malleabilityManager.c 31.8 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
4
#include "malleabilityManager.h"
#include "malleabilityStates.h"
5
#include "malleabilityDataStructures.h"
6
#include "malleabilityTypes.h"
iker_martin's avatar
iker_martin committed
7
#include "malleabilityZombies.h"
8
#include "spawn_methods/GenericSpawn.h"
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "CommDist.h"

#define MALLEABILITY_USE_SYNCHRONOUS 0
#define MALLEABILITY_USE_ASYNCHRONOUS 1


void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

void Children_init();
int spawn_step();
int start_redistribution();
int check_redistribution();
int end_redistribution();
iker_martin's avatar
iker_martin committed
23
int shrink_redistribution();
24

25
26
27
void comm_node_data(int rootBcast, int is_child_group);
void def_nodeinfo_type(MPI_Datatype *node_type);

28
29
int thread_creation();
int thread_check();
30
void* thread_async_work();
31

32
33
void print_comms_state();

34
typedef struct {
35
  int spawn_method;
36
  int spawn_dist;
37
  int spawn_strategies;
38
39
  int red_method;
  int red_strategies;
40

41
  int grp;
42
43
44
45
  configuration *config_file;
  results_data *results;
} malleability_config_t;

iker_martin's avatar
iker_martin committed
46
typedef struct { //FIXME numC_spawned no se esta usando
47
  int myId, numP, numC, numC_spawned, root, root_parents;
48
49
50
  pthread_t async_thread;
  MPI_Comm comm, thread_comm;
  MPI_Comm intercomm;
51
  MPI_Comm user_comm;
52
  int dup_user_comm;
53
  
54
  char *name_exec, *nodelist;
55
  int num_cpus, num_nodes, nodelist_len;
56
57
} malleability_t;

58
int state = MALL_UNRESERVED; //FIXME Mover a otro lado
59
60
61
62
63
64
65
66
67

malleability_config_t *mall_conf;
malleability_t *mall;

malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

68
/*
69
70
71
72
73
74
75
76
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
77
 */
78
int init_malleability(int myId, int numP, int root, MPI_Comm comm, char *name_exec, char *nodelist, int num_cpus, int num_nodes) {
79
80
81
82
83
84
85
86
87
  MPI_Comm dup_comm, thread_comm;

  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

88
  mall->dup_user_comm = 0;
89
90
  MPI_Comm_dup(comm, &dup_comm);
  MPI_Comm_dup(comm, &thread_comm);
91
92
  MPI_Comm_set_name(dup_comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(thread_comm, "MPI_COMM_MALL_THREAD");
93
94
95
96

  mall->myId = myId;
  mall->numP = numP;
  mall->root = root;
97
  mall->comm = dup_comm;
98
  mall->thread_comm = thread_comm;
99
  mall->user_comm = comm;
100

101
  mall->name_exec = name_exec;
102
103
104
  mall->nodelist = nodelist;
  mall->num_cpus = num_cpus;
  mall->num_nodes = num_nodes;
105
106
107
108
109
110

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

111
  state = MALL_NOT_STARTED;
112

113
114
  zombies_service_init();

115
116
117
118
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
  if(mall->intercomm != MPI_COMM_NULL ) { 
    Children_init();
119
    return MALLEABILITY_CHILDREN;
120
  }
iker_martin's avatar
iker_martin committed
121

122
123
124
125
126
127
128
  if(nodelist != NULL) { //TODO To be deprecated by using Slurm or else statement
    mall->nodelist_len = strlen(nodelist);
  } else { // If no nodelist is detected, get it from the actual run
    mall->nodelist = malloc(MPI_MAX_PROCESSOR_NAME * sizeof(char));
    MPI_Get_processor_name(mall->nodelist, &mall->nodelist_len);
    //TODO Get name of each process and create real nodelist
  }
129

130
  return MALLEABILITY_NOT_CHILDREN;
131
132
}

133
134
135
136
137
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
138
void free_malleability() {	  
139
140
141
142
143
144
145
146
147
148
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);

