Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Iker Martín Álvarez
Proteo
Commits
e3357899
Commit
e3357899
authored
Mar 14, 2023
by
Iker Martín Álvarez
Browse files
Fixed major erros in ResizeDataframe. Minor change in save mode, using now Pickle instead of CSV.
parent
46733c2d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Analysis/CreateResizeDataframe.py
View file @
e3357899
...
...
@@ -36,8 +36,8 @@ class G_enum(Enum):
NC
=
1
#columnsG = ["Total_Resizes", "Total_Groups", "Total_Stages", "Granularity", "SDR", "ADR", "DR", "Redistribution_Method", \
"Redistribution_Strategy"
,
"Spawn_Method"
,
"Spawn_Strategy"
,
"Groups"
,
"FactorS"
,
"Dist"
,
"Stage_Types"
,
"Stage_Times"
,
\
"Stage_Bytes"
,
"Iters"
,
"Asynch_Iters"
,
"T_iter"
,
"T_stages"
,
"T_spawn"
,
"T_spawn_real"
,
"T_SR"
,
"T_AR"
,
"T_total"
]
#26
#
"Redistribution_Strategy", "Spawn_Method", "Spawn_Strategy", "Groups", "FactorS", "Dist", "Stage_Types", "Stage_Times", \
#
"Stage_Bytes", "Iters", "Asynch_Iters", "T_iter", "T_stages", "T_spawn", "T_spawn_real", "T_SR", "T_AR", "T_total"] #26
columnsM
=
[
"NP"
,
"NC"
,
"Total_Stages"
,
"Granularity"
,
"SDR"
,
"ADR"
,
"DR"
,
"Redistribution_Method"
,
\
"Redistribution_Strategy"
,
"Spawn_Method"
,
"Spawn_Strategy"
,
"FactorS"
,
"Dist"
,
"Stage_Type"
,
"Stage_Time"
,
\
...
...
@@ -45,8 +45,8 @@ columnsM = ["NP", "NC", "Total_Stages", "Granularity", "SDR", "ADR", "DR", "Redi
def
copy_resize
(
row
,
dataM_it
,
resize
):
basic_indexes
=
[
G_enum
.
TOTAL_STAGES
.
value
,
G_enum
.
GRANULARITY
.
value
,
G_enum
.
SDR
.
value
,
\
G_enum
.
ADR
.
value
,
G_enum
.
DR
.
value
,
G_enum
.
STAGE_TYPES
.
value
,
\
G_enum
.
STAGE_TIMES
.
value
,
G_enum
.
STAGE_BYTES
.
value
]
G_enum
.
ADR
.
value
,
G_enum
.
DR
.
value
]
basic_group
=
[
G_enum
.
STAGE_TYPES
.
value
,
G_enum
.
STAGE_TIMES
.
value
,
G_enum
.
STAGE_BYTES
.
value
]
array_actual_group
=
[
G_enum
.
FACTOR_S
.
value
,
G_enum
.
ITERS
.
value
,
G_enum
.
ASYNCH_ITERS
.
value
,
\
G_enum
.
T_SPAWN
.
value
,
G_enum
.
T_SPAWN_REAL
.
value
,
G_enum
.
T_SR
.
value
,
\
G_enum
.
T_AR
.
value
,
G_enum
.
T_ITER
.
value
,
G_enum
.
T_STAGES
.
value
]
...
...
@@ -55,12 +55,15 @@ def copy_resize(row, dataM_it, resize):
dataM_it
[
G_enum
.
NP
.
value
]
=
row
[
G_enum
.
GROUPS
.
value
][
resize
]
dataM_it
[
G_enum
.
NC
.
value
]
=
row
[
G_enum
.
GROUPS
.
value
][
resize
+
1
]
dataM_it
[
G_enum
.
DIST
.
value
]
=
[
None
,
None
]
dataM_it
[
G_enum
.
DIST
.
value
][
0
]
=
row
[
G_enum
.
DIST
.
value
][
resize
]
dataM_it
[
G_enum
.
DIST
.
value
][
1
]
=
row
[
G_enum
.
DIST
.
value
][
resize
+
1
]
dataM_it
[
G_enum
.
DIST
.
value
-
1
]
=
[
None
,
None
]
dataM_it
[
G_enum
.
DIST
.
value
-
1
][
0
]
=
row
[
G_enum
.
DIST
.
value
][
resize
]
dataM_it
[
G_enum
.
DIST
.
value
-
1
][
1
]
=
row
[
G_enum
.
DIST
.
value
][
resize
+
1
]
for
index
in
basic_indexes
:
dataM_it
[
index
]
=
row
[
index
]
for
index
in
basic_group
:
dataM_it
[
index
-
1
]
=
row
[
index
]
for
index
in
array_actual_group
:
dataM_it
[
index
-
1
]
=
row
[
index
][
resize
]
...
...
@@ -73,11 +76,13 @@ def copy_resize(row, dataM_it, resize):
def
create_resize_dataframe
(
dfG
,
dataM
):
it
=
-
1
for
row
in
dfG
.
itertuples
(
index
=
False
,
name
=
None
):
for
row_index
in
range
(
len
(
dfG
)):
row
=
dfG
.
iloc
[
row_index
]
resizes
=
row
[
G_enum
.
TOTAL_RESIZES
.
value
]
for
resize
in
range
(
resizes
):
it
+=
1
dataM
[
it
]
.
append
(
[
None
]
*
len
(
columnsM
)
)
dataM
.
append
(
[
None
]
*
len
(
columnsM
)
)
copy_resize
(
row
,
dataM
[
it
],
resize
)
#-----------------------------------------------
...
...
@@ -90,16 +95,13 @@ if len(sys.argv) > 2:
name
=
sys
.
argv
[
2
]
else
:
name
=
"dataM"
print
(
"Csv name will be: "
+
name
+
".
csv
"
)
print
(
"Csv name will be: "
+
name
+
".
pkl
"
)
dfG
=
pd
.
read_
csv
(
input_name
)
dfG
=
pd
.
read_
pickle
(
input_name
)
dataM
=
[]
create_resize_dataframe
(
dfG
,
dataM
)
#dfM = pd.DataFrame(dataM, columns=columnsM)
#Poner en TC el valor real y en TH el necesario para la app
#cond = dfM.TH != 0
#dfM.loc[cond, ['TC', 'TH']] = dfM.loc[cond, ['TH', 'TC']].values
#dfM.to_csv(name + 'M.csv')
dfM
=
pd
.
DataFrame
(
dataM
,
columns
=
columnsM
)
dfM
.
to_pickle
(
name
+
'.pkl'
)
dfM
.
to_excel
(
name
+
'.xlsx'
)
Analysis/MallTimes.py
View file @
e3357899
...
...
@@ -34,7 +34,6 @@ class G_enum(Enum):
#Malleability specific
NP
=
0
NC
=
1
BAR
=
11
# Extract 1 from index
columnsG
=
[
"Total_Resizes"
,
"Total_Groups"
,
"Total_Stages"
,
"Granularity"
,
"SDR"
,
"ADR"
,
"DR"
,
"Redistribution_Method"
,
\
...
...
@@ -254,8 +253,7 @@ for elem in lista:
dfG
=
pd
.
DataFrame
(
dataG
,
columns
=
columnsG
)
dfG
.
to_csv
(
name
+
'G.csv'
)
dfG
.
to_excel
(
name
+
'G.xlsx'
)
dfG
.
to_pickle
(
name
+
'G.pkl'
)
#dfM = pd.DataFrame(dataM, columns=columnsM)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment