ConjugateGradient.c 36.4 KB
Newer Older
iker_martin's avatar
iker_martin committed
1
2
3
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
4
5
6
//#include <mkl_blas.h>
//#include <mkl_spblas.h>
#include "mymkl.h"
iker_martin's avatar
iker_martin committed
7
8
9
10
#include "ScalarVectors.h"
#include "SparseMatrices.h"
#include <mpi.h>
#include <string.h>
11
#include "../malleability/MAM.h"
iker_martin's avatar
iker_martin committed
12

iker_martin's avatar
iker_martin committed
13
#include <unistd.h>
14

iker_martin's avatar
iker_martin committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
//#define ONLY_SYM 0
#define ROOT 0
//#define DEBUG 0
#define MAX_PROCS_SET 16

typedef struct {
  double umbral, tol;
  int iter, maxiter, n;

  double beta, rho, alpha;
  double *res, *z, *d, *vec;
  SparseMatrix subm;
  double *d_full;

  int *dist_elem, *displs_elem;
  int *dist_rows, *displs_rows;
  int *vlen;
} Compute_data;

struct Dist_data {
  int ini;
  int fin;

  int tamBl; // Numero de filas
  int tot_r; // Total de filas en la matriz

  int myId;
  int numP;

  int numP_parents;

  MPI_Comm comm, comm_children, comm_parents;
  MPI_Datatype scalars, arrays;
};

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
typedef struct {
  SparseMatrix other_subm;
  int *array_vptr, *array_vpos, initiated;
  double start_time, *array_vval;
  MPI_Comm comm;
  MPI_Request reqs[2];
} user_redist_t;

static const user_redist_t empty_user_data = {
  .array_vptr = NULL,
  .array_vpos = NULL,
  .array_vval = NULL,
  .initiated = 0,
  .comm = MPI_COMM_NULL
};

66
67
void dumb(Compute_data *computeData, struct Dist_data *dist_data); //FIXME Delte me

iker_martin's avatar
iker_martin committed
68
69
70
71
72
73
void init_app(Compute_data *computeData, struct Dist_data *dist_data, char* argv[]);
void get_mat_dist(Compute_data *computeData, struct Dist_data dist_data, SparseMatrix mat);
void get_rows_dist(Compute_data *computeData, int numP, int n);
void mat_alloc(Compute_data *computeData, SparseMatrix mat, struct Dist_data dist_data);
void computeSolution(Compute_data computeData, double **subsol, SparseMatrix mat, int myId, double **full_vec);
void pre_compute(Compute_data *computeData, struct Dist_data dist_data, double *subsol, double *full_vec);
74
75
int compute(Compute_data *computeData, struct Dist_data *dist_data, user_redist_t *user_data);
void free_computeData(Compute_data *computeData);
iker_martin's avatar
iker_martin committed
76
77
78

//===================================MALLEABILITY FUNCTIONS====================================================

79
80
81
82
83
void originals_set_data(struct Dist_data *dist_data, Compute_data *computeData, int num_target);
void user_func(void *args);
void targets_distribution(mam_user_reconf_t user_reconf, user_redist_t *user_data);
void targets_update(struct Dist_data *dist_data, Compute_data *computeData, user_redist_t *user_data);
void print_global_results(double start_time);
iker_martin's avatar
iker_martin committed
84
85
//----------------------------------------------------------------------------------------------------
void get_dist(int total_r, int id, int numP, struct Dist_data *dist_data);
86
87
88
void prepare_redist_counts(int *counts, int *displs, int numP_other, int offset, struct Dist_data dist_data, int *vptr);
void set_counts(int id, int numP, struct Dist_data data_dist, int offset, int *sendcounts);
void getIds_intercomm(struct Dist_data dist_data, int numP_other, int *idS);
iker_martin's avatar
iker_martin committed
89
90
91
//----------------------------------------------------------------------------------------------------

int main (int argc, char *argv[]) {
92
93
	int sm;
	int req;
iker_martin's avatar
iker_martin committed
94
        Compute_data computeData;
95
        user_redist_t user_data;
iker_martin's avatar
iker_martin committed
96

97
        computeData.z = NULL; computeData.d_full = NULL, computeData.d = NULL;
iker_martin's avatar
iker_martin committed
98
99
100
        computeData.vec = NULL; computeData.res = NULL;
        computeData.dist_elem = NULL; computeData.displs_elem = NULL;
        computeData.dist_rows = NULL; computeData.displs_rows = NULL;
101
102
	computeData.subm.vptr = NULL;
	computeData.vlen = NULL;
iker_martin's avatar
iker_martin committed
103

104
        int num_targets = 1;
iker_martin's avatar
iker_martin committed
105
        struct Dist_data dist_data;
106
107
        if (argc >= 3) {
          num_targets = atoi(argv[2]);
108
	}
iker_martin's avatar
iker_martin committed
109

110
        MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &req);
111
112
        MPI_Comm_size(MPI_COMM_WORLD, &dist_data.numP);
        MPI_Comm_rank(MPI_COMM_WORLD, &dist_data.myId);
iker_martin's avatar
iker_martin committed
113
	dist_data.comm = MPI_COMM_WORLD;
114
115
        user_data = empty_user_data;
	user_data.comm = dist_data.comm;
iker_martin's avatar
iker_martin committed
116

117
        int new_group = MAM_Init(ROOT, &dist_data.comm, argv[0], user_func, (void *) &user_data);
iker_martin's avatar
iker_martin committed
118
119
120

	if( !new_group ) { //First set of processes
	  init_app(&computeData, &dist_data, argv);
121
122
123
124
125
          originals_set_data(&dist_data, &computeData, num_targets);

	  user_data.array_vptr = computeData.subm.vptr;
	  user_data.array_vpos = computeData.subm.vpos;
  	  user_data.array_vval = computeData.subm.vval;
126
	  MPI_Barrier(MPI_COMM_WORLD);
127
          user_data.start_time = MPI_Wtime();
iker_martin's avatar
iker_martin committed
128
        } else {
129
          targets_update(&dist_data, &computeData, &user_data);
iker_martin's avatar
iker_martin committed
130
131
	}

