void* thread_async_work();
31

32
void print_comms_state();
33
void malleability_comms_update(MPI_Comm comm);
34

35
typedef struct {
36
  int spawn_method;
37
  int spawn_dist;
38
  int spawn_strategies;
39
40
  int red_method;
  int red_strategies;
41

42
  int grp;
43
44
45
46
  configuration *config_file;
  results_data *results;
} malleability_config_t;

iker_martin's avatar
iker_martin committed
47
typedef struct { //FIXME numC_spawned no se esta usando
48
  int myId, numP, numC, numC_spawned, root, root_parents;
49
50
51
  pthread_t async_thread;
  MPI_Comm comm, thread_comm;
  MPI_Comm intercomm;
52
  MPI_Comm user_comm;
53
  int dup_user_comm;
54
  
55
  char *name_exec, *nodelist;
56
  int num_cpus, num_nodes, nodelist_len;
57
58
} malleability_t;

59
int state = MALL_UNRESERVED; //FIXME Mover a otro lado
60
61
62
63
64
65
66
67
68

malleability_config_t *mall_conf;
malleability_t *mall;

malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

69
/*
70
71
72
73
74
75
76
77
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
78
 */
79
int init_malleability(int myId, int numP, int root, MPI_Comm comm, char *name_exec, char *nodelist, int num_cpus, int num_nodes) {
80
81
82
83
84
85
86
87
88
  MPI_Comm dup_comm, thread_comm;

  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

89
  mall->dup_user_comm = 0;
90
91
  MPI_Comm_dup(comm, &dup_comm);
  MPI_Comm_dup(comm, &thread_comm);
92
93
  MPI_Comm_set_name(dup_comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(thread_comm, "MPI_COMM_MALL_THREAD");
94
95
96
97

  mall->myId = myId;
  mall->numP = numP;
  mall->root = root;
98
  mall->comm = dup_comm;
99
  mall->thread_comm = thread_comm;
100
  mall->user_comm = comm;
101

102
  mall->name_exec = name_exec;
103
104
105
  mall->nodelist = nodelist;
  mall->num_cpus = num_cpus;
  mall->num_nodes = num_nodes;
106
107
108
109
110
111

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

112
  state = MALL_NOT_STARTED;
113

114
115
  zombies_service_init();

116
117
118
119
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
  if(mall->intercomm != MPI_COMM_NULL ) { 
    Children_init();
120
    return MALLEABILITY_CHILDREN;
121
  }
iker_martin's avatar
iker_martin committed
122

123
124
125
126
127
128
129
  if(nodelist != NULL) { //TODO To be deprecated by using Slurm or else statement
    mall->nodelist_len = strlen(nodelist);
  } else { // If no nodelist is detected, get it from the actual run
    mall->nodelist = malloc(MPI_MAX_PROCESSOR_NAME * sizeof(char));
    MPI_Get_processor_name(mall->nodelist, &mall->nodelist_len);
    //TODO Get name of each process and create real nodelist
  }
130

131
  return MALLEABILITY_NOT_CHILDREN;
132
133
}

134
135
136
137
138
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
139
void free_malleability() {	  
140
141
142
143
144
145
146
147
148
149
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);

150
151
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
152
153
  free(mall);
  free(mall_conf);
iker_martin's avatar
iker_martin committed
154
155
156
157

  zombies_awake();
  zombies_service_free();

158
  state = MALL_UNRESERVED;
159
160
}

161
162
/* 
 * TODO Reescribir
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
 * Se realiza el redimensionado de procesos por parte de los padres.
 *
 * Se crean los nuevos procesos con la distribucion fisica elegida y
 * a continuacion se transmite la informacion a los mismos.
 *
 * Si hay datos asincronos a transmitir, primero se comienza a
 * transmitir estos y se termina la funcion. Se tiene que comprobar con
 * llamando a la función de nuevo que se han terminado de enviar
 *
 * Si hay ademas datos sincronos a enviar, no se envian aun.
 *
 * Si solo hay datos sincronos se envian tras la creacion de los procesos
 * y finalmente se desconectan los dos grupos de procesos.
 */
int malleability_checkpoint() {
178
179
180
181
182
183
184
  double end_real_time;

  switch(state) {
    case MALL_UNRESERVED:
      break;
    case MALL_NOT_STARTED:
      // Comprobar si se tiene que realizar un redimensionado
185
      //MPI_Barrier(mall->comm);
186
      mall_conf->results->malleability_time[mall_conf->grp] = MPI_Wtime();
187
      //if(CHECK_RMS()) {return MALL_DENIED;}
188

