CreateIterDataframe.py 4.77 KB
Newer Older
Iker Martín Álvarez's avatar
Iker Martín Álvarez committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import sys
import glob
import numpy as np
import pandas as pd
from enum import Enum

class G_enum(Enum):
    TOTAL_RESIZES = 0
    TOTAL_GROUPS = 1
    TOTAL_STAGES = 2
    GRANULARITY = 3
    SDR = 4
    ADR = 5
    DR = 6
    RED_METHOD = 7
    RED_STRATEGY = 8
    SPAWN_METHOD = 9
    SPAWN_STRATEGY = 10
    GROUPS = 11
    FACTOR_S = 12
    DIST = 13
    STAGE_TYPES = 14
    STAGE_TIMES = 15
    STAGE_BYTES = 16
    ITERS = 17
    ASYNCH_ITERS = 18
    T_ITER = 19
    T_STAGES = 20
    T_SPAWN = 21
    T_SPAWN_REAL = 22
    T_SR = 23
    T_AR = 24
    T_MALLEABILITY = 25
    T_TOTAL = 26
    #Malleability specific
    NP = 0
    NC = 1
    #Iteration specific
    IS_DYNAMIC = 11
    N_PARENTS = 17

#columnsG = ["Total_Resizes", "Total_Groups", "Total_Stages", "Granularity", "SDR", "ADR", "DR", "Redistribution_Method", \
#            "Redistribution_Strategy", "Spawn_Method", "Spawn_Strategy", "Groups", "FactorS", "Dist", "Stage_Types", "Stage_Times", \
#            "Stage_Bytes", "Iters", "Asynch_Iters", "T_iter", "T_stages", "T_spawn", "T_spawn_real", "T_SR", "T_AR", "T_Malleability", "T_total"] #27

columnsL = ["NP", "NC", "Total_Stages", "Granularity", "SDR", "ADR", "DR", "Redistribution_Method", \
            "Redistribution_Strategy", "Spawn_Method", "Spawn_Strategy", "Is_Dynamic", "FactorS", "Dist", "Stage_Types", "Stage_Times", \
            "Stage_Bytes", "N_Parents", "Asynch_Iters", "T_iter", "T_stages"] #20


def copy_iteration(row, dataL_it, group, iteration, is_asynch):
  basic_indexes = [G_enum.TOTAL_STAGES.value, G_enum.GRANULARITY.value, \
          G_enum.STAGE_TYPES.value, G_enum.STAGE_TIMES.value, G_enum.STAGE_BYTES.value]
  basic_asynch = [G_enum.SDR.value, G_enum.ADR.value, G_enum.DR.value]
  array_asynch_group = [G_enum.RED_METHOD.value, G_enum.RED_STRATEGY.value, \
          G_enum.SPAWN_METHOD.value, G_enum.SPAWN_STRATEGY.value, G_enum.DIST.value]

  dataL_it[G_enum.FACTOR_S.value] = row[G_enum.FACTOR_S.value][group]
  dataL_it[G_enum.NP.value] = row[G_enum.GROUPS.value][group]

  dataL_it[G_enum.ASYNCH_ITERS.value] = is_asynch
  dataL_it[G_enum.T_ITER.value] = row[G_enum.T_ITER.value][group][iteration]
  dataL_it[G_enum.T_STAGES.value] = list(row[G_enum.T_STAGES.value][group][iteration])
  dataL_it[G_enum.IS_DYNAMIC.value] = True if group > 0 else False

  for index in basic_indexes:
    dataL_it[index] = row[index]

  for index in array_asynch_group:
    dataL_it[index] = [None, -1]
    dataL_it[index][0] = row[index][group]

  dataL_it[G_enum.N_PARENTS.value] = -1
  if group > 0:
    dataL_it[G_enum.N_PARENTS.value] = row[G_enum.GROUPS.value][group-1]

  if is_asynch:
    dataL_it[G_enum.NC.value] = row[G_enum.GROUPS.value][group+1]

    for index in basic_asynch:
      dataL_it[index] = row[index]
    for index in array_asynch_group:
      dataL_it[index][1] = row[index][group+1]

  for index in array_asynch_group: # Convert to tuple
    dataL_it[index] = tuple(dataL_it[index])

#-----------------------------------------------
def write_iter_dataframe(dataL, name, i, first=False):
  dfL = pd.DataFrame(dataL, columns=columnsL)
  dfL.to_pickle(name + str(i) + '.pkl')
  if first:
    print(dfL)

#-----------------------------------------------

def create_iter_dataframe(dfG, name, max_it_L):
  it = -1
  file_i = 0
  first = True
  dataL = []

  for row_index in range(len(dfG)):
    row = dfG.iloc[row_index]
    groups = row[G_enum.TOTAL_GROUPS.value]

    for group in range(groups):
        real_iterations = len(row[G_enum.T_ITER.value][group])
        real_asynch = row[G_enum.ASYNCH_ITERS.value][group]
        is_asynch = False
        for iteration in range(real_iterations-real_asynch):
            it += 1
            dataL.append( [None] * len(columnsL) )
            copy_iteration(row, dataL[it], group, iteration, is_asynch)
        is_asynch = True
        for iteration in range(real_iterations-real_asynch, real_iterations):
            it += 1
            dataL.append( [None] * len(columnsL) )
            copy_iteration(row, dataL[it], group, iteration, is_asynch)
    if it >= max_it_L-1: #Var "it" starts at -1, so one more must be extracted for precise cut
        write_iter_dataframe(dataL, name, file_i, first)
        dataL = []
        file_i += 1
        first = False
        it = -1

  if it != -1:
    write_iter_dataframe(dataL, name, file_i)



#-----------------------------------------------

if len(sys.argv) < 2:
    print("The files name is missing\nUsage: python3 CreateIterDataframe.py input_file.pkl output_name [max_rows_per_file]")
    exit(1)

input_name = sys.argv[1]
if len(sys.argv) > 2:
  name = sys.argv[2]
else:
  name = "dataL"
print("File names will be: " + name + ".pkl")

if len(sys.argv) > 3:
  max_it_L = int(sys.argv[3])
else:
  max_it_L = 100000

dfG = pd.read_pickle(input_name)
print(dfG)
create_iter_dataframe(dfG, name, max_it_L)