DYNRESHPC24-PlotMaker.ipynb 184 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "603f28cb-7479-47e8-8d8d-b18a620925d1",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import pandas as pd\n",
    "from pandas import DataFrame, Series\n",
    "import numpy as np\n",
    "import math\n",
    "\n",
    "import seaborn as sns\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib.patches as mpatches\n",
    "import matplotlib.colors as colors\n",
    "from matplotlib.legend_handler import HandlerLine2D, HandlerTuple\n",
    "from matplotlib.colors import LinearSegmentedColormap\n",
    "from scipy import stats\n",
    "import scikit_posthocs as sp\n",
    "import sys\n",
    "\n",
    "from mpl_toolkits.mplot3d import axes3d"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "516a5850-000a-488c-a52d-7051a31b691a",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[1.429511096, 0.19593417907, 0.17412488914, 0.14939460301, 0.15755367208]\n"
     ]
    }
   ],
   "source": [
    "totn = [1429.511096, 195.93417907, 174.12488914, 149.39460301, 157.55367208]\n",
    "processes = [2, 20, 40, 80, 160]\n",
    "iters = []\n",
    "tot_iters = 1000\n",
    "for it_value in totn:\n",
    "    iters.append(it_value / tot_iters)\n",
    "print(iters)\n",
    "\n",
    "labelsMethods_aux = ['Merge - COLS',\n",
    "                    'Merge - COLA',\n",
    "                    'Ideal']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "d1f3ec22-9445-414e-8acf-40da5209a90a",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "#OFI REDUCCION\n",
    "\n",
    "#CON BARRIERS\n",
    "malls = [1.191402, 3.13309, 2.585917, 2.569179, 0.777284, 1.033414, 0.920364, 0.668779, 0.519809, 0.334906]\n",
    "malla = [1.612513, 3.265418, 2.965351, 2.98502, 1.002663, 1.030409, 1.112991, 0.873688, 0.871016, 0.727469]\n",
    "#SIN BARRIERS\n",
    "#malls = []\n",
    "#malla = []\n",
    "labels_aux = ['(20,2)', '(40,2)', '(80,2)', '(160,2)', '(40,20)', '(80,20)', '(160,20)', '(80,40)', '(160,40)', '(160,80)']\n",
    "tuples_aux = [ (20,2),   (40,2),   (80,2),   (160,2),   (40,20),   (80,20),   (160,20),   (80,40),   (160,40),   (160,80)]\n",
    "tots = [814.67876291, 808.5604651, 795.9308548, 795.54596305, 190.34062719, 177.72450495, 176.88434005, 163.42062998, 161.76110101, 147.07955885]\n",
    "tota = [816.94620895, 807.90405488, 792.34561992, 789.45519304, 183.67259693, 176.26401806, 173.38925004, 159.47613788, 164.16760778, 146.63839984]\n",
    "\n",
    "spawn_min = [1.45000e-04, 6.29000e-04, 1.05700e-03, 1.47300e-03, 5.85000e-04, 1.04000e-03, 1.42700e-03, 1.04200e-03, 1.53700e-03, 1.44100e-03]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "73b84c51-16da-4277-88cc-a7571d6d159d",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "#OFI EXPANSION\n",
    "\n",
    "tots = [822.592448, 812.38741612, 687.25450993, 792.73712492, 189.64718318, 180.3323071, 183.42675281, 163.77047706, 156.8667469, 146.14701796]\n",
    "tota = [827.57983398, 808.741225, 691.38776207, 798.37592387, 188.47194409, 182.5640409, 177.40146399, 161.12198901, 164.66972589, 150.13075709]\n",
    "\n",
    "labels_aux = ['(2,20)', '(2,40)', '(2,80)', '(2,160)', '(20,40)', '(20,80)', '(20,160)', '(40,80)', '(40,160)', '(80,160)']\n",
    "tuples_aux = [(2,20),    (2,40),   (2,80),   (2,160),   (20,40),   (20,80),   (20,160),   (40,80),   (40,160),   (80,160)]\n",
    "#CON BARRIERS\n",
    "malls = [1.459048, 1.377933, 1.562658, 1.646107, 1.336804, 1.289738, 1.335803, 1.006473, 1.193941, 1.098027]\n",
    "malla = [4.291689, 4.300612, 5.926505, 6.496032, 1.582687, 1.722409, 1.863822, 1.683262, 1.657882, 1.50607]\n",
    "#SIN BARRIERS \n",
    "#malls = [1.386815, 1.352518, 1.552363, 1.545332, 1.200833, 1.278144, 1.446389, 1.350773, 1.233166, 1.073713]\n",
    "#malla = [4.266167, 4.137584, 4.408637, 7.202143, 1.580283, 1.684443, 1.784895, 1.481095, 1.592655, 1.49029]\n",
    "\n",
    "spawns = [0.646706, 0.637626, 0.79149, 0.874327, 0.703415, 0.77506, 0.923799, 0.922304, 0.875446, 0.808462]\n",
    "spawna = [0.667736, 0.599761, 0.883783, 1.069666, 0.683896, 0.838215, 0.875225, 0.769545, 0.918761, 0.887716]\n",
    "\n",
    "reds_s = [0.031203, 0.034094, 0.036393, 0.036872, 0.325629, 0.161447, 0.051848, 0.275889, 0.117939, 0.124082]\n",
    "reds_a = [0.016136, 0.018315, 0.017299, 0.020972, 0.00817, 0.008836, 0.010475, 0.006352, 0.006724, 0.001864]\n",
    "\n",
    "spawn_min = [5.68926e-01, 5.94807e-01, 6.34480e-01, 7.45979e-01, 5.23472e-01, 6.66369e-01, 8.03722e-01, 6.67325e-01, 8.09060e-01, 7.51335e-01,]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "1d1e1454-5908-4904-b481-cfb21b04c81b",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "ename": "NameError",