189
190
191
192
193
194
      state = spawn_step();

      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPT_POSTPONE){
        malleability_checkpoint();
      }
      break;
195

196
197
198
199
    case MALL_SPAWN_PENDING: // Comprueba si el spawn ha terminado y comienza la redistribucion
    case MALL_SPAWN_SINGLE_PENDING:
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPTED) {
200
	//MPI_Barrier(mall->comm);
201
202
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
        mall_conf->results->spawn_real_time[mall_conf->grp] = end_real_time - mall_conf->results->spawn_start;
203

204
205
206
        malleability_checkpoint();
      }
      break;
207

208
209
210
211
212
    case MALL_SPAWN_ADAPT_POSTPONE:
    case MALL_SPAWN_COMPLETED:
      state = start_redistribution();
      malleability_checkpoint();
      break;
213

214
    case MALL_DIST_PENDING:
215
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
216
217
218
219
        state = thread_check();
      } else {
        state = check_redistribution();
      }
220
      if(state != MALL_DIST_PENDING) { 
221
222
223
224
225
        malleability_checkpoint();
      }
      break;

    case MALL_SPAWN_ADAPT_PENDING:
226
      //MPI_Barrier(mall->comm);
227
228
229
      mall_conf->results->spawn_start = MPI_Wtime();
      unset_spawn_postpone_flag(state);
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
230

231
      if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
232
        //MPI_Barrier(mall->comm);
233
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
234
	malleability_checkpoint();
235
      }
236
      break;
237

238
    case MALL_SPAWN_ADAPTED:
239
      state = shrink_redistribution();
240
      malleability_checkpoint();
241
      break;
242

243
    case MALL_DIST_COMPLETED: //TODO No es esto muy feo?
244
      //MPI_Barrier(mall->comm);
245
      mall_conf->results->malleability_end = MPI_Wtime();
246
247
248
      state = MALL_COMPLETED;
      break;
  }
249
250
251
252
253
254
255
256
257
258
259
260
261
  return state;
}

// Funciones solo necesarias por el benchmark
//-------------------------------------------------------------------------------------------------------------
void set_benchmark_grp(int grp) {
  mall_conf->grp = grp;
}

void set_benchmark_configuration(configuration *config_file) {
  mall_conf->config_file = config_file;
}

262
void get_benchmark_configuration(configuration **config_file) {
263
264
265
266
267
268
269
  *config_file = mall_conf->config_file;
}

void set_benchmark_results(results_data *results) {
  mall_conf->results = results;
}

270
void get_benchmark_results(results_data **results) {
271
272
273
274
  *results = mall_conf->results;
}
//-------------------------------------------------------------------------------------------------------------

275
void set_malleability_configuration(int spawn_method, int spawn_strategies, int spawn_dist, int red_method, int red_strategies) {
276
277
  mall_conf->spawn_method = spawn_method;
  mall_conf->spawn_strategies = spawn_strategies;
278
  mall_conf->spawn_dist = spawn_dist;
279
280
281
282
283
284
285
  mall_conf->red_method = red_method;
  mall_conf->red_strategies = red_strategies;

  if(!malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL) && 
	(mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL)) {
    malleability_red_add_strat(&(mall_conf->red_strategies), MALL_RED_IBARRIER);
  }
286
287
288
289
}