132
	compute(&computeData, &dist_data, &user_data);
133

134
135
136
137
138
        MPI_Barrier(dist_data.comm);
        if(dist_data.myId == ROOT) {
  	  print_global_results(user_data.start_time);
	  printf ("End(%d) --> (%d,%20.10e)\n", computeData.n, computeData.iter, computeData.tol);
	}
iker_martin's avatar
iker_martin committed
139
140

	// End of CG
141
142
143
        MAM_Finalize();
        free_computeData(&computeData);
	if(dist_data.numP > num_targets && dist_data.myId == 0) {
iker_martin's avatar
iker_martin committed
144
145
          MPI_Abort(MPI_COMM_WORLD, -100);
	}
iker_martin's avatar
iker_martin committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        MPI_Finalize();
}

/*
 * Init application data before
 * starting iterative computation
 */
void init_app(Compute_data *computeData, struct Dist_data *dist_data, char* argv[]) {
	SparseMatrix mat, sym;
        double *full_vec = NULL;
	double *subsol = NULL;

        if(dist_data->myId == ROOT) {
#ifdef ONLY_SYM
  	  printf ("Working with symmetric format\n");
	  CreateSparseMatrixHB (argv[1], &mat, 1);
#else
	  printf ("Working with general format\n");
	  CreateSparseMatrixHB (argv[1], &sym, 1);
	  DesymmetrizeSparseMatrices (sym, &mat);
	  RemoveSparseMatrix (&sym);
#endif
          computeData->n = mat.dim1;
        }

        // Communicate number of rows to distribute and number of elements in the matrix
        MPI_Bcast(&computeData->n, 1, MPI_INT, ROOT, MPI_COMM_WORLD);

	// Each process calcules their own distribution
        get_dist(computeData->n, dist_data->myId, dist_data->numP, dist_data);
        
        if(dist_data->myId == ROOT) { // ROOT gets rows and vpos/vval distribution
	  get_mat_dist(computeData, *dist_data, mat);
          TransformHeadertoLength(mat.vptr, computeData->n); // From vptr to vlen
        } else { // Non ROOT proceses gets row distribution
          get_rows_dist(computeData, dist_data->numP, computeData->n);
          CreateInts (&computeData->dist_elem, dist_data->numP*2);
	  InitInts (computeData->dist_elem, dist_data->numP * 2, 0.0, 0); 
          computeData->displs_elem = computeData->dist_elem + dist_data->numP;
        }
        // Allocate for each process their submatrix and get their distribution from ROOT
	mat_alloc(computeData, mat, *dist_data);

	computeSolution(*computeData, &subsol, mat, dist_data->myId, &full_vec);
	pre_compute(computeData, *dist_data, subsol, full_vec);

        //Free Initial data
	RemoveDoubles(&subsol);
	RemoveDoubles(&full_vec);
        if(dist_data->myId == ROOT) {
	  RemoveSparseMatrix(&mat);
        }
}

/*
 * MPI Dist
 * Broadcast the vptr array and each process gets the data that corresponds to itself.
 *
 * mat.vptr must be in vlen format to work correctly
 */
void get_mat_dist(Compute_data *computeData, struct Dist_data dist_data, SparseMatrix mat) {
	int i, j;
        struct Dist_data dist_data_aux;

#ifdef DEBUG
        if(dist_data.myId == ROOT) printf("Distribuyendo vptr\n");
#endif
        CreateInts (&computeData->dist_rows, dist_data.numP);
        CreateInts (&computeData->displs_rows, dist_data.numP);
        CreateInts (&computeData->dist_elem, dist_data.numP*2);
        computeData->displs_elem = computeData->dist_elem + dist_data.numP;

        InitInts (computeData->dist_rows, dist_data.numP, 0, 0);
        InitInts (computeData->displs_rows, dist_data.numP, 0, 0);
        InitInts (computeData->dist_elem, dist_data.numP*2, 0, 0);

	// Fill dist_rows and dist_elem so each process can make ScatterV or GatherV calls
        for(i=0; i<dist_data.numP; i++) {
          get_dist(computeData->n, i, dist_data.numP, &dist_data_aux);

          computeData->dist_rows[i] = dist_data_aux.tamBl;
          computeData->dist_elem[i] = mat.vptr[dist_data_aux.fin] - mat.vptr[dist_data_aux.ini];

          // Fill displacements
          if(i!=0) { 
            computeData->displs_elem[i] = computeData->displs_elem[i-1] + computeData->dist_elem[i-1];
            computeData->displs_rows[i] = computeData->displs_rows[i-1] + computeData->dist_rows[i-1];
          }
        }

#ifdef DEBUG
        printf("Proc %d almacena %d filas con %d elementos\n", dist_data.myId, computeData->dist_rows[dist_data.myId], computeData->dist_elem[dist_data.myId]);
        fflush(stdout);
#endif
}

/*
 * MPI Dist
 * Get the rows distribution of n rows in a given number of processes
 */
void get_rows_dist(Compute_data *computeData, int numP, int n) {
	int i, j;
        struct Dist_data dist_data;

        CreateInts (&(computeData->dist_rows), numP);
        CreateInts (&(computeData->displs_rows), numP);

        InitInts (computeData->dist_rows, numP, 0, 0);
        InitInts (computeData->displs_rows, numP, 0, 0);

	// Fill dist_rows and dist_elem so each process can make ScatterV or GatherV calls
        for(i=0; i<numP; i++) {
          get_dist(n, i, numP, &dist_data);
          computeData->dist_rows[i] = dist_data.tamBl;

