configuration.c 14 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mpi.h>
#include "../IOcodes/read_ini.h"
#include "configuration.h"
#include "../malleability/spawn_methods/ProcessDist.h"
#include "../malleability/distribution_methods/block_distribution.h"

void malloc_config_resizes(configuration *user_config);
11
void malloc_config_stages(configuration *user_config);
12

13
14
void free_config_stage(iter_stage_t *stage, int *freed_ids, size_t *found_ids);

15
16
17
void def_struct_config_file(configuration *config_file);
void def_struct_groups(configuration *config_file);
void def_struct_iter_stage(configuration *config_file);
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

/*
 * Inicializa una estructura de configuracion
 *
 * Si el parametro "file_name" no es nulo,
 * se obtiene la configuracion a partir de 
 * un fichero .ini
 *
 * En caso de que sea nulo, es el usuario
 * el que tiene que elegir los valores a
 * utilizar.
 */
void init_config(char *file_name, configuration **user_config) {
  if(file_name != NULL) {
    ext_functions_t mallocs;
    mallocs.resizes_f = malloc_config_resizes;
34
    mallocs.stages_f = malloc_config_stages;
35
36
37
38
39
    *user_config = read_ini_file(file_name, mallocs);
  } else {
    configuration *config = NULL;

    config = malloc(sizeof(configuration));
40
41
    config->n_resizes=0;
    config->n_groups=1;
42
43
44
    malloc_config_resizes(config);
    config->n_stages=1;
    malloc_config_stages(config);
45
46
47
48
49
50
51
    if(config == NULL) {
        perror("Error when reserving configuration structure\n");
	MPI_Abort(MPI_COMM_WORLD, -3);
	return;
    }
    *user_config=config;
  }
52
  def_struct_config_file(*user_config);
53
54
55
56
57
58
59
60
61
62
}

/*
 * Reserva de memoria para los vectores de la estructura de configuracion
 *
 * Si se llama desde fuera de este fichero, la memoria de la estructura
 * tiene que reservarse con la siguiente linea:
 * "configuration *config = malloc(sizeof(configuration));"
 *
 * Sin embargo se puede obtener a traves de las funciones
63
 *  - init_config
64
65
66
 *  - recv_config_file
 */
void malloc_config_resizes(configuration *user_config) {
67
  size_t i;
68
  if(user_config != NULL) {
69
70
    user_config->groups = malloc(sizeof(group_config_t) * user_config->n_groups);
    for(i=0; i<user_config->n_groups; i++) {
71
72
73
74
75
      user_config->groups[i].iters = 0;
      user_config->groups[i].procs = 1;
      user_config->groups[i].sm = 0;
      user_config->groups[i].ss = 1;
      user_config->groups[i].phy_dist = 0;
76
77
      user_config->groups[i].rm = 0;
      user_config->groups[i].rs = 1;
78
79
      user_config->groups[i].factor = 1;
    }
80
    def_struct_groups(user_config);
81
82
83
84
85
86
87
88
89
  }
}

/*
 * Inicializa la memoria para las fases de iteraciones.
 * No se reserva memoria, pero si se pone a NULL
 * para poder liberar correctamente cada fase.
 *
 * Se puede obtener a traves de las funciones
90
 *  - init_config
91
92
 *  - recv_config_file
 */
93
void malloc_config_stages(configuration *user_config) {
94
  size_t i;
95
  if(user_config != NULL) {
96
    user_config->stages = malloc(sizeof(iter_stage_t) * user_config->n_stages);
97
98
99
100
    for(i=0; i<user_config->n_stages; i++) {
      user_config->stages[i].array = NULL;
      user_config->stages[i].full_array = NULL;
      user_config->stages[i].double_array = NULL;
101
      user_config->stages[i].reqs = NULL;
102
      user_config->stages[i].counts.counts = NULL;
103
104
      user_config->stages[i].bytes = 0;
      user_config->stages[i].my_bytes = 0;
105
      user_config->stages[i].real_bytes = 0;
106
107
      user_config->stages[i].operations = 0;
      user_config->stages[i].pt = 0;
108
      user_config->stages[i].id = -1;
109
110
      user_config->stages[i].t_op = 0;
      user_config->stages[i].t_stage = 0;
111
      user_config->stages[i].t_capped = 0;
112
    }
113
    def_struct_iter_stage(user_config);
114
  }
115
116
117
118
119
120
121
}