/*
 * To be deprecated
290
 * Tiene que ser llamado despues de setear la config
291
292
 */
void set_children_number(int numC){
293
  if((mall_conf->spawn_method == MALL_SPAWN_MERGE) && (numC >= mall->numP)) {
294
295
296
297
298
    mall->numC = numC;
    mall->numC_spawned = numC - mall->numP;

    if(numC == mall->numP) { // Migrar
      mall->numC_spawned = numC;
299
      mall_conf->spawn_method = MALL_SPAWN_BASELINE;
300
301
302
303
304
305
306
307
308
309
310
    }
  } else {
    mall->numC = numC;
    mall->numC_spawned = numC;
  }
}

/*
 * TODO
 */
void get_malleability_user_comm(MPI_Comm *comm) {
311
312
313
314
315
316
  if(mall->dup_user_comm) {
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm));
    MPI_Comm_dup(mall->comm, &(mall->user_comm));
    MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
    mall->dup_user_comm = 0;
  }
317
  *comm = mall->user_comm;
318
319
320
321
322
323
324
325
326
}

/*
 * Anyade a la estructura concreta de datos elegida
 * el nuevo set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que anyadir cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "add_data".
327
328
 *
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
329
 */
330
void malleability_add_data(void *data, size_t total_qty, int type, int is_replicated, int is_constant) {
331
  size_t total_reqs = 0;
332
333
334

  if(is_constant) {
    if(is_replicated) {
335
      add_data(data, total_qty, type, total_reqs, rep_s_data);
336
    } else {
337
      add_data(data, total_qty, type, total_reqs, dist_s_data);
338
339
340
    }
  } else {
    if(is_replicated) {
341
      add_data(data, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
342
    } else {
343
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
344
        total_reqs = 1;
345
      } else if(mall_conf->red_method  == MALL_RED_POINT || mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL) {
346
        total_reqs = mall->numC;
347
      }
348
349
350
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
        total_reqs++;
      }
351
352
353
354
355
356
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
    }
  }
}

357
358
359
360
361
362
363
/*
 * Modifica en la estructura concreta de datos elegida en el indice "index"
 * con el set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que modificar cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "modify_data".
364
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
365
366
 */
void malleability_modify_data(void *data, size_t index, size_t total_qty, int type, int is_replicated, int is_constant) {
367
368
  size_t total_reqs = 0;

369
370
  if(is_constant) {
    if(is_replicated) {
371
      modify_data(data, index, total_qty, type, total_reqs, rep_s_data);
372
    } else {
373
      modify_data(data, index, total_qty, type, total_reqs, dist_s_data);
374
375
376
    }
  } else {
    if(is_replicated) {
377
378
379
      modify_data(data, index, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
    } else {    
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
380
        total_reqs = 1;
381
      } else if(mall_conf->red_method  == MALL_RED_POINT || mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL) {
382
383
        total_reqs = mall->numC;
      }
384
385
386
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
        total_reqs++;
      }
387
      
388
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data);
389
390
391
392
    }
  }
}

393
394
395
/*
 * Devuelve el numero de entradas para la estructura de descripcion de 
 * datos elegida.
396
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
397
 */
398
void malleability_get_entries(size_t *entries, int is_replicated, int is_constant){
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
  
  if(is_constant) {
    if(is_replicated) {
      *entries = rep_s_data->entries;
    } else {
      *entries = dist_s_data->entries;
    }
  } else {
    if(is_replicated) {
      *entries = rep_a_data->entries;
    } else {
      *entries = dist_a_data->entries;
    }
  }
}

/*
 * Devuelve el elemento de la lista "index" al usuario.
 * La devolución es en el mismo orden que lo han metido los padres
 * con la funcion "malleability_add_data()".
 * Es tarea del usuario saber el tipo de esos datos.
 * TODO Refactor a que sea automatico
421
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
422
 */
423
void malleability_get_data(void **data, size_t index, int is_replicated, int is_constant) {
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
      data_struct = rep_s_data;
    } else {
      data_struct = dist_s_data;
    }
  } else {
    if(is_replicated) {
      data_struct = rep_a_data;
    } else {
      data_struct = dist_a_data;
    }
  }

440
  *data = data_struct->arrays[index];
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
}


//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||

/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
456
  size_t i;
457
  char *aux_send, *aux_recv;
458
459
460