          // Fill displacements
          if(i!=0) { 
            computeData->displs_rows[i] = computeData->displs_rows[i-1] + computeData->dist_rows[i-1];
          }
        }
}

/*
 * Matrix allocation
 *
 * The matrix that each process will use is allocated and
 * their vptr array initialised.
 *
 * MPI Dist
 * Distribute vpos and vvalues data among processes
 * Both arrays have the same distribution
 */
void mat_alloc(Compute_data *computeData, SparseMatrix mat, struct Dist_data dist_data) {
	int i;
	int elems; // Number of elements this process has
#ifdef DEBUG
        if(dist_data.myId == ROOT) printf("Distribuyendo vpos y vvalue\n");
#endif

	// dist_rows[myId] is the number of rows, n the number of columns, and dist_elem[myId] is the number of elements this process will have in the matrix
        CreateSparseMatrixVptr(&(computeData->subm), dist_data.tamBl, computeData->n, 0);
        computeData->subm.vptr[0] = 0;

        MPI_Scatterv((mat.vptr)+1, computeData->dist_rows, computeData->displs_rows, MPI_INT, (computeData->subm.vptr)+1, dist_data.tamBl, MPI_INT, ROOT, MPI_COMM_WORLD);

291
292
293
        CreateInts(&(computeData->vlen), dist_data.tamBl);
        for(i=0; i<dist_data.tamBl; i++) {
          computeData->vlen[i] = computeData->subm.vptr[i+1];
294
        }
iker_martin's avatar
iker_martin committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        TransformLengthtoHeader(computeData->subm.vptr, computeData->subm.dim1); // The array is converted from vlen to vptr
        elems = computeData->subm.vptr[dist_data.tamBl];
        CreateSparseMatrixValues(&(computeData->subm), dist_data.tamBl, computeData->n, elems, 0);

        MPI_Scatterv(mat.vpos, computeData->dist_elem, computeData->displs_elem, MPI_INT,    computeData->subm.vpos, elems, MPI_INT,    ROOT, MPI_COMM_WORLD);
        MPI_Scatterv(mat.vval, computeData->dist_elem, computeData->displs_elem, MPI_DOUBLE, computeData->subm.vval, elems, MPI_DOUBLE, ROOT, MPI_COMM_WORLD);

	// Free elem arrays, as they are not going to be used again
        RemoveInts (&computeData->dist_elem);
}

/*
 * Compute solution
 */
void computeSolution(Compute_data computeData, double **subsol, SparseMatrix mat, int myId, double **full_vec) {
        
	CreateDoubles (subsol, computeData.dist_rows[myId]);
	InitDoubles (*subsol, computeData.dist_rows[myId], 0.0, 0.0);
	CreateDoubles(full_vec, computeData.n);
	InitDoubles (*full_vec, computeData.n, 1.0, 0.0);

//Compute SOLUTION
#ifdef ONLY_SYM
	ProdSymSparseMatrixVector (computeData.subm, *full_vec, *subsol);                  // sol += A * x
#else
	ProdSparseMatrixVector (computeData.subm, *full_vec, *subsol);                    	// sol += A * x
#endif
322

iker_martin's avatar
iker_martin committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#ifdef DEBUG
	int aux, i;
	double *solD = NULL, *sol = NULL;
	if(myId == ROOT) {
          printf("Computing solution\n");
	  CreateDoubles (&sol, computeData.n);
	  CreateDoubles (&solD, computeData.n);
	  InitDoubles (sol, computeData.n, 0.0, 0.0);
	  InitDoubles (solD, computeData.n, 0.0, 0.0);

          TransformLengthtoHeader(mat.vptr, mat.dim1); // vlen to vptr (At mat_alloc was needed as vlen)
        }

	MPI_Gatherv(*subsol, computeData.dist_rows[myId], MPI_DOUBLE, sol, computeData.dist_rows, computeData.displs_rows, MPI_DOUBLE, ROOT, MPI_COMM_WORLD);

        if(myId == ROOT) {

#ifdef ONLY_SYM
	  ProdSymSparseMatrixVector (mat, *full_vec, solD);                   // solD += A * x
#else
	  ProdSparseMatrixVector (mat, *full_vec, solD);                      // solD += A * x
#endif // ONLY_SIM
          aux = 1;
          printf("Checking sol array is ok\n");
          for(i=0; i<mat.dim1; i++) {
            if(sol[i] != solD[i]) {
              printf("[%d]Expected %lf - Result %lf\n", i, solD[i],sol[i]);
              aux = 0;
            }
          }
          if(aux) printf("sol array is correct\n");
          
        }
	RemoveDoubles (&sol);
	RemoveDoubles (&solD);
#endif // DEBUG
359

iker_martin's avatar
iker_martin committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
}

/*
 * Realiza los preparativos para pasar al bucle de computo principal
 * inicializando los datos y realizando una primera iteración
 */
void pre_compute(Compute_data *computeData, struct Dist_data dist_data, double *subsol, double *full_vec) {

	int IZERO = 0, IONE = 1; 
	double DONE = 1.0, DMONE = -1.0, DZERO = 0.0;

        if(dist_data.myId == ROOT) {
	  printf("Start CG\n");
        }

        computeData->res = NULL; computeData->z = NULL; computeData->d = NULL;
	computeData->umbral = 1.0e-8;

	CreateDoubles(&computeData->res, dist_data.tamBl); 
	CreateDoubles(&computeData->z, dist_data.tamBl); 
	CreateDoubles(&computeData->d, dist_data.tamBl);
	CreateDoubles (&computeData->vec, dist_data.tamBl);
	CreateDoubles (&computeData->d_full, computeData->n);

