malleabilityManager.c 32.4 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
4
#include "malleabilityManager.h"
#include "malleabilityStates.h"
5
#include "malleabilityDataStructures.h"
6
#include "malleabilityTypes.h"
iker_martin's avatar
iker_martin committed
7
#include "malleabilityZombies.h"
8
#include "spawn_methods/GenericSpawn.h"
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "CommDist.h"

#define MALLEABILITY_USE_SYNCHRONOUS 0
#define MALLEABILITY_USE_ASYNCHRONOUS 1


void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

void Children_init();
int spawn_step();
int start_redistribution();
int check_redistribution();
int end_redistribution();
iker_martin's avatar
iker_martin committed
23
int shrink_redistribution();
24

25
26
27
void comm_node_data(int rootBcast, int is_child_group);
void def_nodeinfo_type(MPI_Datatype *node_type);

28
29
int thread_creation();
int thread_check();
30
void* thread_async_work();
31

32
void print_comms_state();
33
void malleability_comms_update(MPI_Comm comm);
34

35
typedef struct {
36
  int spawn_method;
37
  int spawn_dist;
38
  int spawn_strategies;
39
40
  int red_method;
  int red_strategies;
41

42
  int grp;
43
44
45
46
  configuration *config_file;
  results_data *results;
} malleability_config_t;

iker_martin's avatar
iker_martin committed
47
typedef struct { //FIXME numC_spawned no se esta usando
48
  int myId, numP, numC, numC_spawned, root, root_parents;
49
50
51
  pthread_t async_thread;
  MPI_Comm comm, thread_comm;
  MPI_Comm intercomm;
52
  MPI_Comm user_comm;
53
  int dup_user_comm;
54
  
55
  char *name_exec, *nodelist;
56
  int num_cpus, num_nodes, nodelist_len;
57
58
} malleability_t;

59
int state = MALL_UNRESERVED; //FIXME Mover a otro lado
60
61
62
63
64
65
66
67
68

malleability_config_t *mall_conf;
malleability_t *mall;

malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

69
/*
70
71
72
73
74
75
76
77
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
78
 */
79
int init_malleability(int myId, int numP, int root, MPI_Comm comm, char *name_exec, char *nodelist, int num_cpus, int num_nodes) {
80
81
82
83
84
85
86
87
88
  MPI_Comm dup_comm, thread_comm;

  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

89
  mall->dup_user_comm = 0;
90
91
  MPI_Comm_dup(comm, &dup_comm);
  MPI_Comm_dup(comm, &thread_comm);
92
93
  MPI_Comm_set_name(dup_comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(thread_comm, "MPI_COMM_MALL_THREAD");
94
95
96
97

  mall->myId = myId;
  mall->numP = numP;
  mall->root = root;
98
  mall->comm = dup_comm;
99
  mall->thread_comm = thread_comm;
100
  mall->user_comm = comm;
101

102
  mall->name_exec = name_exec;
103
104
105
  mall->nodelist = nodelist;
  mall->num_cpus = num_cpus;
  mall->num_nodes = num_nodes;
106
107
108
109
110
111

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

112
  state = MALL_NOT_STARTED;
113

114
115
  zombies_service_init();

116
117
118
119
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
  if(mall->intercomm != MPI_COMM_NULL ) { 
    Children_init();
120
    return MALLEABILITY_CHILDREN;
121
  }
iker_martin's avatar
iker_martin committed
122

123
124
125
126
127
128
129
  if(nodelist != NULL) { //TODO To be deprecated by using Slurm or else statement
    mall->nodelist_len = strlen(nodelist);
  } else { // If no nodelist is detected, get it from the actual run
    mall->nodelist = malloc(MPI_MAX_PROCESSOR_NAME * sizeof(char));
    MPI_Get_processor_name(mall->nodelist, &mall->nodelist_len);
    //TODO Get name of each process and create real nodelist
  }
130

131
  return MALLEABILITY_NOT_CHILDREN;
132
133
}

134
135
136
137
138
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
139
void free_malleability() {	  
140
141
142
143
144
145
146
147
148
149
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);