149
150
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
151
152
  free(mall);
  free(mall_conf);
iker_martin's avatar
iker_martin committed
153
154
155
156

  zombies_awake();
  zombies_service_free();

157
  state = MALL_UNRESERVED;
158
159
}

160
161
/* 
 * TODO Reescribir
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
 * Se realiza el redimensionado de procesos por parte de los padres.
 *
 * Se crean los nuevos procesos con la distribucion fisica elegida y
 * a continuacion se transmite la informacion a los mismos.
 *
 * Si hay datos asincronos a transmitir, primero se comienza a
 * transmitir estos y se termina la funcion. Se tiene que comprobar con
 * llamando a la función de nuevo que se han terminado de enviar
 *
 * Si hay ademas datos sincronos a enviar, no se envian aun.
 *
 * Si solo hay datos sincronos se envian tras la creacion de los procesos
 * y finalmente se desconectan los dos grupos de procesos.
 */
int malleability_checkpoint() {
177
178
179
180
181
182
183
184
  double end_real_time;

  switch(state) {
    case MALL_UNRESERVED:
      break;
    case MALL_NOT_STARTED:
      // Comprobar si se tiene que realizar un redimensionado
      //if(CHECK_RMS()) {return MALL_DENIED;}
185

186
187
188
189
190
191
      state = spawn_step();

      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPT_POSTPONE){
        malleability_checkpoint();
      }
      break;
192

193
194
195
196
197
198
    case MALL_SPAWN_PENDING: // Comprueba si el spawn ha terminado y comienza la redistribucion
    case MALL_SPAWN_SINGLE_PENDING:
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPTED) {
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
        mall_conf->results->spawn_real_time[mall_conf->grp] = end_real_time - mall_conf->results->spawn_start;
199

200
201
202
        malleability_checkpoint();
      }
      break;
203

204
205
206
207
208
    case MALL_SPAWN_ADAPT_POSTPONE:
    case MALL_SPAWN_COMPLETED:
      state = start_redistribution();
      malleability_checkpoint();
      break;
209

210
    case MALL_DIST_PENDING:
211
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
212
213
214
215
        state = thread_check();
      } else {
        state = check_redistribution();
      }
216
      if(state != MALL_DIST_PENDING) { 
217
218
219
220
221
222
223
224
        malleability_checkpoint();
      }
      break;

    case MALL_SPAWN_ADAPT_PENDING:
      mall_conf->results->spawn_start = MPI_Wtime();
      unset_spawn_postpone_flag(state);
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
225

226
      if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
227
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
228
	malleability_checkpoint();
229
      }
230
      break;
231

232
    case MALL_SPAWN_ADAPTED:
233
      state = shrink_redistribution();
234
      malleability_checkpoint();
235
      break;
236

237
238
239
240
    case MALL_DIST_COMPLETED: //TODO No es esto muy feo?
      state = MALL_COMPLETED;
      break;
  }
241
242
243
244
245
246
247
248
249
250
251
252
253
  return state;
}

// Funciones solo necesarias por el benchmark
//-------------------------------------------------------------------------------------------------------------
void set_benchmark_grp(int grp) {
  mall_conf->grp = grp;
}

void set_benchmark_configuration(configuration *config_file) {
  mall_conf->config_file = config_file;
}

254
void get_benchmark_configuration(configuration **config_file) {
255
256
257
258
259
260
261
  *config_file = mall_conf->config_file;
}

void set_benchmark_results(results_data *results) {
  mall_conf->results = results;
}

262
void get_benchmark_results(results_data **results) {
263
264
265
266
  *results = mall_conf->results;
}
//-------------------------------------------------------------------------------------------------------------

267
void set_malleability_configuration(int spawn_method, int spawn_strategies, int spawn_dist, int red_method, int red_strategies) {
268
269
  mall_conf->spawn_method = spawn_method;
  mall_conf->spawn_strategies = spawn_strategies;
270
  mall_conf->spawn_dist = spawn_dist;
271
272
  mall_conf->red_method = red_method;
  mall_conf->red_strategies = red_strategies;
273
274
275
276
}