	InitDoubles (computeData->vec, dist_data.tamBl, DZERO, DZERO); // x = 0
	InitDoubles (full_vec, computeData->n, DZERO, DZERO); // full_x = 0
	
	computeData->iter = 0;

#ifdef ONLY_SYM
	ProdSymSparseMatrixVector (computeData->subm, full_vec, computeData->z);                     				// z += A * full_x
//	mkl_dcsrsymv ("U", &n, mat.vval, mat.vptr, mat.vpos, vec, z); 			   // z = A * full_x
#else
	ProdSparseMatrixVector (computeData->subm, full_vec, computeData->z);                       				// z += A * full_x
#endif
iker_martin's avatar
iker_martin committed
395
396
397
	rcopy (&(dist_data.tamBl), subsol, &IONE, computeData->res, &IONE);             					// res = b
	raxpy (&(dist_data.tamBl), &DMONE, computeData->z, &IONE, computeData->res, &IONE);           				// res -= z
	//rcopy (&(computeData.subm.dim1), computeData.res, &IONE, &(computeData.d+computeData.displs_rows[myId]), &IONE);      // d_full = res
iker_martin's avatar
iker_martin committed
398
        MPI_Allgatherv(computeData->res, dist_data.tamBl, MPI_DOUBLE, computeData->d_full, computeData->dist_rows, computeData->displs_rows, MPI_DOUBLE, MPI_COMM_WORLD);
iker_martin's avatar
iker_martin committed
399
400
	rcopy (&(dist_data.tamBl), &(computeData->d_full[dist_data.ini]), &IONE, computeData->d, &IONE);             		// d = d_full[ini] to d_full[ini+tamBl]
	computeData->beta = rdot (&(dist_data.tamBl), computeData->res, &IONE, computeData->res, &IONE);      			// beta = res' * res
iker_martin's avatar
iker_martin committed
401
402
403
404
405
406
407
        MPI_Allreduce(MPI_IN_PLACE, &computeData->beta, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
	computeData->tol = sqrt (computeData->beta);                                          			   		// tol = sqrt(beta) = norm (res)
}

/*
 * Bucle de computo principal
 */
408
int compute(Compute_data *computeData, struct Dist_data *dist_data, user_redist_t *user_data) {
iker_martin's avatar
iker_martin committed
409
410
	int IZERO = 0, IONE = 1; 
	double DONE = 1.0, DMONE = -1.0, DZERO = 0.0;
411
	int state = MAM_UNRESERVED;
iker_martin's avatar
iker_martin committed
412
        int ended_loop = 1;
413
        int cnt = 0;
414
	int reconfigure = 0, rec_iter = 1;
iker_martin's avatar
iker_martin committed
415

416
        computeData->maxiter = 1000;
iker_martin's avatar
iker_martin committed
417
418
419

	while ((computeData->iter < computeData->maxiter) && (computeData->tol > computeData->umbral)) {

420
421
	        MPI_Allgatherv(computeData->d, dist_data->tamBl, MPI_DOUBLE, computeData->d_full, 
				computeData->dist_rows, computeData->displs_rows, MPI_DOUBLE, dist_data->comm);		// d_full = Gather(d)
iker_martin's avatar
iker_martin committed
422
423
424
425
426
427
//      	COMPUTATION
#ifdef ONLY_SYM
		ProdSymSparseMatrixVector (computeData->subm, computeData->d_full, computeData->z);                     // z += A * d_full
#else
		ProdSparseMatrixVector (computeData->subm, computeData->d_full, computeData->z);                    	// z += A * d_full
#endif
iker_martin's avatar
iker_martin committed
428
        	computeData->rho = rdot (&(dist_data->tamBl), computeData->d, &IONE, computeData->z, &IONE);		// rho = (d * z)
429
	        MPI_Allreduce(MPI_IN_PLACE, &computeData->rho, 1, MPI_DOUBLE, MPI_SUM, dist_data->comm);		// Reduce(rho, SUM)
iker_martin's avatar
iker_martin committed
430
		computeData->rho = computeData->beta / computeData->rho;                 		                // rho = beta / aux
iker_martin's avatar
iker_martin committed
431
		raxpy (&(dist_data->tamBl), &computeData->rho, computeData->d, &IONE, computeData->vec, &IONE);		// x += rho * d
iker_martin's avatar
iker_martin committed
432
		computeData->rho = -computeData->rho;
iker_martin's avatar
iker_martin committed
433
		raxpy (&(dist_data->tamBl), &computeData->rho, computeData->z, &IONE, computeData->res, &IONE);         // res -= rho * z
iker_martin's avatar
iker_martin committed
434
		computeData->alpha = computeData->beta;                                               		        // alpha = beta
iker_martin's avatar
iker_martin committed
435
		computeData->beta = rdot (&(dist_data->tamBl), computeData->res, &IONE, computeData->res, &IONE);       // beta = res' * res
436
	        MPI_Allreduce(MPI_IN_PLACE, &computeData->beta, 1, MPI_DOUBLE, MPI_SUM, dist_data->comm);		// Reduce(beta, SUM)
iker_martin's avatar
iker_martin committed
437
		computeData->alpha = computeData->beta / computeData->alpha;                                       	// alpha = beta / alpha
iker_martin's avatar
iker_martin committed
438
439
		rscal (&(dist_data->tamBl), &computeData->alpha, computeData->d, &IONE);                   		// d = alpha * d
		raxpy (&(dist_data->tamBl), &DONE, computeData->res, &IONE, computeData->d, &IONE);        		// d += res
440

iker_martin's avatar
iker_martin committed
441
442
443
		computeData->tol = sqrt (computeData->beta);                                          			// tol = sqrt(beta) = norm (res)
		computeData->iter++;

444
                if (computeData->iter == rec_iter) reconfigure = 1;
445
		if (reconfigure) {
446
447
448
449
450
451