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
461
462
463
464
465
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
      async_communication_start(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, 
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
466
467
468
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
469
470
471
472
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
      sync_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall->intercomm);
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
473
474
475
476
477
478
479
480
481
482
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
483
  size_t i;
484
  char *aux, aux_s;
485
486
487
488

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
489
490
      async_communication_start(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, 
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
491
492
493
494
495
      data_struct->arrays[i] = (void *) aux;
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
496
      sync_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall->intercomm);
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
      data_struct->arrays[i] = (void *) aux;
    }
  }
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||
/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
void Children_init() {
514
515
  size_t i;
  int numP_parents, root_parents;
516
  int is_intercomm;
517

518
519
  malleability_connect_children(mall->myId, mall->numP, mall->root, mall->comm, &numP_parents, &root_parents, &(mall->intercomm));
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
520
521
522
523
  if(!is_intercomm) { // For intracommunicators, these processes will be added
    MPI_Comm_rank(mall->intercomm, &(mall->myId));
    MPI_Comm_size(mall->intercomm, &(mall->numP));
  }
524

525
  recv_config_file(mall->root, mall->intercomm, &(mall_conf->config_file));
526
  comm_node_data(root_parents, MALLEABILITY_CHILDREN);
527
528
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, root_parents, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, root_parents, mall->intercomm);
529

530
  mall_conf->results = (results_data *) malloc(sizeof(results_data));
531
  init_results_data(mall_conf->results, mall_conf->config_file->n_resizes, mall_conf->config_file->n_stages, RESULTS_INIT_DATA_QTY);
532

533
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
534
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos
535
    //MPI_Barrier(mall->intercomm);
536

537
538
539
540
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
    } else {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS); 
541

542
543
544
545
546
547
      for(i=0; i<dist_a_data->entries; i++) {
        async_communication_wait(mall_conf->red_strategies, mall->intercomm, dist_a_data->requests[i], dist_a_data->request_qty[i]);
      }
      for(i=0; i<dist_a_data->entries; i++) {
        async_communication_end(mall_conf->red_method, mall_conf->red_strategies, dist_a_data->requests[i], dist_a_data->request_qty[i], &(dist_a_data->windows[i]));
      }
548
    }
549

550
    //MPI_Barrier(mall->intercomm);
551
552
    mall_conf->results->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
  }
553

554
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
555
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
556
    //MPI_Barrier(mall->intercomm);
557
    recv_data(numP_parents, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
558
559
560
561

    // TODO Crear funcion especifica y anyadir para Asinc
    // TODO Tener en cuenta el tipo y qty
    for(i=0; i<rep_s_data->entries; i++) {
562
563
564
565
566
567
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
568
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, root_parents, mall->intercomm);
569
    } 
570
571
    //MPI_Barrier(mall->intercomm);
    mall_conf->results->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona
572
573
  }

574
  // Guardar los resultados de esta transmision
575
  comm_results(mall_conf->results, mall->root, mall_conf->config_file->n_resizes, mall->intercomm);
576
  if(!is_intercomm) {
577
    malleability_comms_update(mall->intercomm);
578
  }
579

580
581
  //MPI_Barrier(mall->comm);
  mall_conf->results->malleability_end = MPI_Wtime(); // Obtener timestamp de cuando termina maleabilidad
582
  MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
583
584
585
586
587
588
589
590
591
592
593
594
595
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
596
  //MPI_Barrier(mall->comm);
597
  mall_conf->results->spawn_start = MPI_Wtime();
598
 
599
  state = init_spawn(mall->name_exec, mall->num_cpus, mall->num_nodes, mall->nodelist, mall->myId, mall->numP, mall->numC, mall->root, mall_conf->spawn_dist, mall_conf->spawn_method, mall_conf->spawn_strategies, mall->thread_comm, &(mall->intercomm));
600

601
  if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
602
      //MPI_Barrier(mall->comm);
603
604
605
606
607
      mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
  }
  return state;
}

608

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
624
625
626
627
628
629
630
631
  int rootBcast, is_intercomm;

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
632
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
633
  }
634