/*
 * To be deprecated
277
 * Tiene que ser llamado despues de setear la config
278
279
 */
void set_children_number(int numC){
280
  if((mall_conf->spawn_method == MALL_SPAWN_MERGE) && (numC >= mall->numP)) {
281
282
283
284
285
    mall->numC = numC;
    mall->numC_spawned = numC - mall->numP;

    if(numC == mall->numP) { // Migrar
      mall->numC_spawned = numC;
286
      mall_conf->spawn_method = MALL_SPAWN_BASELINE;
287
288
289
290
291
292
293
294
295
296
297
    }
  } else {
    mall->numC = numC;
    mall->numC_spawned = numC;
  }
}

/*
 * TODO
 */
void get_malleability_user_comm(MPI_Comm *comm) {
298
299
300
301
302
303
  if(mall->dup_user_comm) {
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm));
    MPI_Comm_dup(mall->comm, &(mall->user_comm));
    MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
    mall->dup_user_comm = 0;
  }
304
  *comm = mall->user_comm;
305
306
307
308
309
310
311
312
313
}

/*
 * Anyade a la estructura concreta de datos elegida
 * el nuevo set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que anyadir cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "add_data".
314
315
 *
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
316
 */
317
void malleability_add_data(void *data, size_t total_qty, int type, int is_replicated, int is_constant) {
318
  size_t total_reqs = 0;
319
320
321

  if(is_constant) {
    if(is_replicated) {
322
      add_data(data, total_qty, type, total_reqs, rep_s_data);
323
    } else {
324
      add_data(data, total_qty, type, total_reqs, dist_s_data);
325
326
327
    }
  } else {
    if(is_replicated) {
328
      add_data(data, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
329
    } else {
330
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
331
        total_reqs = 1;
332
      } else if(mall_conf->red_method  == MALL_RED_IBARRIER) { //TODO This is a strategy, not a method
333
        total_reqs = 2;
334
      } else if(mall_conf->red_method  == MALL_RED_POINT) {
335
        total_reqs = mall->numC;
336
337
338
339
340
341
342
      }
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
    }
  }
}

343
344
345
346
347
348
349
/*
 * Modifica en la estructura concreta de datos elegida en el indice "index"
 * con el set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que modificar cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "modify_data".
350
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
351
352
 */
void malleability_modify_data(void *data, size_t index, size_t total_qty, int type, int is_replicated, int is_constant) {
353
354
  size_t total_reqs = 0;

355
356
  if(is_constant) {
    if(is_replicated) {
357
      modify_data(data, index, total_qty, type, total_reqs, rep_s_data);
358
    } else {
359
      modify_data(data, index, total_qty, type, total_reqs, dist_s_data);
360
361
362
    }
  } else {
    if(is_replicated) {
363
364
365
      modify_data(data, index, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
    } else {    
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
366
        total_reqs = 1;
367
      } else if(mall_conf->red_method  == MALL_RED_IBARRIER) { //TODO This is a strategy, not a method
368
        total_reqs = 2;
369
      } else if(mall_conf->red_method  == MALL_RED_POINT) {
370
371
372
        total_reqs = mall->numC;
      }
      
373
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data);
374
375
376
377
    }
  }
}

378
379
380
/*
 * Devuelve el numero de entradas para la estructura de descripcion de 
 * datos elegida.
381
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
382
 */
383
void malleability_get_entries(size_t *entries, int is_replicated, int is_constant){
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
  
  if(is_constant) {
    if(is_replicated) {
      *entries = rep_s_data->entries;
    } else {
      *entries = dist_s_data->entries;
    }
  } else {
    if(is_replicated) {
      *entries = rep_a_data->entries;
    } else {
      *entries = dist_a_data->entries;
    }
  }
}