		  MAM_Checkpoint(&state, MAM_CHECK_COMPLETION, user_func, (void *) user_data);
		  if(state == MAM_COMPLETED) {
		    reconfigure = 0; 
                    free_computeData(computeData);
                    targets_update(dist_data, computeData, user_data);
452
453
454
455
		  }

		}

iker_martin's avatar
iker_martin committed
456
	}
457
458
459
460
461
462

	if(state == MAM_PENDING) {
	  MAM_Checkpoint(&state, MAM_WAIT_COMPLETION, user_func, (void *) user_data);
          free_computeData(computeData);
          targets_update(dist_data, computeData, user_data);
	}
iker_martin's avatar
iker_martin committed
463
464
465
466
467
468
#ifdef DEBUG
	if(dist_data->myId == ROOT) printf ("Ended loop\n");
#endif
	return ended_loop;
}

469
470
void dumb(Compute_data *computeData, struct Dist_data *dist_data) {
  int i;
471

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
  if(dist_data->myId == 0) printf("TamBL="); 
  fflush(stdout); MPI_Barrier(dist_data->comm);
  for(i=0; i<dist_data->numP; i++) {
    if(dist_data->myId == i) {
      printf("%d, ", dist_data->tamBl);
    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(dist_data->comm);
  }
  if(dist_data->myId == 0) printf("\n"); 
  fflush(stdout); MPI_Barrier(dist_data->comm);

  if(dist_data->myId == 0) printf("Vlen="); 
  fflush(stdout); MPI_Barrier(dist_data->comm);
  for(i=0; i<dist_data->numP; i++) {
    if(dist_data->myId == i) {

      for(int j=0; j<dist_data->tamBl; j++) {
        printf("%d, ", computeData->vlen[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(dist_data->comm);
  }
  if(dist_data->myId == 0) printf("\n"); 
  fflush(stdout); MPI_Barrier(dist_data->comm);

502
503
504
505
506
507
508
  if(dist_data->myId == 0) printf("Vptr="); 
  fflush(stdout); MPI_Barrier(dist_data->comm);
  for(i=0; i<dist_data->numP; i++) {
    if(dist_data->myId == i) {

      printf("%d, ", computeData->subm.vptr[dist_data->tamBl]);
    }
509
510
    fflush(stdout);
    sleep(1);
511
512
513
514
515
516
517
518
519
520
521
522
523
    MPI_Barrier(dist_data->comm);
  }
  if(dist_data->myId == 0) printf("\n"); 
  fflush(stdout); MPI_Barrier(dist_data->comm);


  if(dist_data->myId == 0) printf("Tol="); 
  fflush(stdout); MPI_Barrier(dist_data->comm);
  for(i=0; i<dist_data->numP; i++) {
    if(dist_data->myId == i) {

      printf("%lf, ", computeData->tol);
    }
524
525
    fflush(stdout);
    sleep(1);
526
527
528
529
530
531
532
533
534
535
536
537
538
    MPI_Barrier(dist_data->comm);
  }
  if(dist_data->myId == 0) printf("\n"); 
  fflush(stdout); MPI_Barrier(dist_data->comm);


  if(dist_data->myId == 0) printf("Z[last]="); 
  fflush(stdout); MPI_Barrier(dist_data->comm);
  for(i=0; i<dist_data->numP; i++) {
    if(dist_data->myId == i) {

      printf("%lf, ", computeData->z[dist_data->tamBl-1]);
    }
539
540
    fflush(stdout);
    sleep(1);
541
542
543
544
545
546
547
548
549
550
551
552
    MPI_Barrier(dist_data->comm);
  }
  if(dist_data->myId == 0) printf("\n"); 
  fflush(stdout); MPI_Barrier(dist_data->comm);

  if(dist_data->myId == 0) printf("D[last]="); 
  fflush(stdout); MPI_Barrier(dist_data->comm);
  for(i=0; i<dist_data->numP; i++) {
    if(dist_data->myId == i) {

      printf("%lf, ", computeData->d[dist_data->tamBl-1]);
    }
553
554
    fflush(stdout);
    sleep(1);
555
556
557
558
559
560
561
562
563
564
565
566
    MPI_Barrier(dist_data->comm);
  }
  if(dist_data->myId == 0) printf("\n"); 
  fflush(stdout); MPI_Barrier(dist_data->comm);

  if(dist_data->myId == 0) printf("res[last]="); 
  fflush(stdout); MPI_Barrier(dist_data->comm);
  for(i=0; i<dist_data->numP; i++) {
    if(dist_data->myId == i) {

      printf("%lf, ", computeData->res[dist_data->tamBl-1]);
    }
567
568
    fflush(stdout);
    sleep(1);
569
570
571
572
573
574
575
576
577
578
579
580
    MPI_Barrier(dist_data->comm);
  }
  if(dist_data->myId == 0) printf("\n"); 
  fflush(stdout); MPI_Barrier(dist_data->comm);

  if(dist_data->myId == 0) printf("Vec[last]="); 
  fflush(stdout); MPI_Barrier(dist_data->comm);
  for(i=0; i<dist_data->numP; i++) {
    if(dist_data->myId == i) {

      printf("%lf, ", computeData->vec[dist_data->tamBl-1]);
    }
581
582
    fflush(stdout);
    sleep(1);
583
    MPI_Barrier(dist_data->comm);
584
  }
585
  if(dist_data->myId == 0) printf("\n"); 
586
587
  fflush(stdout); MPI_Barrier(dist_data->comm);
}
iker_martin's avatar
iker_martin committed
588

