malleabilityManager.c 29.9 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
4
#include "malleabilityManager.h"
#include "malleabilityStates.h"
5
#include "malleabilityDataStructures.h"
6
#include "malleabilityTypes.h"
iker_martin's avatar
iker_martin committed
7
#include "malleabilityZombies.h"
8
#include "spawn_methods/GenericSpawn.h"
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "CommDist.h"

#define MALLEABILITY_USE_SYNCHRONOUS 0
#define MALLEABILITY_USE_ASYNCHRONOUS 1


void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

void Children_init();
int spawn_step();
int start_redistribution();
int check_redistribution();
int end_redistribution();
iker_martin's avatar
iker_martin committed
23
int shrink_redistribution();
24

25
26
27
void comm_node_data(int rootBcast, int is_child_group);
void def_nodeinfo_type(MPI_Datatype *node_type);

28
29
int thread_creation();
int thread_check();
30
void* thread_async_work();
31

32
33
void print_comms_state();

34
typedef struct {
35
  int spawn_method;
36
  int spawn_dist;
37
38
39
  int spawn_strategies;
  //int spawn_is_single;
  //int spawn_threaded;
40
41
42
  int comm_type;
  int comm_threaded;

43
  int grp;
44
45
46
47
  configuration *config_file;
  results_data *results;
} malleability_config_t;

iker_martin's avatar
iker_martin committed
48
typedef struct { //FIXME numC_spawned no se esta usando
49
  int myId, numP, numC, numC_spawned, root, root_parents;
50
51
52
  pthread_t async_thread;
  MPI_Comm comm, thread_comm;
  MPI_Comm intercomm;
53
  MPI_Comm user_comm;
54
  
55
  char *name_exec, *nodelist;
56
  int num_cpus, num_nodes, nodelist_len;
57
58
} malleability_t;

59
int state = MALL_UNRESERVED; //FIXME Mover a otro lado
60
61
62
63
64
65
66
67
68

malleability_config_t *mall_conf;
malleability_t *mall;

malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

69
/*
70
71
72
73
74
75
76
77
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
78
 */
79
int init_malleability(int myId, int numP, int root, MPI_Comm comm, char *name_exec, char *nodelist, int num_cpus, int num_nodes) {
80
81
82
83
84
85
86
87
88
  MPI_Comm dup_comm, thread_comm;

  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

89
90
  MPI_Comm_dup(comm, &dup_comm);
  MPI_Comm_dup(comm, &thread_comm);
91
92
  MPI_Comm_set_name(dup_comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(thread_comm, "MPI_COMM_MALL_THREAD");
93
94
95
96

  mall->myId = myId;
  mall->numP = numP;
  mall->root = root;
97
  mall->comm = dup_comm;
98
  mall->thread_comm = thread_comm;
99
  mall->user_comm = comm;
100

101
  mall->name_exec = name_exec;
102
103
104
  mall->nodelist = nodelist;
  mall->num_cpus = num_cpus;
  mall->num_nodes = num_nodes;
105
106
107
108
109
110

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

111
  state = MALL_NOT_STARTED;
112

113
114
  zombies_service_init();

115
116
117
118
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
  if(mall->intercomm != MPI_COMM_NULL ) { 
    Children_init();
119
    return MALLEABILITY_CHILDREN;
120
  }
iker_martin's avatar
iker_martin committed
121

122
123
124
125
126
127
128
  if(nodelist != NULL) { //TODO To be deprecated by using Slurm or else statement
    mall->nodelist_len = strlen(nodelist);
  } else { // If no nodelist is detected, get it from the actual run
    mall->nodelist = malloc(MPI_MAX_PROCESSOR_NAME * sizeof(char));
    MPI_Get_processor_name(mall->nodelist, &mall->nodelist_len);
    //TODO Get name of each process and create real nodelist
  }
129

130
  return MALLEABILITY_NOT_CHILDREN;
131
132
}

133
134
135
136
137
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
138
void free_malleability() {	  
139
140
141
142
143
144
145
146
147
148
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);