/*
 * Libera toda la memoria de una estructura de configuracion
 */
void free_config(configuration *user_config) {
122
123
124
    size_t i, found_ids;
    int *freed_ids;
    found_ids = 0;
125
    if(user_config != NULL) {
126
      freed_ids = (int *) malloc(user_config->n_stages * sizeof(int));
127
      for(i=0; i < user_config->n_stages; i++) {
128
        free_config_stage(&(user_config->stages[i]), freed_ids, &found_ids);
129
      }
130
      //Liberar tipos derivados
131
132
133
134
135
136
137
138
      MPI_Type_free(&(user_config->config_type));
      user_config->config_type = MPI_DATATYPE_NULL;

      MPI_Type_free(&(user_config->group_type));
      user_config->group_type = MPI_DATATYPE_NULL;

      MPI_Type_free(&(user_config->iter_stage_type));
      user_config->iter_stage_type = MPI_DATATYPE_NULL;
139
      
140
      free(user_config->groups);
141
      free(user_config->stages);
142
      free(user_config);
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
      free(freed_ids);
    }
}


/*
 * Libera toda la memoria de una estructura de configuracion
 */
void free_config_stage(iter_stage_t *stage, int *freed_ids, size_t *found_ids) {
  size_t i;
  int free_reqs;

  free_reqs = 1;
  if(stage->id > -1) {
    for(i=0; i<*found_ids; i++) {
      if(stage->id == freed_ids[i]) {
  	free_reqs = 0;
        break;
      }
    }
    if(free_reqs) {
      freed_ids[*found_ids] = stage->id;
      *found_ids=*found_ids + 1;
166
    }
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
  }
	
  if(stage->array != NULL) {
    free(stage->array);
    stage->array = NULL;
  }
  if(stage->full_array != NULL) {
    free(stage->full_array);
    stage->full_array = NULL;
  }
  if(stage->double_array != NULL) {
    free(stage->double_array);
    stage->double_array = NULL;
  }
  if(stage->reqs != NULL && free_reqs) {
    for(i=0; i<stage->req_count; i++) {
      if(stage->reqs[i] != MPI_REQUEST_NULL) {
        MPI_Request_free(&(stage->reqs[i]));
	stage->reqs[i] = MPI_REQUEST_NULL;
      }
    }
    free(stage->reqs);
    stage->reqs = NULL;
  }
  if(stage->counts.counts != NULL) {
    freeCounts(&(stage->counts));
  }
194
195
196
197
198
199
200
}


/*
 * Imprime por salida estandar toda la informacion que contiene
 * la configuracion pasada como argumento
 */
201
void print_config(configuration *user_config) {
202
  if(user_config != NULL) {
203
    size_t i;
204
    printf("Config loaded: R=%zu, S=%zu, granularity=%d, SDR=%zu, ADR=%zu\n",
205
        user_config->n_resizes, user_config->n_stages, user_config->granularity, user_config->sdr, user_config->adr);
206
    for(i=0; i<user_config->n_stages; i++) {
207
208
      printf("Stage %zu: PT=%d, T_stage=%lf, bytes=%d, T_capped=%d\n",
        i, user_config->stages[i].pt, user_config->stages[i].t_stage, user_config->stages[i].real_bytes, user_config->stages[i].t_capped);
209
    }
210
    for(i=0; i<user_config->n_groups; i++) {
211
      printf("Group %zu: Iters=%d, Procs=%d, Factors=%f, Dist=%d, RM=%d, RS=%d, SM=%d, SS=%d\n",
212
        i, user_config->groups[i].iters, user_config->groups[i].procs, user_config->groups[i].factor, 
213
214
	user_config->groups[i].phy_dist, user_config->groups[i].rm, user_config->groups[i].rs,
	user_config->groups[i].sm, user_config->groups[i].ss);
215
216
217
218
219
220
221
222
223
    }
  }
}


/*
 * Imprime por salida estandar la informacion relacionada con un
 * solo grupo de procesos en su configuracion.
 */
224
225
void print_config_group(configuration *user_config, size_t grp) {
  size_t i;
226
227
228
229
  if(user_config != NULL) {
    int parents, sons;
    parents = sons = 0;
    if(grp > 0) {
230
      parents = user_config->groups[grp-1].procs;
231
    }
232
    if(grp < user_config->n_groups - 1) {
233
      sons = user_config->groups[grp+1].procs;
234
235
    }