150
151
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
152
153
  free(mall);
  free(mall_conf);
iker_martin's avatar
iker_martin committed
154
155
156
157

  zombies_awake();
  zombies_service_free();

158
  state = MALL_UNRESERVED;
159
160
}

161
162
/* 
 * TODO Reescribir
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
 * Se realiza el redimensionado de procesos por parte de los padres.
 *
 * Se crean los nuevos procesos con la distribucion fisica elegida y
 * a continuacion se transmite la informacion a los mismos.
 *
 * Si hay datos asincronos a transmitir, primero se comienza a
 * transmitir estos y se termina la funcion. Se tiene que comprobar con
 * llamando a la función de nuevo que se han terminado de enviar
 *
 * Si hay ademas datos sincronos a enviar, no se envian aun.
 *
 * Si solo hay datos sincronos se envian tras la creacion de los procesos
 * y finalmente se desconectan los dos grupos de procesos.
 */
int malleability_checkpoint() {
178
179
180
181
182
183
184
  double end_real_time;

  switch(state) {
    case MALL_UNRESERVED:
      break;
    case MALL_NOT_STARTED:
      // Comprobar si se tiene que realizar un redimensionado
185
      mall_conf->results->malleability_time[mall_conf->grp] = MPI_Wtime();
186
      //if(CHECK_RMS()) {return MALL_DENIED;}
187

188
189
190
191
192
193
      state = spawn_step();

      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPT_POSTPONE){
        malleability_checkpoint();
      }
      break;
194

195
196
197
198
199
200
    case MALL_SPAWN_PENDING: // Comprueba si el spawn ha terminado y comienza la redistribucion
    case MALL_SPAWN_SINGLE_PENDING:
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPTED) {
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
        mall_conf->results->spawn_real_time[mall_conf->grp] = end_real_time - mall_conf->results->spawn_start;
201

202
203
204
        malleability_checkpoint();
      }
      break;
205

206
207
208
209
210
    case MALL_SPAWN_ADAPT_POSTPONE:
    case MALL_SPAWN_COMPLETED:
      state = start_redistribution();
      malleability_checkpoint();
      break;
211

212
    case MALL_DIST_PENDING:
213
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
214
215
216
217
        state = thread_check();
      } else {
        state = check_redistribution();
      }
218
      if(state != MALL_DIST_PENDING) { 
219
220
221
222
223
224
225
226
        malleability_checkpoint();
      }
      break;

    case MALL_SPAWN_ADAPT_PENDING:
      mall_conf->results->spawn_start = MPI_Wtime();
      unset_spawn_postpone_flag(state);
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
227

228
      if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
229
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
230
	malleability_checkpoint();
231
      }
232
      break;
233

234
    case MALL_SPAWN_ADAPTED:
235
      state = shrink_redistribution();
236
      malleability_checkpoint();
237
      break;
238

239
    case MALL_DIST_COMPLETED: //TODO No es esto muy feo?
240
      mall_conf->results->malleability_end = MPI_Wtime();
241
242
243
      state = MALL_COMPLETED;
      break;
  }
244
245
246
247
248
249
250
251
252
253
254
255
256
  return state;
}

// Funciones solo necesarias por el benchmark
//-------------------------------------------------------------------------------------------------------------
void set_benchmark_grp(int grp) {
  mall_conf->grp = grp;
}

void set_benchmark_configuration(configuration *config_file) {
  mall_conf->config_file = config_file;
}

257
void get_benchmark_configuration(configuration **config_file) {
258
259
260
261
262
263
264
  *config_file = mall_conf->config_file;
}

void set_benchmark_results(results_data *results) {
  mall_conf->results = results;
}

265
void get_benchmark_results(results_data **results) {
266
267
268
269
  *results = mall_conf->results;
}
//-------------------------------------------------------------------------------------------------------------