149
150
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
151
152
  free(mall);
  free(mall_conf);
iker_martin's avatar
iker_martin committed
153
154
155
156

  zombies_awake();
  zombies_service_free();

157
  state = MALL_UNRESERVED;
158
159
}

160
161
/* 
 * TODO Reescribir
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
 * Se realiza el redimensionado de procesos por parte de los padres.
 *
 * Se crean los nuevos procesos con la distribucion fisica elegida y
 * a continuacion se transmite la informacion a los mismos.
 *
 * Si hay datos asincronos a transmitir, primero se comienza a
 * transmitir estos y se termina la funcion. Se tiene que comprobar con
 * llamando a la función de nuevo que se han terminado de enviar
 *
 * Si hay ademas datos sincronos a enviar, no se envian aun.
 *
 * Si solo hay datos sincronos se envian tras la creacion de los procesos
 * y finalmente se desconectan los dos grupos de procesos.
 */
int malleability_checkpoint() {
177
178
179
180
181
182
183
184
  double end_real_time;

  switch(state) {
    case MALL_UNRESERVED:
      break;
    case MALL_NOT_STARTED:
      // Comprobar si se tiene que realizar un redimensionado
      //if(CHECK_RMS()) {return MALL_DENIED;}
185

186
187
188
189
190
191
      state = spawn_step();

      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPT_POSTPONE){
        malleability_checkpoint();
      }
      break;
192

193
194
195
196
197
198
    case MALL_SPAWN_PENDING: // Comprueba si el spawn ha terminado y comienza la redistribucion
    case MALL_SPAWN_SINGLE_PENDING:
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPTED) {
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
        mall_conf->results->spawn_real_time[mall_conf->grp] = end_real_time - mall_conf->results->spawn_start;
199

200
201
202
        malleability_checkpoint();
      }
      break;
203

204
205
206
207
208
    case MALL_SPAWN_ADAPT_POSTPONE:
    case MALL_SPAWN_COMPLETED:
      state = start_redistribution();
      malleability_checkpoint();
      break;
209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    case MALL_DIST_PENDING:
      if(mall_conf->comm_type == MAL_USE_THREAD) {
        state = thread_check();
      } else {
        state = check_redistribution();
      }
      if(state != MALL_DIST_PENDING) {
        malleability_checkpoint();
      }
      break;

    case MALL_SPAWN_ADAPT_PENDING:
      mall_conf->results->spawn_start = MPI_Wtime();
      unset_spawn_postpone_flag(state);
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
225

226
      if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
227
228
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
      }
229
      break;
230

231
    case MALL_SPAWN_ADAPTED:
232
      state = shrink_redistribution();
233
      malleability_checkpoint();
234
      break;
235

236
237
238
239
    case MALL_DIST_COMPLETED: //TODO No es esto muy feo?
      state = MALL_COMPLETED;
      break;
  }
240
241
242
243
244
245
246
247
248
249
250
251
252
  return state;
}

// Funciones solo necesarias por el benchmark
//-------------------------------------------------------------------------------------------------------------
void set_benchmark_grp(int grp) {
  mall_conf->grp = grp;
}

void set_benchmark_configuration(configuration *config_file) {
  mall_conf->config_file = config_file;
}

253
void get_benchmark_configuration(configuration **config_file) {
254
255
256
257
258
259
260
  *config_file = mall_conf->config_file;
}

void set_benchmark_results(results_data *results) {
  mall_conf->results = results;
}

261
void get_benchmark_results(results_data **results) {
262
263
264
265
  *results = mall_conf->results;
}
//-------------------------------------------------------------------------------------------------------------

266
267
268
void set_malleability_configuration(int spawn_method, int spawn_strategies, int spawn_dist, int comm_type, int comm_threaded) {
  mall_conf->spawn_method = spawn_method;
  mall_conf->spawn_strategies = spawn_strategies;
269
270
271
272
273
274
275
  mall_conf->spawn_dist = spawn_dist;
  mall_conf->comm_type = comm_type;
  mall_conf->comm_threaded = comm_threaded;
}