/*
 * Devuelve el elemento de la lista "index" al usuario.
 * La devolución es en el mismo orden que lo han metido los padres
 * con la funcion "malleability_add_data()".
 * Es tarea del usuario saber el tipo de esos datos.
 * TODO Refactor a que sea automatico
406
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
407
 */
408
void malleability_get_data(void **data, size_t index, int is_replicated, int is_constant) {
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
      data_struct = rep_s_data;
    } else {
      data_struct = dist_s_data;
    }
  } else {
    if(is_replicated) {
      data_struct = rep_a_data;
    } else {
      data_struct = dist_a_data;
    }
  }

425
  *data = data_struct->arrays[index];
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
}


//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||


/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
442
  size_t i;
443
  char *aux_send, *aux_recv;
444
445
446

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
447
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
448
      aux_recv = NULL;
449
450
      async_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, mall->intercomm, 
		      &(data_struct->requests[i]), &(data_struct->request_qty[i]));
451
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
452
453
454
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
455
456
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
457
      sync_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall->intercomm);
458
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
459
460
461
462
463
464
465
466
467
468
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
469
  size_t i;
470
  char *aux, aux_s;
471
472
473
474

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
475
476
      async_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, mall->intercomm, 
		      &(data_struct->requests[i]), &(data_struct->request_qty[i]));
477
478
479
480
481
      data_struct->arrays[i] = (void *) aux;
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
482
      sync_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall->intercomm);
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
      data_struct->arrays[i] = (void *) aux;
    }
  }
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||

/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
void Children_init() {
501
502
  size_t i;
  int numP_parents, root_parents;
503
  int is_intercomm;
504

505
  malleability_connect_children(mall->myId, mall->numP, mall->root, mall->comm, &numP_parents, &root_parents, &(mall->intercomm));
506
507
508
509
510
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) { // For intracommunicators, these processes will be added
    MPI_Comm_rank(mall->intercomm, &(mall->myId));
    MPI_Comm_size(mall->intercomm, &(mall->numP));
  }
511

512
  recv_config_file(mall->root, mall->intercomm, &(mall_conf->config_file));
513
  comm_node_data(root_parents, MALLEABILITY_CHILDREN);
514
515
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, root_parents, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, root_parents, mall->intercomm);
516

517
  mall_conf->results = (results_data *) malloc(sizeof(results_data));
518
  init_results_data(mall_conf->results, mall_conf->config_file->n_resizes, mall_conf->config_file->n_stages, RESULTS_INIT_DATA_QTY);
519

520
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
521
522
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos

523
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
524
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
525
526
    } else {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
527
    }
528

529
530
    mall_conf->results->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
  }
531

532
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
533
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
534
    recv_data(numP_parents, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
535
536
537
538
539
540

    mall_conf->results->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona

    // TODO Crear funcion especifica y anyadir para Asinc
    // TODO Tener en cuenta el tipo y qty
    for(i=0; i<rep_s_data->entries; i++) {
541
542
543
544
545
546
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
547
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, root_parents, mall->intercomm);
548
549
550
    } 
  }

551
  // Guardar los resultados de esta transmision
552
  comm_results(mall_conf->results, mall->root, mall_conf->config_file->n_resizes, mall->intercomm);
553
554
555
556
557
558
559
  if(!is_intercomm) {
    if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
    if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

    MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
    MPI_Comm_dup(mall->intercomm, &(mall->comm));
560
    MPI_Comm_dup(mall->intercomm, &(mall->user_comm)); 
561
  }
562

563
  MPI_Comm_disconnect(&(mall->intercomm));
564
565
566
567
568
569
570
571
572
573
574
575
576
577
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
  mall_conf->results->spawn_start = MPI_Wtime();
578
 
579
  state = init_spawn(mall->name_exec, mall->num_cpus, mall->num_nodes, mall->nodelist, mall->myId, mall->numP, mall->numC, mall->root, mall_conf->spawn_dist, mall_conf->spawn_method, mall_conf->spawn_strategies, mall->thread_comm, &(mall->intercomm));
580

581
  if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
582
583
584
585
586
      mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
  }
  return state;
}

587

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
603
604
605
606
607
608
609
610
  int rootBcast, is_intercomm;

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
611
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
612
  }
613