270
void set_malleability_configuration(int spawn_method, int spawn_strategies, int spawn_dist, int red_method, int red_strategies) {
271
272
  mall_conf->spawn_method = spawn_method;
  mall_conf->spawn_strategies = spawn_strategies;
273
  mall_conf->spawn_dist = spawn_dist;
274
275
276
277
278
279
280
  mall_conf->red_method = red_method;
  mall_conf->red_strategies = red_strategies;

  if(!malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL) && 
	(mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL)) {
    malleability_red_add_strat(&(mall_conf->red_strategies), MALL_RED_IBARRIER);
  }
281
282
283
284
}

/*
 * To be deprecated
285
 * Tiene que ser llamado despues de setear la config
286
287
 */
void set_children_number(int numC){
288
  if((mall_conf->spawn_method == MALL_SPAWN_MERGE) && (numC >= mall->numP)) {
289
290
291
292
293
    mall->numC = numC;
    mall->numC_spawned = numC - mall->numP;

    if(numC == mall->numP) { // Migrar
      mall->numC_spawned = numC;
294
      mall_conf->spawn_method = MALL_SPAWN_BASELINE;
295
296
297
298
299
300
301
302
303
304
305
    }
  } else {
    mall->numC = numC;
    mall->numC_spawned = numC;
  }
}

/*
 * TODO
 */
void get_malleability_user_comm(MPI_Comm *comm) {
306
307
308
309
310
311
  if(mall->dup_user_comm) {
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm));
    MPI_Comm_dup(mall->comm, &(mall->user_comm));
    MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
    mall->dup_user_comm = 0;
  }
312
  *comm = mall->user_comm;
313
314
315
316
317
318
319
320
321
}

/*
 * Anyade a la estructura concreta de datos elegida
 * el nuevo set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que anyadir cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "add_data".
322
323
 *
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
324
 */
325
void malleability_add_data(void *data, size_t total_qty, int type, int is_replicated, int is_constant) {
326
  size_t total_reqs = 0;
327
328
329

  if(is_constant) {
    if(is_replicated) {
330
      add_data(data, total_qty, type, total_reqs, rep_s_data);
331
    } else {
332
      add_data(data, total_qty, type, total_reqs, dist_s_data);
333
334
335
    }
  } else {
    if(is_replicated) {
336
      add_data(data, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
337
    } else {
338
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
339
        total_reqs = 1;
340
      } else if(mall_conf->red_method  == MALL_RED_POINT || mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL) {
341
        total_reqs = mall->numC;
342
      }
343
344
345
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
        total_reqs++;
      }
346
347
348
349
350
351
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
    }
  }
}

352
353
354
355
356
357
358
/*
 * Modifica en la estructura concreta de datos elegida en el indice "index"
 * con el set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que modificar cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "modify_data".
359
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
360
361
 */
void malleability_modify_data(void *data, size_t index, size_t total_qty, int type, int is_replicated, int is_constant) {
362
363
  size_t total_reqs = 0;

364
365
  if(is_constant) {
    if(is_replicated) {
366
      modify_data(data, index, total_qty, type, total_reqs, rep_s_data);
367
    } else {
368
      modify_data(data, index, total_qty, type, total_reqs, dist_s_data);
369
370
371
    }
  } else {
    if(is_replicated) {
372
373
374
      modify_data(data, index, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
    } else {    
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
375
        total_reqs = 1;
376
      } else if(mall_conf->red_method  == MALL_RED_POINT || mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL) {
377
378
        total_reqs = mall->numC;
      }
379
380
381
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
        total_reqs++;
      }
382
      
383
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data);
384
385
386
387
    }
  }
}

388
389
390
/*
 * Devuelve el numero de entradas para la estructura de descripcion de 
 * datos elegida.
391
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
392
 */
393
void malleability_get_entries(size_t *entries, int is_replicated, int is_constant){
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
  
  if(is_constant) {
    if(is_replicated) {
      *entries = rep_s_data->entries;
    } else {
      *entries = dist_s_data->entries;
    }
  } else {
    if(is_replicated) {
      *entries = rep_a_data->entries;
    } else {
      *entries = dist_a_data->entries;
    }
  }
}