/*
 * To be deprecated
276
 * Tiene que ser llamado despues de setear la config
277
278
 */
void set_children_number(int numC){
279
  if((mall_conf->spawn_method == MALL_SPAWN_MERGE) && (numC >= mall->numP)) {
280
281
282
283
284
    mall->numC = numC;
    mall->numC_spawned = numC - mall->numP;

    if(numC == mall->numP) { // Migrar
      mall->numC_spawned = numC;
285
      mall_conf->spawn_method = MALL_SPAWN_BASELINE;
286
287
288
289
290
291
292
293
294
295
296
297
    }
  } else {
    mall->numC = numC;
    mall->numC_spawned = numC;
  }
}

/*
 * TODO
 */
void get_malleability_user_comm(MPI_Comm *comm) {
  *comm = mall->user_comm;
298
299
300
301
302
303
304
305
306
307
}

/*
 * Anyade a la estructura concreta de datos elegida
 * el nuevo set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que anyadir cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "add_data".
 */
308
void malleability_add_data(void *data, size_t total_qty, int type, int is_replicated, int is_constant) {
309
310
311
312
313
314
315
316
317
318
319

  if(is_constant) {
    if(is_replicated) {
      add_data(data, total_qty, type, 0, rep_s_data); //FIXME Numero magico
    } else {
      add_data(data, total_qty, type, 0, dist_s_data); //FIXME Numero magico
    }
  } else {
    if(is_replicated) {
      add_data(data, total_qty, type, 0, rep_a_data); //FIXME Numero magico || Un request?
    } else {
320
      size_t total_reqs = 0;
321
322
323
324
325
326
      
      if(mall_conf->comm_type  == MAL_USE_NORMAL) {
        total_reqs = 1;
      } else if(mall_conf->comm_type  == MAL_USE_IBARRIER) {
        total_reqs = 2;
      } else if(mall_conf->comm_type  == MAL_USE_POINT) {
327
        total_reqs = mall->numC;
328
329
330
331
332
333
334
      }
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
    }
  }
}

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*
 * Modifica en la estructura concreta de datos elegida en el indice "index"
 * con el set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que modificar cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "modify_data".
 */
void malleability_modify_data(void *data, size_t index, size_t total_qty, int type, int is_replicated, int is_constant) {
  if(is_constant) {
    if(is_replicated) {
      modify_data(data, index, total_qty, type, 0, rep_s_data); //FIXME Numero magico
    } else {
      modify_data(data, index, total_qty, type, 0, dist_s_data); //FIXME Numero magico
    }
  } else {
    if(is_replicated) {
      modify_data(data, index, total_qty, type, 0, rep_a_data); //FIXME Numero magico || UN request?
    } else {
      size_t total_reqs = 0;
      
      if(mall_conf->comm_type  == MAL_USE_NORMAL) {
        total_reqs = 1;
      } else if(mall_conf->comm_type  == MAL_USE_IBARRIER) {
        total_reqs = 2;
      } else if(mall_conf->comm_type  == MAL_USE_POINT) {
        total_reqs = mall->numC;
      }
      
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data); //FIXME Numero magico
    }
  }
}

369
370
371
372
/*
 * Devuelve el numero de entradas para la estructura de descripcion de 
 * datos elegida.
 */
373
void malleability_get_entries(size_t *entries, int is_replicated, int is_constant){
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
  
  if(is_constant) {
    if(is_replicated) {
      *entries = rep_s_data->entries;
    } else {
      *entries = dist_s_data->entries;
    }
  } else {
    if(is_replicated) {
      *entries = rep_a_data->entries;
    } else {
      *entries = dist_a_data->entries;
    }
  }
}