589
void free_computeData(Compute_data *computeData) {
590
	if(computeData->res != NULL) {
iker_martin's avatar
iker_martin committed
591
	RemoveDoubles (&computeData->res); 
592
593
	}
	if(computeData->z != NULL) {
iker_martin's avatar
iker_martin committed
594
        RemoveDoubles (&computeData->z); 
595
596
	}
	if(computeData->d != NULL) {
iker_martin's avatar
iker_martin committed
597
        RemoveDoubles (&computeData->d);
598
599
	}
	if(computeData->vec != NULL) {
iker_martin's avatar
iker_martin committed
600
	RemoveDoubles (&computeData->vec);
601
	}
iker_martin's avatar
iker_martin committed
602

603
	if(computeData->d_full != NULL) {
604
605
606
        RemoveDoubles (&computeData->d_full);
	}
	if(computeData->subm.vptr != NULL) {
iker_martin's avatar
iker_martin committed
607
	RemoveSparseMatrix2 (&computeData->subm);
608
609
610
	}

	if(computeData->dist_rows != NULL) {
iker_martin's avatar
iker_martin committed
611
        RemoveInts (&computeData->dist_rows);
612
613
	}
	if(computeData->displs_rows != NULL) {
iker_martin's avatar
iker_martin committed
614
        RemoveInts (&computeData->displs_rows);
615
616
	}
	if(computeData->vlen != NULL) {
iker_martin's avatar
iker_martin committed
617
        RemoveInts (&computeData->vlen);
618
	}
iker_martin's avatar
iker_martin committed
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
}

/*
 *  _____________________________________________________________________________________
 * ||                                                                                   ||
 * ||                                                                                   ||
 * ||                            DISTRIBUTION FUNCTIONS                                 ||
 * ||                                                                                   ||
 * ||                                                                                   ||
 * \_____________________________________________________________________________________/
*/

/*
 * Las siguientes funciones están todas relacionadas con la distribución de los datos
 * o procesos.
 */

/*
 * ========================================================================================
 * ========================================================================================
 * ========================PARENTS COMMUNICATION FUNCTIONS=================================
 * ========================================================================================
 * ========================================================================================
*/

/*
645
 * Función para declarar los datos a comunicar por parte de MAM
iker_martin's avatar
iker_martin committed
646
 */
647
648
void originals_set_data(struct Dist_data *dist_data, Compute_data *computeData, int num_target) {
    size_t index;
649

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
    MAM_Set_target_number(num_target);

    MAM_Data_add(&(computeData->n), NULL, 1, MPI_INT, MAM_DATA_REPLICATED, MAM_DATA_CONSTANT);
    MAM_Data_add(&(computeData->umbral), NULL, 1, MPI_DOUBLE, MAM_DATA_REPLICATED, MAM_DATA_CONSTANT);
    MAM_Data_add(&(computeData->iter), NULL, 1, MPI_INT, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    MAM_Data_add(&(computeData->tol), NULL, 1, MPI_DOUBLE, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    MAM_Data_add(&(computeData->beta), NULL, 1, MPI_DOUBLE, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);

    MAM_Data_add(computeData->d, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);

    MAM_Data_add(computeData->vec, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    MAM_Data_add(computeData->res, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    MAM_Data_add(computeData->z, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);

    MAM_Data_add(computeData->vlen, NULL, computeData->n, MPI_INT, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
iker_martin's avatar
iker_martin committed
665
666
667
668
669
670
671
672
673
674
675
}

/*
 * ========================================================================================
 * ========================================================================================
 * ========================CHILDREN COMMUNICATION FUNCTIONS================================
 * ========================================================================================
 * ========================================================================================
*/

/*
676
 * Función llamada por MAM como callback.
iker_martin's avatar
iker_martin committed
677
 *
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
 * La misma realiza la redistribucion de datos por parte del usuario.
 * Como se usan comunicaciones no bloqueantes, primero se inicia
 * la comunicación y en las siguientes llamadas se comprueba si
 * la misma ha terminado.
 */
void user_func(void *args) {
    int local_flag, flag = 0;
    mam_user_reconf_t user_reconf;

    MAM_Get_Reconf_Info(&user_reconf);
    user_redist_t *user_data = (user_redist_t *) args;
    if(!user_data->initiated) {
      MPI_Bcast(&user_data->start_time, 1, MPI_DOUBLE, 0, user_reconf.comm);
      targets_distribution(user_reconf, user_data);
      user_data->initiated = 1;

      if(user_reconf.rank_state == MAM_PROC_NEW_RANK) {
        MPI_Waitall(2, user_data->reqs, MPI_STATUSES_IGNORE);

	flag = 1;
      }
    } else {
      MPI_Testall(2, user_data->reqs, &local_flag, MPI_STATUSES_IGNORE);
      MPI_Allreduce(&local_flag, &flag, 1, MPI_INT, MPI_MIN, user_data->comm);
    }

    if(flag) MAM_Resume_redistribution(NULL);
}


/*
 * Funcion encargada de realizar la redistribucion de datos
 * del usuario.
iker_martin's avatar
iker_martin committed
711
 *
712
713
 * Calcula el total de elementos a enviar/recibir por cada proceso
 * y tras ello llama a la funcion Ialltoallv dos veces.
iker_martin's avatar
iker_martin committed
714
 *
715
716
 * Además inicializa la memoria para aquellos procesos que vayan
 * a recibir datos.
iker_martin's avatar
iker_martin committed
717
 */
718
719
720
721
void targets_distribution(mam_user_reconf_t user_reconf, user_redist_t *user_data) {
    int i, n, offset, elems, numP, *vlen, *rank_states;
    int *scounts, *rcounts, *sdispls, *rdispls;
    size_t total_qty;
iker_martin's avatar
iker_martin committed
722
    void *value = NULL;
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
    struct Dist_data dist_data;
    MPI_Datatype type;

    int aux_int;
    int *recv_vpos = &aux_int;
    double aux_double;
    double *recv_vval = &aux_double;