236
    printf("Config: granularity=%d, SDR=%zu, ADR=%zu\n",
237
        user_config->granularity, user_config->sdr, user_config->adr);
238
    for(i=0; i<user_config->n_stages; i++) {
239
240
      printf("Stage %zu: PT=%d, T_stage=%lf, bytes=%d, T_capped=%d\n",
        i, user_config->stages[i].pt, user_config->stages[i].t_stage, user_config->stages[i].real_bytes, user_config->stages[i].t_capped);
241
    }
242
    printf("Group %zu: Iters=%d, Procs=%d, Factors=%f, Dist=%d, RM=%d, RS=%d, SM=%d, SS=%d, parents=%d, children=%d\n",
243
      grp, user_config->groups[grp].iters, user_config->groups[grp].procs, user_config->groups[grp].factor,
244
245
      user_config->groups[grp].phy_dist, user_config->groups[grp].rm, user_config->groups[grp].rs,
      user_config->groups[grp].sm, user_config->groups[grp].ss, parents, sons);
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
  }
}


//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||
//| FUNCIONES DE INTERCOMUNICACION DE ESTRUCTURA DE CONFIGURACION ||
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||
//||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |/

/*
 * Envia una estructura de configuracion al grupo de procesos al que se 
 * enlaza este grupo a traves del intercomunicador pasado como argumento.
 *
 * Esta funcion tiene que ser llamada por todos los procesos del mismo grupo
 * e indicar cual es el proceso raiz que se encargara de enviar la
 * configuracion al otro grupo.
 */
void send_config_file(configuration *config_file, int root, MPI_Comm intercomm) {
265
266
267
  MPI_Bcast(config_file, 1, config_file->config_type, root, intercomm);
  MPI_Bcast(config_file->groups, config_file->n_groups, config_file->group_type, root, intercomm);
  MPI_Bcast(config_file->stages, config_file->n_stages, config_file->iter_stage_type, root, intercomm);
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
}



/*
 * Recibe una estructura de configuracion desde otro grupo de procesos
 * y la devuelve. La memoria de la estructura se reserva en esta funcion.
 *
 * Esta funcion tiene que ser llamada por todos los procesos del mismo grupo
 * e indicar cual es el proceso raiz del otro grupo que se encarga de enviar
 * la configuracion a este grupo.
 *
 * La memoria de la configuracion devuelta tiene que ser liberada con
 * la funcion "free_config".
 */
void recv_config_file(int root, MPI_Comm intercomm, configuration **config_file_out) {
284
285
  configuration *config_file = malloc(sizeof(configuration));
  def_struct_config_file(config_file);
286

287
  MPI_Bcast(config_file, 1, config_file->config_type, root, intercomm);
288
289

  //Inicializado de estructuras internas
290
  config_file->n_resizes = config_file->n_groups-1;
291
292
  malloc_config_resizes(config_file); // Inicializar valores de grupos
  malloc_config_stages(config_file); // Inicializar a NULL vectores stage
293

294
295
  MPI_Bcast(config_file->groups, config_file->n_groups, config_file->group_type, root, intercomm);
  MPI_Bcast(config_file->stages, config_file->n_stages, config_file->iter_stage_type, root, intercomm);
296
297
298
299
300
301

  *config_file_out = config_file;
}


/*
302
 * Tipo derivado para enviar 7 elementos especificos
303
304
 * de la estructura de configuracion con una sola comunicacion.
 */
305
void def_struct_config_file(configuration *config_file) {
306
307
  int i, counts = 7;
  int blocklengths[7] = {1, 1, 1, 1, 1, 1, 1};
308
309
310
311
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
312
  types[0] = types[1] = types[2] = types[3] = MPI_UNSIGNED_LONG;
313
  types[4] = types[5] = types[6] = MPI_INT;
314
315
316
317

  // Rellenar vector displs
  MPI_Get_address(config_file, &dir);

318
  MPI_Get_address(&(config_file->n_groups), &displs[0]);
319
  MPI_Get_address(&(config_file->n_stages), &displs[1]);
320
321
322
  MPI_Get_address(&(config_file->sdr), &displs[2]);
  MPI_Get_address(&(config_file->adr), &displs[3]);
  MPI_Get_address(&(config_file->granularity), &displs[4]);
323
  MPI_Get_address(&(config_file->rigid_times), &displs[5]);
324
  MPI_Get_address(&(config_file->capture_method), &displs[6]);
325
326
327

  for(i=0;i<counts;i++) displs[i] -= dir;