/*
 * Devuelve el elemento de la lista "index" al usuario.
 * La devolución es en el mismo orden que lo han metido los padres
 * con la funcion "malleability_add_data()".
 * Es tarea del usuario saber el tipo de esos datos.
 * TODO Refactor a que sea automatico
 */
397
void malleability_get_data(void **data, int index, int is_replicated, int is_constant) {
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
      data_struct = rep_s_data;
    } else {
      data_struct = dist_s_data;
    }
  } else {
    if(is_replicated) {
      data_struct = rep_a_data;
    } else {
      data_struct = dist_a_data;
    }
  }

414
  *data = data_struct->arrays[index];
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
}


//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||


/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
431
  size_t i;
432
433
434
435
436
  char *aux;

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
437
      send_async(aux, data_struct->qty[i], mall->myId, mall->numP, mall->intercomm, numP_children, data_struct->requests, mall_conf->comm_type);
438
439
440
441
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
442
      send_sync(aux, data_struct->qty[i], mall->myId, mall->numP, mall->intercomm, numP_children);
443
444
445
446
447
448
449
450
451
452
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
453
  size_t i;
454
455
456
457
458
  char *aux;

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
459
      recv_async(&aux, data_struct->qty[i], mall->myId, mall->numP, mall->intercomm, numP_parents, mall_conf->comm_type);
460
461
462
463
464
      data_struct->arrays[i] = (void *) aux;
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
465
      recv_sync(&aux, data_struct->qty[i], mall->myId, mall->numP, mall->intercomm, numP_parents);
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
      data_struct->arrays[i] = (void *) aux;
    }
  }
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||

/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
void Children_init() {
484
485
  size_t i;
  int numP_parents, root_parents;
486
  int is_intercomm;
487

488
489
  malleability_connect_children(mall->myId, mall->numP, mall->root, mall->comm, &numP_parents, &root_parents, &(mall->intercomm));
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
490
  // TODO A partir de este punto tener en cuenta si es BASELINE o MERGE
491

492
  recv_config_file(mall->root, mall->intercomm, &(mall_conf->config_file));
493
  comm_node_data(root_parents, MALLEABILITY_CHILDREN);
494

495
  mall_conf->results = (results_data *) malloc(sizeof(results_data));
496
  init_results_data(mall_conf->results, mall_conf->config_file->n_resizes, mall_conf->config_file->n_stages, RESULTS_INIT_DATA_QTY);
497

498
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
499
500
501
502
503
504
505
506
507
508
509
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos

    if(mall_conf->comm_type == MAL_USE_NORMAL || mall_conf->comm_type == MAL_USE_IBARRIER || mall_conf->comm_type == MAL_USE_POINT) {
      recv_data(numP_parents, dist_a_data, 1);

    } else if (mall_conf->comm_type == MAL_USE_THREAD) { //TODO Modificar uso para que tenga sentido comm_threaded
      recv_data(numP_parents, dist_a_data, 0);
    }
    mall_conf->results->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
  }
  
510
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
511
512
513
514
515
516
517
518
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
    recv_data(numP_parents, dist_s_data, 0);

    mall_conf->results->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona

    // TODO Crear funcion especifica y anyadir para Asinc
    // TODO Tener en cuenta el tipo y qty
    for(i=0; i<rep_s_data->entries; i++) {
519
520
521
522
523
524
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
525
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, root_parents, mall->intercomm);
526
527
528
    } 
  }

529
  // Guardar los resultados de esta transmision
530
  comm_results(mall_conf->results, mall->root, mall_conf->config_file->n_resizes, mall->intercomm);
531
532
533
534
535
536
537
  if(!is_intercomm) {
    if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
    if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

    MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
    MPI_Comm_dup(mall->intercomm, &(mall->comm));
538
    MPI_Comm_dup(mall->intercomm, &(mall->user_comm)); 
539
  }
540

541
  MPI_Comm_disconnect(&(mall->intercomm));
542
543
544
545
546
547
548
549
550
551
552
553
554
555
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
  mall_conf->results->spawn_start = MPI_Wtime();
556
 
557
  state = init_spawn(mall->name_exec, mall->num_cpus, mall->num_nodes, mall->nodelist, mall->myId, mall->numP, mall->numC, mall->root, mall_conf->spawn_dist, mall_conf->spawn_method, mall_conf->spawn_strategies, mall->thread_comm, &(mall->intercomm));
558