635
636
637
638
639
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
640

641
  send_config_file(mall_conf->config_file, rootBcast, mall->intercomm);
642
  comm_node_data(rootBcast, MALLEABILITY_NOT_CHILDREN);
643
644
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, rootBcast, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, rootBcast, mall->intercomm);
645

646
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
647
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
648
    //FIXME No se envian los datos replicados (rep_a_data)
649
    //MPI_Barrier(mall->intercomm);
650
    mall_conf->results->async_time[mall_conf->grp] = MPI_Wtime();
651
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
652
653
654
      return thread_creation();
    } else {
      send_data(mall->numC, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
655
      return MALL_DIST_PENDING; 
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    }
  } 
  return end_redistribution();
}


/*
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
674
 * //FIXME Modificar para que se tenga en cuenta rep_a_data
675
676
 */
int check_redistribution() {
677
678
  int is_intercomm, completed, local_completed, all_completed;
  size_t i, req_qty;
679
  MPI_Request *req_completed;
680
681
682
683
684
685
686
687
  MPI_Win window;
  local_completed = 1;

  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    completed = async_communication_check(mall->myId, MALLEABILITY_NOT_CHILDREN, mall_conf->red_strategies, mall->intercomm, req_completed, req_qty);
    local_completed = local_completed && completed;
688
689
  }

690
  MPI_Allreduce(&local_completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
691
  if(!all_completed) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
692

693
694
695
696
697
  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    window = dist_a_data->windows[i];
    async_communication_end(mall_conf->red_method, mall_conf->red_strategies, req_completed, req_qty, &window);
698
  }
699
700

  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
701
  //MPI_Barrier(mall->intercomm);
702
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
703
704
705
706
707
708
709
710
711
712
713
714
715
  return end_redistribution();
}


/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
716
717
  size_t i;
  int is_intercomm, rootBcast, local_state;
718

719
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
720
721
722
723
724
725
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
  
726
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
727
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
728
    //MPI_Barrier(mall->intercomm);
729
    mall_conf->results->sync_time[mall_conf->grp] = MPI_Wtime();
730
731
732
    send_data(mall->numC, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);

    // TODO Crear funcion especifica y anyadir para Asinc
733
    // TODO Tener en cuenta el tipo
734
    for(i=0; i<rep_s_data->entries; i++) {
735
736
737
738
739
740
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
741
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, rootBcast, mall->intercomm);
742
    } 
743
744
    //MPI_Barrier(mall->intercomm);
    if(!is_intercomm) mall_conf->results->sync_end = MPI_Wtime(); // Merge method only
745
  }
iker_martin's avatar
iker_martin committed
746

747
  comm_results(mall_conf->results, rootBcast, mall_conf->config_file->n_resizes, mall->intercomm);
iker_martin's avatar
iker_martin committed
748

749
750
751
  local_state = MALL_DIST_COMPLETED;
  if(!is_intercomm) { // Merge Spawn
    if(mall->numP < mall->numC) { // Expand
752
      malleability_comms_update(mall->intercomm);
753
754
755
756
    } else { // Shrink || Merge Shrink requiere de mas tareas
      local_state = MALL_SPAWN_ADAPT_PENDING;
    }
  }
757

758
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) {
759
    MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
760
  }
761

762
  return local_state;
763
764
}

765
766
767
768

///=============================================
///=============================================
///=============================================
769
//TODO Add comment
iker_martin's avatar
iker_martin committed
770
int shrink_redistribution() {
771
    //MPI_Barrier(mall->comm);
772
    double time_extra = MPI_Wtime();
773

774
    //TODO Create new state before collecting zombies. Processes can perform tasks before that. Then call again Malleability to commit the change
775
    zombies_collect_suspended(mall->user_comm, mall->myId, mall->numP, mall->numC, mall->root, (void *) mall_conf->results, mall_conf->config_file->n_stages, mall_conf->config_file->capture_method);
iker_martin's avatar
iker_martin committed
776
777
    
    if(mall->myId < mall->numC) {
778
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm)); //FIXME Modificar a que se pida pro el usuario el cambio y se llama a comms_update
779
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
780
      mall->dup_user_comm = 1;
781
782
783
784