    MPI_Comm_size(user_reconf.comm, &numP);
    scounts = calloc(numP, sizeof(int));
    sdispls = calloc(numP, sizeof(int));
    rcounts = calloc(numP, sizeof(int));
    rdispls = calloc(numP, sizeof(int));
    offset = 0;
	  
    rank_states = (int *) malloc(numP * sizeof(int));
    MPI_Allgather(&user_reconf.rank_state, 1, MPI_INT, rank_states, 1, MPI_INT, user_reconf.comm);

    MAM_Data_get_pointer(&value, 0, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
    vlen = ((int *)value);
    n = (int) total_qty;

    if(user_reconf.rank_state != MAM_PROC_ZOMBIE) {
      MPI_Comm_rank(user_data->comm, &dist_data.myId);
      dist_data.numP = user_reconf.numT;
      if(user_reconf.rank_state == MAM_PROC_NEW_RANK) {
	user_data->array_vpos = &aux_int;
	user_data->array_vval = &aux_double;
	for(i=0; i<user_reconf.numS; i++) {
          if(rank_states[i] == MAM_PROC_CONTINUE) {
            dist_data.myId += user_reconf.numS;
	    break;
	  }
	}
      }
      get_dist(n, dist_data.myId, dist_data.numP, &dist_data);
    
      CreateSparseMatrixVptr(&user_data->other_subm, dist_data.tamBl, n, 0);
      user_data->other_subm.vptr[0] = 0;
      //memcpy(user_data->other_subm.vptr+1, vlen, dist_data.tamBl * sizeof(int));
      for(i=0; i<dist_data.tamBl; i++) {
        user_data->other_subm.vptr[i+1] = vlen[i];
      }
      TransformLengthtoHeader(user_data->other_subm.vptr, user_data->other_subm.dim1); // The array is converted from vlen to vptr
      elems = user_data->other_subm.vptr[dist_data.tamBl];
      CreateSparseMatrixValues(&user_data->other_subm, dist_data.tamBl, n, elems, 0);
      recv_vpos = user_data->other_subm.vpos;
      recv_vval = user_data->other_subm.vval;

      prepare_redist_counts(rcounts, rdispls, user_reconf.numS, offset, dist_data, user_data->other_subm.vptr);
    } 

    if(user_reconf.rank_state != MAM_PROC_NEW_RANK) {
      MPI_Comm_rank(user_data->comm, &dist_data.myId);
      dist_data.numP = user_reconf.numS;
      get_dist(n, dist_data.myId, dist_data.numP, &dist_data);
      offset = (user_reconf.numS + user_reconf.numT) == numP ? 
	      user_reconf.numS : 0; 
      prepare_redist_counts(scounts, sdispls, user_reconf.numT, offset, dist_data, user_data->array_vptr);
    }

    // COMUNICACION DE DATOS //
    MPI_Ialltoallv(user_data->array_vpos, scounts, sdispls, MPI_INT,    recv_vpos, rcounts, rdispls, MPI_INT,    user_reconf.comm, &user_data->reqs[0]);
    MPI_Ialltoallv(user_data->array_vval, scounts, sdispls, MPI_DOUBLE, recv_vval, rcounts, rdispls, MPI_DOUBLE, user_reconf.comm, &user_data->reqs[1]);

    free(rank_states);
    free(scounts); free(sdispls); free(rcounts); free(rdispls);
}

void targets_update(struct Dist_data *dist_data, Compute_data *computeData, user_redist_t *user_data) {
    int IONE = 1, i;
    size_t entry, total_qty;
    double start_time;
    void *value = NULL;
    MPI_Datatype type;
798

799
800
801
802
803
    MPI_Comm_size(dist_data->comm, &dist_data->numP);
    MPI_Comm_rank(dist_data->comm, &dist_data->myId);

    entry = 0;
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_CONSTANT);
804
    computeData->n = *((int *)value);
805
806
807
808
809
810
811
812
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_CONSTANT);
    computeData->umbral = *((double *)value);

    get_dist(computeData->n, dist_data->myId, dist_data->numP, dist_data);
    get_rows_dist(computeData, dist_data->numP, computeData->n);

    entry = 0;
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
iker_martin's avatar
iker_martin committed
813
    computeData->iter = *((int *)value);
814
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
815
    computeData->tol = *((double *)value);
816
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
817
818
    computeData->beta = *((double *)value);

819
820
    entry = 0;
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
821
    computeData->d = ((double *)value);
822

823
824
    CreateDoubles(&computeData->d_full, computeData->n);
    rcopy (&(dist_data->tamBl), computeData->d, &IONE, &(computeData->d_full[dist_data->ini]), &IONE); // d_full[ini] to d_full[ini+tamBl] = d 
iker_martin's avatar
iker_martin committed
825

826
827
828
829
830
831
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->vec = ((double *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->res = ((double *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->z = ((double *)value);
832

833
    MAM_Data_get_pointer(&value, 0, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
834
    computeData->vlen = ((int *)value);
835

836
837
838
839
840
841
842
843
    start_time = user_data->start_time;
    computeData->subm = user_data->other_subm;
    *user_data = empty_user_data;
    user_data->start_time = start_time;
    user_data->array_vptr = computeData->subm.vptr;
    user_data->array_vpos = computeData->subm.vpos;
    user_data->array_vval = computeData->subm.vval;
    user_data->comm = dist_data->comm;
iker_martin's avatar
iker_martin committed
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
}

/*
 * ========================================================================================
 * ========================================================================================
 * ================================DISTRIBUTION FUNCTIONS==================================
 * ========================================================================================
 * ========================================================================================
*/