559
  if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
560
561
562
563
564
      mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
  }
  return state;
}

565

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
581
582
583
584
585
586
587
588
  int rootBcast, is_intercomm;

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
589
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
590
  }
591

592
593
594
595
596
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
597

598
  send_config_file(mall_conf->config_file, rootBcast, mall->intercomm);
599
  comm_node_data(rootBcast, MALLEABILITY_NOT_CHILDREN);
600

601
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
602
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
603
    mall_conf->results->async_time[mall_conf->grp] = MPI_Wtime();
604
605
606
607
    if(mall_conf->comm_type == MAL_USE_THREAD) {
      return thread_creation();
    } else {
      send_data(mall->numC, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
608
      return MALL_DIST_PENDING;
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
    }
  } 
  return end_redistribution();
}


/*
 * @deprecated
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
 */
int check_redistribution() {
  int completed, all_completed, test_err;
  MPI_Request *req_completed;
//dist_a_data->requests[0][X] //FIXME Numero magico 0 -- Modificar para que sea un for?

  if (mall_conf->comm_type == MAL_USE_POINT) {
    test_err = MPI_Testall(mall->numC, dist_a_data->requests[0], &completed, MPI_STATUSES_IGNORE);
  } else {
    if(mall_conf->comm_type == MAL_USE_NORMAL) {
      req_completed = &(dist_a_data->requests[0][0]);
    } else if (mall_conf->comm_type == MAL_USE_IBARRIER) {
      req_completed = &(dist_a_data->requests[0][1]);
    }

    test_err = MPI_Test(req_completed, &completed, MPI_STATUS_IGNORE);
  }
 
  if (test_err != MPI_SUCCESS && test_err != MPI_ERR_PENDING) {
    printf("P%d aborting -- Test Async\n", mall->myId);
    MPI_Abort(MPI_COMM_WORLD, test_err);
  }

  MPI_Allreduce(&completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
652
  if(!all_completed) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
  

  if(mall_conf->comm_type == MAL_USE_IBARRIER) {
    MPI_Wait(&(dist_a_data->requests[0][0]), MPI_STATUS_IGNORE); // Indicar como completado el envio asincrono
    //Para la desconexión de ambos grupos de procesos es necesario indicar a MPI que esta comm
    //ha terminado, aunque solo se pueda llegar a este punto cuando ha terminado
  }
  return end_redistribution();
}


/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
673
674
  size_t i;
  int is_intercomm, rootBcast, local_state;
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
    mall->intercomm = mall->comm;
  }
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
  
690
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
691
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
692
    mall_conf->results->sync_time[mall_conf->grp] = MPI_Wtime();
693
694
695
    send_data(mall->numC, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);

    // TODO Crear funcion especifica y anyadir para Asinc
696
    // TODO Tener en cuenta el tipo
697
    for(i=0; i<rep_s_data->entries; i++) {
698
699
700
701
702
703
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
704
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, rootBcast, mall->intercomm);
705
706
    } 
  }
iker_martin's avatar
iker_martin committed
707

708
  comm_results(mall_conf->results, rootBcast, mall_conf->config_file->n_resizes, mall->intercomm);
iker_martin's avatar
iker_martin committed
709

710
711
712
713
714
715
  local_state = MALL_DIST_COMPLETED;
  if(!is_intercomm) { // Merge Spawn
    if(mall->numP < mall->numC) { // Expand
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
      if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?
716

717
718
719
      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));
      MPI_Comm_dup(mall->intercomm, &(mall->user_comm));
720
721
722
723

      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
      MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
724
725
726
727
    } else { // Shrink || Merge Shrink requiere de mas tareas
      local_state = MALL_SPAWN_ADAPT_PENDING;
    }
  }
728
729


730
731
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) {
    MPI_Comm_disconnect(&(mall->intercomm));
732
  }
733