328
329
  MPI_Type_create_struct(counts, blocklengths, displs, types, &(config_file->config_type));
  MPI_Type_commit(&(config_file->config_type));
330
331
332
}

/*
333
334
335
 * Tipo derivado para enviar elementos especificos
 * de la estructuras de la configuracion de cada grupo 
 * en una sola comunicacion.
336
 */
337
void def_struct_groups(configuration *config_file) {
338
339
  int i, counts = 8;
  int blocklengths[8] = {1, 1, 1, 1, 1, 1, 1, 1};
340
341
  MPI_Aint displs[counts], dir;
  MPI_Datatype aux, types[counts];
342
  group_config_t *groups = config_file->groups;
343
344

  // Rellenar vector types
345
346
  types[0] = types[1] = types[2] = types[3] = types[4] = types[5] = types[6] = MPI_INT;
  types[7] = MPI_FLOAT;
347

348
349
  // Rellenar vector displs
  MPI_Get_address(groups, &dir);
350

351
352
353
354
355
  MPI_Get_address(&(groups->iters), &displs[0]);
  MPI_Get_address(&(groups->procs), &displs[1]);
  MPI_Get_address(&(groups->sm), &displs[2]);
  MPI_Get_address(&(groups->ss), &displs[3]);
  MPI_Get_address(&(groups->phy_dist), &displs[4]);
356
357
358
  MPI_Get_address(&(groups->rm), &displs[5]);
  MPI_Get_address(&(groups->rs), &displs[6]);
  MPI_Get_address(&(groups->factor), &displs[7]);
359
360
361

  for(i=0;i<counts;i++) displs[i] -= dir;

362
363
364
  if (config_file->n_groups == 1) {
    MPI_Type_create_struct(counts, blocklengths, displs, types, &(config_file->group_type));
    MPI_Type_commit(&(config_file->group_type));
365
366
367
  } else { // Si hay mas de una fase(estructura), el "extent" se modifica.
    MPI_Type_create_struct(counts, blocklengths, displs, types, &aux);
    // Tipo derivado para enviar N elementos de la estructura
368
369
    MPI_Type_create_resized(aux, 0, sizeof(group_config_t), &(config_file->group_type));
    MPI_Type_commit(&(config_file->group_type));
370
    MPI_Type_free(&aux);
371
  }
372
373
374
375
376
377
}

/*
 * Tipo derivado para enviar elementos especificos
 * de la estructuras de fases de iteracion en una sola comunicacion.
 */
378
void def_struct_iter_stage(configuration *config_file) {
379
380
  int i, counts = 6;
  int blocklengths[6] = {1, 1, 1, 1, 1, 1};
381
382
  MPI_Aint displs[counts], dir;
  MPI_Datatype aux, types[counts];
383
  iter_stage_t *stages = config_file->stages;
384
385

  // Rellenar vector types
386
387
  types[0] = types[1] = types[2] = types[3] = MPI_INT;
  types[4] = types[5] = MPI_DOUBLE;
388
389
390
391
392

  // Rellenar vector displs
  MPI_Get_address(stages, &dir);

  MPI_Get_address(&(stages->pt), &displs[0]);
393
394
395
396
397
  MPI_Get_address(&(stages->id), &displs[1]);
  MPI_Get_address(&(stages->bytes), &displs[2]);
  MPI_Get_address(&(stages->t_capped), &displs[3]);
  MPI_Get_address(&(stages->t_stage), &displs[4]);
  MPI_Get_address(&(stages->t_op), &displs[5]);
398
399
400

  for(i=0;i<counts;i++) displs[i] -= dir;

401
402
403
  if (config_file->n_stages == 1) {
    MPI_Type_create_struct(counts, blocklengths, displs, types, &(config_file->iter_stage_type));
    MPI_Type_commit(&(config_file->iter_stage_type));
404
405
406
  } else { // Si hay mas de una fase(estructura), el "extent" se modifica.
    MPI_Type_create_struct(counts, blocklengths, displs, types, &aux);
    // Tipo derivado para enviar N elementos de la estructura
407
408
    MPI_Type_create_resized(aux, 0, sizeof(iter_stage_t), &(config_file->iter_stage_type)); 
    MPI_Type_commit(&(config_file->iter_stage_type));
409
    MPI_Type_free(&aux);
410
411
  }
}