/*
 * Devuelve el elemento de la lista "index" al usuario.
 * La devolución es en el mismo orden que lo han metido los padres
 * con la funcion "malleability_add_data()".
 * Es tarea del usuario saber el tipo de esos datos.
 * TODO Refactor a que sea automatico
416
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
417
 */
418
void malleability_get_data(void **data, size_t index, int is_replicated, int is_constant) {
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
      data_struct = rep_s_data;
    } else {
      data_struct = dist_s_data;
    }
  } else {
    if(is_replicated) {
      data_struct = rep_a_data;
    } else {
      data_struct = dist_a_data;
    }
  }

435
  *data = data_struct->arrays[index];
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
}


//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||

/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
451
  size_t i;
452
  char *aux_send, *aux_recv;
453
454
455

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
456
457
458
459
460
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
      async_communication_start(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, 
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
461
462
463
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
464
465
466
467
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
      sync_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall->intercomm);
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
468
469
470
471
472
473
474
475
476
477
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
478
  size_t i;
479
  char *aux, aux_s;
480
481
482
483

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
484
485
      async_communication_start(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, 
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
486
487
488
489
490
      data_struct->arrays[i] = (void *) aux;
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
491
      sync_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall->intercomm);
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
      data_struct->arrays[i] = (void *) aux;
    }
  }
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||
/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
void Children_init() {
509
510
  size_t i;
  int numP_parents, root_parents;
511
  int is_intercomm;
512

513
514
  malleability_connect_children(mall->myId, mall->numP, mall->root, mall->comm, &numP_parents, &root_parents, &(mall->intercomm));
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
515
516
517
518
  if(!is_intercomm) { // For intracommunicators, these processes will be added
    MPI_Comm_rank(mall->intercomm, &(mall->myId));
    MPI_Comm_size(mall->intercomm, &(mall->numP));
  }
519

520
  recv_config_file(mall->root, mall->intercomm, &(mall_conf->config_file));
521
  comm_node_data(root_parents, MALLEABILITY_CHILDREN);
522
523
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, root_parents, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, root_parents, mall->intercomm);
524

525
  mall_conf->results = (results_data *) malloc(sizeof(results_data));
526
  init_results_data(mall_conf->results, mall_conf->config_file->n_resizes, mall_conf->config_file->n_stages, RESULTS_INIT_DATA_QTY);
527

528
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
529
530
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos

531
532
533
534
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
    } else {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS); 
535

536
537
538
539
540
541
      for(i=0; i<dist_a_data->entries; i++) {
        async_communication_wait(mall_conf->red_strategies, mall->intercomm, dist_a_data->requests[i], dist_a_data->request_qty[i]);
      }
      for(i=0; i<dist_a_data->entries; i++) {
        async_communication_end(mall_conf->red_method, mall_conf->red_strategies, dist_a_data->requests[i], dist_a_data->request_qty[i], &(dist_a_data->windows[i]));
      }
542
    }
543

544
545
    mall_conf->results->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
  }
546

547
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
548
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
549
    recv_data(numP_parents, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
550
551
552
553
554
    mall_conf->results->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona

    // TODO Crear funcion especifica y anyadir para Asinc
    // TODO Tener en cuenta el tipo y qty
    for(i=0; i<rep_s_data->entries; i++) {
555
556
557
558
559
560
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
561
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, root_parents, mall->intercomm);
562
563
    } 
  }
564
  mall_conf->results->malleability_end = MPI_Wtime(); // Obtener timestamp de cuando termina maleabilidad
565

566
  // Guardar los resultados de esta transmision
567
  comm_results(mall_conf->results, mall->root, mall_conf->config_file->n_resizes, mall->intercomm);
568
  if(!is_intercomm) {
569
    malleability_comms_update(mall->intercomm);
570
  }
571

572
  MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
573
574
575
576
577
578
579
580
581
582
583
584
585
586
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
  mall_conf->results->spawn_start = MPI_Wtime();
587
 
588
  state = init_spawn(mall->name_exec, mall->num_cpus, mall->num_nodes, mall->nodelist, mall->myId, mall->numP, mall->numC, mall->root, mall_conf->spawn_dist, mall_conf->spawn_method, mall_conf->spawn_strategies, mall->thread_comm, &(mall->intercomm));
589