734
  return local_state;
735
736
}

737
738
739
740

///=============================================
///=============================================
///=============================================
741
//TODO Add comment
iker_martin's avatar
iker_martin committed
742
int shrink_redistribution() {
743
    double time_extra = MPI_Wtime();
744
745

    //TODO REFACTOR -- Que solo la llamada de collect iters este fuera de los hilos
746
    zombies_collect_suspended(mall->comm, mall->myId, mall->numP, mall->numC, mall->root, (void *) mall_conf->results, mall_conf->config_file->n_stages);
iker_martin's avatar
iker_martin committed
747
748
    
    if(mall->myId < mall->numC) {
749
750
751
752
753
754
755
756
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
      if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));
      MPI_Comm_dup(mall->intercomm, &(mall->user_comm));

757
758
759
760
      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
      MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");

761
762
      MPI_Comm_free(&(mall->intercomm));

763
764
765
      mall_conf->results->spawn_time[mall_conf->grp] += MPI_Wtime() - time_extra;
      if(malleability_spawn_contains_strat(mall_conf->spawn_strategies,MALL_SPAWN_PTHREAD, NULL)) {
          mall_conf->results->spawn_real_time[mall_conf->grp] += MPI_Wtime() - time_extra;
766
      }
767
      return MALL_DIST_COMPLETED;
iker_martin's avatar
iker_martin committed
768
    } else {
769
      return MALL_ZOMBIE;
iker_martin's avatar
iker_martin committed
770
771
772
    }
}

773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=================COMM NODE INFO ======================||
//======================================================||
//======================================================||
//TODO Add comment
void comm_node_data(int rootBcast, int is_child_group) {
  MPI_Datatype node_type;

  def_nodeinfo_type(&node_type);
  MPI_Bcast(mall, 1, node_type, rootBcast, mall->intercomm);

  if(is_child_group) {
    mall->nodelist = malloc((mall->nodelist_len+1) * sizeof(char));
    mall->nodelist[mall->nodelist_len] = '\0';
  }
  MPI_Bcast(mall->nodelist, mall->nodelist_len, MPI_CHAR, rootBcast, mall->intercomm);

  MPI_Type_free(&node_type);
}

//TODO Add comment
void def_nodeinfo_type(MPI_Datatype *node_type) {
  int i, counts = 3;
  int blocklengths[3] = {1, 1, 1};
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
  types[0] = types[1] = types[2] = MPI_INT;

  // Rellenar vector displs
  MPI_Get_address(mall, &dir);

  MPI_Get_address(&(mall->num_cpus), &displs[0]);
  MPI_Get_address(&(mall->num_nodes), &displs[1]);
  MPI_Get_address(&(mall->nodelist_len), &displs[2]);

  for(i=0;i<counts;i++) displs[i] -= dir;

  MPI_Type_create_struct(counts, blocklengths, displs, types, node_type);
  MPI_Type_commit(node_type);
}

817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
833
  return MALL_DIST_PENDING;
834
835
836
837
838
839
840
841
842
843
844
845
846
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
int thread_check() {
  int all_completed = 0;

  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
  MPI_Allreduce(&state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
847
848
  if(all_completed != MALL_DIST_COMPLETED) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
  //FIXME No se tiene en cuenta el estado MALL_APP_ENDED
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
  return end_redistribution();
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
867
void* thread_async_work() {
868
  send_data(mall->numC, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
869
  state = MALL_DIST_COMPLETED;
870
871
  pthread_exit(NULL);
}
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891


//==============================================================================
/*
 * Muestra por pantalla el estado actual de todos los comunicadores
 */
void print_comms_state() {
  int tester;
  char *test = malloc(MPI_MAX_OBJECT_NAME * sizeof(char));

  MPI_Comm_get_name(mall->comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->comm, test);
  MPI_Comm_get_name(mall->user_comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->user_comm, test);
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_get_name(mall->intercomm, test, &tester);
    printf("P%d Comm=%d Name=%s\n", mall->myId, mall->intercomm, test);
  }
  free(test);
}