      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));

785
786
787
      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");

788
789
      MPI_Comm_free(&(mall->intercomm));

790
      //MPI_Barrier(mall->comm);
791
792
793
      mall_conf->results->spawn_time[mall_conf->grp] += MPI_Wtime() - time_extra;
      if(malleability_spawn_contains_strat(mall_conf->spawn_strategies,MALL_SPAWN_PTHREAD, NULL)) {
          mall_conf->results->spawn_real_time[mall_conf->grp] += MPI_Wtime() - time_extra;
794
      }
795
      return MALL_DIST_COMPLETED;
iker_martin's avatar
iker_martin committed
796
    } else {
797
      return MALL_ZOMBIE;
iker_martin's avatar
iker_martin committed
798
799
800
    }
}

801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=================COMM NODE INFO ======================||
//======================================================||
//======================================================||
//TODO Add comment
void comm_node_data(int rootBcast, int is_child_group) {
  MPI_Datatype node_type;

  def_nodeinfo_type(&node_type);
  MPI_Bcast(mall, 1, node_type, rootBcast, mall->intercomm);

  if(is_child_group) {
    mall->nodelist = malloc((mall->nodelist_len+1) * sizeof(char));
    mall->nodelist[mall->nodelist_len] = '\0';
  }
  MPI_Bcast(mall->nodelist, mall->nodelist_len, MPI_CHAR, rootBcast, mall->intercomm);

  MPI_Type_free(&node_type);
}

//TODO Add comment
void def_nodeinfo_type(MPI_Datatype *node_type) {
  int i, counts = 3;
  int blocklengths[3] = {1, 1, 1};
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
  types[0] = types[1] = types[2] = MPI_INT;

  // Rellenar vector displs
  MPI_Get_address(mall, &dir);

  MPI_Get_address(&(mall->num_cpus), &displs[0]);
  MPI_Get_address(&(mall->num_nodes), &displs[1]);
  MPI_Get_address(&(mall->nodelist_len), &displs[2]);

  for(i=0;i<counts;i++) displs[i] -= dir;

  MPI_Type_create_struct(counts, blocklengths, displs, types, node_type);
  MPI_Type_commit(node_type);
}

845
846
847
848
849
850
851
// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

852
853

int comm_state; //FIXME Usar un handler
854
855
856
857
/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
858
  comm_state = MALL_DIST_PENDING;
859
860
861
862
863
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
864
  return comm_state;
865
866
867
868
869
870
871
872
873
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
int thread_check() {
874
  int all_completed = 0, is_intercomm;
875
876

  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
877
  MPI_Allreduce(&comm_state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
878
879
  if(all_completed != MALL_DIST_COMPLETED) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
  //FIXME No se tiene en cuenta el estado MALL_APP_ENDED
880
881
882
883
884
885

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
886
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
887
  //MPI_Barrier(mall->intercomm);
888
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
889
890
891
892
893
894
895
896
897
898
899
900
  return end_redistribution();
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
901
void* thread_async_work() {
902
  send_data(mall->numC, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
903
  comm_state = MALL_DIST_COMPLETED;
904
905
  pthread_exit(NULL);
}
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925


//==============================================================================
/*
 * Muestra por pantalla el estado actual de todos los comunicadores
 */
void print_comms_state() {
  int tester;
  char *test = malloc(MPI_MAX_OBJECT_NAME * sizeof(char));

  MPI_Comm_get_name(mall->comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->comm, test);
  MPI_Comm_get_name(mall->user_comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->user_comm, test);
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_get_name(mall->intercomm, test, &tester);
    printf("P%d Comm=%d Name=%s\n", mall->myId, mall->intercomm, test);
  }
  free(test);
}
926
927
928
929
930
931
932
933
934
935
936
937
938
939

void malleability_comms_update(MPI_Comm comm) {
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

  MPI_Comm_dup(comm, &(mall->thread_comm));
  MPI_Comm_dup(comm, &(mall->comm));
  MPI_Comm_dup(comm, &(mall->user_comm)); 

  MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
  MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
}