614
615
616
617
618
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
619

620
  send_config_file(mall_conf->config_file, rootBcast, mall->intercomm);
621
  comm_node_data(rootBcast, MALLEABILITY_NOT_CHILDREN);
622
623
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, rootBcast, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, rootBcast, mall->intercomm);
624

625
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
626
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
627
	  //FIXME No se envian los datos replicados (rep_a_data)
628
    mall_conf->results->async_time[mall_conf->grp] = MPI_Wtime();
629
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
630
631
632
      return thread_creation();
    } else {
      send_data(mall->numC, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
633
      return MALL_DIST_PENDING; 
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    }
  } 
  return end_redistribution();
}


/*
 * @deprecated
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
 */
int check_redistribution() {
655
  int is_intercomm, req_qty, completed, local_completed, all_completed, test_err;
656
  size_t i, j;
657
  MPI_Request *req_completed;
658
  local_completed = 1;
659
  test_err = 0;
660
661
662
663
664
665
666

  //FIXME Modificar para que se tenga en cuenta rep_a_data
  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) { //FIXME Strategy not fully implemented
      test_err = MPI_Test(&(req_completed[req_qty-1]), &completed, MPI_STATUS_IGNORE);
667
      local_completed = local_completed && completed;
668
    } else {
669
670
671
672
673
      for(j=0; j<req_qty; j++) {
	test_err = MPI_Test(&(req_completed[j]), &completed, MPI_STATUS_IGNORE);
	local_completed = local_completed && completed;
      }
//      test_err = MPI_Testall(req_qty, req_completed, &completed, MPI_STATUSES_IGNORE);
674
    }
675
676
677
678
679
680
681
  }
 
  if (test_err != MPI_SUCCESS && test_err != MPI_ERR_PENDING) {
    printf("P%d aborting -- Test Async\n", mall->myId);
    MPI_Abort(MPI_COMM_WORLD, test_err);
  }

682
  MPI_Allreduce(&local_completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
683
  if(!all_completed) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
684
  
685
686
  if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) { //FIXME Strategy not fully implemented
    MPI_Waitall(req_qty, req_completed, MPI_STATUSES_IGNORE);
687
688
689
    //Para la desconexión de ambos grupos de procesos es necesario indicar a MPI que esta comm
    //ha terminado, aunque solo se pueda llegar a este punto cuando ha terminado
  }
690
691
692
693


  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
694
695
696
697
698
699
700
701
702
703
704
705
706
  return end_redistribution();
}


/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
707
708
  size_t i;
  int is_intercomm, rootBcast, local_state;
709

710
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
711
712
713
714
715
716
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
  
717
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
718
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
719
    mall_conf->results->sync_time[mall_conf->grp] = MPI_Wtime();
720
    send_data(mall->numC, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
721
    if(!is_intercomm) mall_conf->results->sync_end = MPI_Wtime(); // Merge method only
722
723

    // TODO Crear funcion especifica y anyadir para Asinc
724
    // TODO Tener en cuenta el tipo
725
    for(i=0; i<rep_s_data->entries; i++) {
726
727
728
729
730
731
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
732
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, rootBcast, mall->intercomm);
733
734
    } 
  }
iker_martin's avatar
iker_martin committed
735

736
  comm_results(mall_conf->results, rootBcast, mall_conf->config_file->n_resizes, mall->intercomm);
iker_martin's avatar
iker_martin committed
737

738
739
740
741
742
743
  local_state = MALL_DIST_COMPLETED;
  if(!is_intercomm) { // Merge Spawn
    if(mall->numP < mall->numC) { // Expand
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
      if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?
744

745
746
747
      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));
      MPI_Comm_dup(mall->intercomm, &(mall->user_comm));
748
749
750
751

      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
      MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
752
753
754
755
    } else { // Shrink || Merge Shrink requiere de mas tareas
      local_state = MALL_SPAWN_ADAPT_PENDING;
    }
  }
756

757
758
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) {
    MPI_Comm_disconnect(&(mall->intercomm));
759
  }
760

761
  return local_state;
762
763
}

764
765
766
767

///=============================================
///=============================================
///=============================================
768
//TODO Add comment
iker_martin's avatar
iker_martin committed
769
int shrink_redistribution() {
770
    double time_extra = MPI_Wtime();
771