/*
 * Obtiene para el Id que se pasa junto a su
 * numero de procesos total, con cuantas filas (tamBl),
 * elementos por fila, y total de filas (fin - ini)
 * con las que va a trabajar el proceso
 */
void get_dist(int total_r, int id, int numP, struct Dist_data *dist_data) {
  int rem;

  dist_data->tot_r = total_r;
  dist_data->tamBl = total_r / numP;
  rem = total_r % numP;

  if(id < rem) { // First subgroup
    dist_data->ini = id * dist_data->tamBl + id;
    dist_data->fin = (id+1) * dist_data->tamBl + (id+1);
  } else { // Second subgroup
    dist_data->ini = id * dist_data->tamBl + rem;
    dist_data->fin = (id+1) * dist_data->tamBl + rem;
  }
  
  if(dist_data->fin > total_r) {
    dist_data->fin = total_r;
  }
  if(dist_data->ini > dist_data->fin) {
    dist_data->ini = dist_data->fin;
  }

  dist_data->tamBl = dist_data->fin - dist_data->ini;
}

885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
void prepare_redist_counts(int *counts, int *displs, int numP_other, int offset, struct Dist_data dist_data, int *vptr) {
  int idS[2], i, idS_zero; 
  int last_index, first_index;

  getIds_intercomm(dist_data, numP_other, idS);
  idS[0] += offset;
  idS[1] += offset;
  idS_zero = 0;

  if(!idS[0]) {
    set_counts(0, numP_other, dist_data, offset, counts);
    idS_zero = 1;
  }
  for(i=idS[0] + idS_zero; i<idS[1]; i++) {
    set_counts(i, numP_other, dist_data, offset, counts);
    displs[i] = displs[i-1] + counts[i-1];
  }

  if(!idS[0]) {
    last_index = counts[0];
    first_index = 0;
    counts[0] = vptr[last_index] - vptr[first_index];
  }
  for(i=idS[0] + idS_zero; i<idS[1]; i++) {
    last_index = displs[i] + counts[i];
    first_index = displs[i];
    counts[i] = vptr[last_index] - vptr[first_index];
    displs[i] = displs[i-1] + counts[i-1];
  }
}

iker_martin's avatar
iker_martin committed
916
917
918
919
/*
 * Obtiene para un Id de proceso, cuantos elementos va 
 * a enviar/recibir el proceso myId
 */
920
void set_counts(int id, int numP, struct Dist_data data_dist, int offset, int *sendcounts) {
iker_martin's avatar
iker_martin committed
921
922
923
  struct Dist_data other;
  int biggest_ini, smallest_end, tot_rows;

924
  get_dist(data_dist.tot_r, id-offset, numP, &other);
iker_martin's avatar
iker_martin committed
925
926
927
928
929
930
931

  // Si el rango de valores no coincide, se pasa al siguiente proceso
  if(data_dist.ini >= other.fin || data_dist.fin <= other.ini) {
    return;
  }

  // Obtiene el proceso con mayor ini entre los dos procesos
932
  biggest_ini = (data_dist.ini > other.ini) ? data_dist.ini : other.ini;
iker_martin's avatar
iker_martin committed
933
  // Obtiene el proceso con menor fin entre los dos procesos
934
935
  smallest_end = (data_dist.fin < other.fin) ? data_dist.fin : other.fin;

iker_martin's avatar
iker_martin committed
936
937
938
939
940
941
942
943
944
945
  sendcounts[id] = smallest_end - biggest_ini; // Numero de elementos a enviar/recibir del proceso Id
}

/*
 * Obtiene para un proceso de un grupo a que rango procesos de 
 * otro grupo tiene que enviar o recibir datos.
 *
 * Devuelve el primer identificador y el último (Excluido) con el que
 * comunicarse.
 */
946
void getIds_intercomm(struct Dist_data dist_data, int numP_other, int *idS) {
iker_martin's avatar
iker_martin committed
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
    int idI, idE;
    int tamOther = dist_data.tot_r / numP_other;
    int remOther = dist_data.tot_r % numP_other;
    int middle = (tamOther + 1) * remOther;

    if(middle > dist_data.ini) { // First subgroup
      idI = dist_data.ini / (tamOther + 1);
    } else { // Second subgroup
      idI = ((dist_data.ini - middle) / tamOther) + remOther;
    }

    if(middle >= dist_data.fin) { // First subgroup
      idE = dist_data.fin / (tamOther + 1);
      idE = (dist_data.fin % (tamOther + 1) > 0 && idE+1 <= numP_other) ? idE+1 : idE;
    } else { // Second subgroup
      idE = ((dist_data.fin - middle) / tamOther) + remOther;
      idE = ((dist_data.fin - middle) % tamOther > 0 && idE+1 <= numP_other) ? idE+1 : idE;
    }

966
967
    idS[0] = idI;
    idS[1] = idE;
iker_martin's avatar
iker_martin committed
968
969
}

970
void print_global_results(double start_time) {
971
972
973
  size_t i;
  double sp_time, sy_time, asy_time, mall_time, global_time;

974
975
  MAM_Retrieve_times(&sp_time, &sy_time, &asy_time, &mall_time);
  global_time = MPI_Wtime() - start_time;
976
977
978
979
980
981
982
983
  printf("T_spawn: %lf", sp_time);
  printf("\nT_SR: %lf", sy_time);
  printf("\nT_AR: %lf", asy_time);
  printf("\nT_Malleability: %lf", mall_time);
  printf("\nT_total: %lf\n", global_time);
}


iker_martin's avatar
iker_martin committed
984
985
986
987
988
989
990
991
992
993
/*
 
	  double starttime, endtime, total, res;
          MPI_Barrier(MPI_COMM_WORLD);
	  starttime = MPI_Wtime();
	  endtime = MPI_Wtime();
          total = endtime - starttime;
          MPI_Reduce(&total, &res, 1, MPI_DOUBLE, MPI_MAX, ROOT, MPI_COMM_WORLD);
          if(dist_data.myId == ROOT) {printf("Tiempo BCAST PADRE %f\n", total); fflush(stdout);}
 */