590
  if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
591
592
593
594
595
      mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
  }
  return state;
}

596

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
612
613
614
615
616
617
618
619
  int rootBcast, is_intercomm;

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
620
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
621
  }
622

623
624
625
626
627
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
628

629
  send_config_file(mall_conf->config_file, rootBcast, mall->intercomm);
630
  comm_node_data(rootBcast, MALLEABILITY_NOT_CHILDREN);
631
632
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, rootBcast, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, rootBcast, mall->intercomm);
633

634
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
635
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
636
    //FIXME No se envian los datos replicados (rep_a_data)
637
    mall_conf->results->async_time[mall_conf->grp] = MPI_Wtime();
638
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
639
640
641
      return thread_creation();
    } else {
      send_data(mall->numC, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
642
      return MALL_DIST_PENDING; 
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    }
  } 
  return end_redistribution();
}


/*
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
661
 * //FIXME Modificar para que se tenga en cuenta rep_a_data
662
663
 */
int check_redistribution() {
664
665
  int is_intercomm, completed, local_completed, all_completed;
  size_t i, req_qty;
666
  MPI_Request *req_completed;
667
668
669
670
671
672
673
674
  MPI_Win window;
  local_completed = 1;

  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    completed = async_communication_check(mall->myId, MALLEABILITY_NOT_CHILDREN, mall_conf->red_strategies, mall->intercomm, req_completed, req_qty);
    local_completed = local_completed && completed;
675
676
  }

677
  MPI_Allreduce(&local_completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
678
  if(!all_completed) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
679

680
681
682
683
684
  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    window = dist_a_data->windows[i];
    async_communication_end(mall_conf->red_method, mall_conf->red_strategies, req_completed, req_qty, &window);
685
  }
686
687
688

  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
689
690
691
692
693
694
695
696
697
698
699
700
701
  return end_redistribution();
}


/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
702
703
  size_t i;
  int is_intercomm, rootBcast, local_state;
704

705
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
706
707
708
709
710
711
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
  
712
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
713
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
714
    mall_conf->results->sync_time[mall_conf->grp] = MPI_Wtime();
715
    send_data(mall->numC, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
716
    if(!is_intercomm) mall_conf->results->sync_end = MPI_Wtime(); // Merge method only
717
718

    // TODO Crear funcion especifica y anyadir para Asinc
719
    // TODO Tener en cuenta el tipo
720
    for(i=0; i<rep_s_data->entries; i++) {
721
722
723
724
725
726
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
727
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, rootBcast, mall->intercomm);
728
729
    } 
  }
iker_martin's avatar
iker_martin committed
730

731
  comm_results(mall_conf->results, rootBcast, mall_conf->config_file->n_resizes, mall->intercomm);
iker_martin's avatar
iker_martin committed
732

733
734
735
  local_state = MALL_DIST_COMPLETED;
  if(!is_intercomm) { // Merge Spawn
    if(mall->numP < mall->numC) { // Expand
736
      malleability_comms_update(mall->intercomm);
737
738
739
740
    } else { // Shrink || Merge Shrink requiere de mas tareas
      local_state = MALL_SPAWN_ADAPT_PENDING;
    }
  }
741

742
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) {
743
    MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
744
  }
745

746
  return local_state;
747
748
}

749
750
751
752

///=============================================
///=============================================
///=============================================
753
//TODO Add comment
iker_martin's avatar
iker_martin committed
754
int shrink_redistribution() {
755
    double time_extra = MPI_Wtime();
756

757
758
    //TODO Create new state before collecting zombies. Processes can perform tasks before that. Then call again Malleability to commit the change
    zombies_collect_suspended(mall->user_comm, mall->myId, mall->numP, mall->numC, mall->root, (void *) mall_conf->results, mall_conf->config_file->n_stages);
iker_martin's avatar
iker_martin committed
759
760
    
    if(mall->myId < mall->numC) {
761
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm)); //FIXME Modificar a que se pida pro el usuario el cambio y se llama a comms_update
762
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
763
      mall->dup_user_comm = 1;
764
765
766
767

      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));

768
769
770
      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");

771
772
      MPI_Comm_free(&(mall->intercomm));

773
774
775
      mall_conf->results->spawn_time[mall_conf->grp] += MPI_Wtime() - time_extra;
      if(malleability_spawn_contains_strat(mall_conf->spawn_strategies,MALL_SPAWN_PTHREAD, NULL)) {
          mall_conf->results->spawn_real_time[mall_conf->grp] += MPI_Wtime() - time_extra;
776
      }
777
      return MALL_DIST_COMPLETED;
iker_martin's avatar
iker_martin committed
778
    } else {
779
      return MALL_ZOMBIE;
iker_martin's avatar
iker_martin committed
780
781
782
    }
}

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=================COMM NODE INFO ======================||
//======================================================||
//======================================================||
//TODO Add comment
void comm_node_data(int rootBcast, int is_child_group) {
  MPI_Datatype node_type;

  def_nodeinfo_type(&node_type);
  MPI_Bcast(mall, 1, node_type, rootBcast, mall->intercomm);

  if(is_child_group) {
    mall->nodelist = malloc((mall->nodelist_len+1) * sizeof(char));
    mall->nodelist[mall->nodelist_len] = '\0';
  }
  MPI_Bcast(mall->nodelist, mall->nodelist_len, MPI_CHAR, rootBcast, mall->intercomm);

  MPI_Type_free(&node_type);
}

//TODO Add comment
void def_nodeinfo_type(MPI_Datatype *node_type) {
  int i, counts = 3;
  int blocklengths[3] = {1, 1, 1};
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
  types[0] = types[1] = types[2] = MPI_INT;

  // Rellenar vector displs
  MPI_Get_address(mall, &dir);

  MPI_Get_address(&(mall->num_cpus), &displs[0]);
  MPI_Get_address(&(mall->num_nodes), &displs[1]);
  MPI_Get_address(&(mall->nodelist_len), &displs[2]);

  for(i=0;i<counts;i++) displs[i] -= dir;

  MPI_Type_create_struct(counts, blocklengths, displs, types, node_type);
  MPI_Type_commit(node_type);
}

827
828
829
830
831
832
833
// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

834
835

int comm_state; //FIXME Usar un handler
836
837
838
839
/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
840
  comm_state = MALL_DIST_PENDING;
841
842
843
844
845
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
846
  return comm_state;
847
848
849
850
851
852
853
854
855
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
int thread_check() {
856
  int all_completed = 0, is_intercomm;
857
858

  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
859
  MPI_Allreduce(&comm_state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
860
861
  if(all_completed != MALL_DIST_COMPLETED) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
  //FIXME No se tiene en cuenta el estado MALL_APP_ENDED
862
863
864
865
866
867

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
868
869
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
870
871
872
873
874
875
876
877
878
879
880
881
  return end_redistribution();
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
882
void* thread_async_work() {
883
  send_data(mall->numC, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
884
  comm_state = MALL_DIST_COMPLETED;
885
886
  pthread_exit(NULL);
}
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906


//==============================================================================
/*
 * Muestra por pantalla el estado actual de todos los comunicadores
 */
void print_comms_state() {
  int tester;
  char *test = malloc(MPI_MAX_OBJECT_NAME * sizeof(char));

  MPI_Comm_get_name(mall->comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->comm, test);
  MPI_Comm_get_name(mall->user_comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->user_comm, test);
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_get_name(mall->intercomm, test, &tester);
    printf("P%d Comm=%d Name=%s\n", mall->myId, mall->intercomm, test);
  }
  free(test);
}
907
908
909
910
911
912
913
914
915
916
917
918
919
920

void malleability_comms_update(MPI_Comm comm) {
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

  MPI_Comm_dup(comm, &(mall->thread_comm));
  MPI_Comm_dup(comm, &(mall->comm));
  MPI_Comm_dup(comm, &(mall->user_comm)); 

  MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
  MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
}