772
    zombies_collect_suspended(mall->user_comm, mall->myId, mall->numP, mall->numC, mall->root, (void *) mall_conf->results, mall_conf->config_file->n_stages);
iker_martin's avatar
iker_martin committed
773
774
    
    if(mall->myId < mall->numC) {
775
776
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
777
      mall->dup_user_comm = 1;
778
779
780
781

      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));

782
783
784
      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");

785
786
      MPI_Comm_free(&(mall->intercomm));

787
788
789
      mall_conf->results->spawn_time[mall_conf->grp] += MPI_Wtime() - time_extra;
      if(malleability_spawn_contains_strat(mall_conf->spawn_strategies,MALL_SPAWN_PTHREAD, NULL)) {
          mall_conf->results->spawn_real_time[mall_conf->grp] += MPI_Wtime() - time_extra;
790
      }
791
      return MALL_DIST_COMPLETED;
iker_martin's avatar
iker_martin committed
792
    } else {
793
      return MALL_ZOMBIE;
iker_martin's avatar
iker_martin committed
794
795
796
    }
}

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=================COMM NODE INFO ======================||
//======================================================||
//======================================================||
//TODO Add comment
void comm_node_data(int rootBcast, int is_child_group) {
  MPI_Datatype node_type;

  def_nodeinfo_type(&node_type);
  MPI_Bcast(mall, 1, node_type, rootBcast, mall->intercomm);

  if(is_child_group) {
    mall->nodelist = malloc((mall->nodelist_len+1) * sizeof(char));
    mall->nodelist[mall->nodelist_len] = '\0';
  }
  MPI_Bcast(mall->nodelist, mall->nodelist_len, MPI_CHAR, rootBcast, mall->intercomm);

  MPI_Type_free(&node_type);
}

//TODO Add comment
void def_nodeinfo_type(MPI_Datatype *node_type) {
  int i, counts = 3;
  int blocklengths[3] = {1, 1, 1};
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
  types[0] = types[1] = types[2] = MPI_INT;

  // Rellenar vector displs
  MPI_Get_address(mall, &dir);

  MPI_Get_address(&(mall->num_cpus), &displs[0]);
  MPI_Get_address(&(mall->num_nodes), &displs[1]);
  MPI_Get_address(&(mall->nodelist_len), &displs[2]);

  for(i=0;i<counts;i++) displs[i] -= dir;

  MPI_Type_create_struct(counts, blocklengths, displs, types, node_type);
  MPI_Type_commit(node_type);
}

841
842
843
844
845
846
847
// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

848

849
int comm_state; //FIXME Usar un handler
850
851
852
853
/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
854
  comm_state = MALL_DIST_PENDING;
855
856
857
858
859
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
860
  return comm_state;
861
862
863
864
865
866
867
868
869
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
int thread_check() {
870
  int all_completed = 0, is_intercomm;
871
872

  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
873
  MPI_Allreduce(&comm_state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
874
875
  if(all_completed != MALL_DIST_COMPLETED) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
  //FIXME No se tiene en cuenta el estado MALL_APP_ENDED
876
877
878
879
880
881

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
882
883
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
884
885
886
887
888
889
890
891
892
893
894
895
  return end_redistribution();
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
896
void* thread_async_work() {
897
  send_data(mall->numC, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
898
  comm_state = MALL_DIST_COMPLETED;
899
900
  pthread_exit(NULL);
}
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920


//==============================================================================
/*
 * Muestra por pantalla el estado actual de todos los comunicadores
 */
void print_comms_state() {
  int tester;
  char *test = malloc(MPI_MAX_OBJECT_NAME * sizeof(char));

  MPI_Comm_get_name(mall->comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->comm, test);
  MPI_Comm_get_name(mall->user_comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->user_comm, test);
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_get_name(mall->intercomm, test, &tester);
    printf("P%d Comm=%d Name=%s\n", mall->myId, mall->intercomm, test);
  }
  free(test);
}