     "evalue": "name 'spawna' is not defined",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mNameError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[4], line 5\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m index \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(malla)):\n\u001b[1;32m      4\u001b[0m     index_iter \u001b[38;5;241m=\u001b[39m index\u001b[38;5;241m%\u001b[39m\u001b[38;5;28mlen\u001b[39m(iters)\n\u001b[0;32m----> 5\u001b[0m     mall_aux \u001b[38;5;241m=\u001b[39m malla[index] \u001b[38;5;241m-\u001b[39m spawna[index] \u001b[38;5;241m-\u001b[39m reds_a[index] \n\u001b[1;32m      6\u001b[0m     aux_value \u001b[38;5;241m=\u001b[39m math\u001b[38;5;241m.\u001b[39mceil( mall_aux \u001b[38;5;241m/\u001b[39m iters[index_iter])\n\u001b[1;32m      7\u001b[0m     aux_value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmax\u001b[39m(aux_value, \u001b[38;5;241m2\u001b[39m)\n",
      "\u001b[0;31mNameError\u001b[0m: name 'spawna' is not defined"
     ]
    }
   ],
   "source": [
    "iters_a = [] # Total de iteraciones asincronas esperadas\n",
    "iters_s = [] # Total de iteraciones sincronas esperadas para caso ideal\n",
    "for index in range(len(malla)):\n",
    "    index_iter = index%len(iters)\n",
    "    mall_aux = malla[index] - spawna[index] - reds_a[index] \n",
    "    aux_value = math.ceil( mall_aux / iters[index_iter])\n",
    "    aux_value = max(aux_value, 2)\n",
    "    iters_a.append(aux_value)\n",
    "    \n",
    "    mall_aux = malls[index] - spawns[index] - reds_s[index] \n",
    "    aux_value = math.ceil(mall_aux / iters[index_iter])\n",
    "    aux_value = max(aux_value, 2)\n",
    "    iters_s.append(aux_value)\n",
    "print(iters_a)\n",
    "print(iters_s)\n",
    "iters_a = np.array(iters_a)\n",
    "iters_s = np.array(iters_s)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "5e9d9070-70d7-4c30-92eb-4709726ff6c1",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[813.48736091, 805.4273751, 793.3449378, 792.97678405, 189.56334318999998, 176.69109095000002, 175.96397604999999, 162.75185098, 161.24129201, 146.74465285000002]\n",
      "[816.94620895, 807.90405488, 792.34561992, 789.45519304, 183.67259693, 176.26401806, 173.38925004, 159.47613788, 164.16760778, 146.63839984]\n"
     ]
    }
   ],
   "source": [
    "ideal = []\n",
    "for index in range(len(tota)):\n",
    "    index_iter = index%len(iters)\n",
    "    aux_value = tots[index] - malls[index]\n",
    "    ideal.append(aux_value)\n",
    "print(ideal)\n",
    "print(tota)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "40a27c2c-3aee-4edc-9136-b13fa4416205",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[812.722637535, 801.81799257, 789.4528495049999, 793.5323840399999, 185.029534105, 172.66439103999997, 176.74392557500002, 161.75974607499998, 165.83928061, 153.474137545]\n"
     ]
    }
   ],
   "source": [
    "ideal2 = []\n",
    "for tuple_aux in tuples_aux:\n",
    "    index1 = tuple_aux[0]\n",
    "    index1 = processes.index(index1)\n",
    "    index2 = tuple_aux[1]\n",
    "    index2 = processes.index(index2)\n",
    "    val_aux = (iters[index1] + iters[index2]) * 500\n",
    "    ideal2.append(val_aux)\n",
    "print(ideal2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "de3b66fe-8992-48c3-8474-f3aa13a1a770",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "ename": "TypeError",
     "evalue": "unsupported operand type(s) for -: 'list' and 'list'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m iters_diff \u001b[38;5;241m=\u001b[39m iters_a \u001b[38;5;241m-\u001b[39m iters_s\n\u001b[1;32m      2\u001b[0m iters_diff\n\u001b[1;32m      4\u001b[0m ideal3 \u001b[38;5;241m=\u001b[39m []\n",
      "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for -: 'list' and 'list'"
     ]
    }
   ],
   "source": [
    "iters_diff = iters_a - iters_s\n",
    "iters_diff\n",
    "\n",
    "ideal3 = []\n",
    "for index in range(len(tota)):\n",
    "    index_iter = index%len(iters)\n",
    "    aux_value = tota[index] - malla[index] + (iters_diff[index] * iters[index_iter])\n",
    "    ideal3.append(aux_value)\n",
    "print(ideal3)\n",
    "print(tota)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "fd74e4dd-553a-4493-8429-9ca62841ffc6",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "4.9999999999999996e-06\n",
      "100000000000\n",
      "[0.28416491103999997, 0.28464891103999995, 0.28507691103999994, 0.28549291103999996, 0.28460491103999996, 0.28505991103999995, 0.28544691104, 0.28506191103999995, 0.28555691103999997, 0.28546091104]\n"
     ]
    }
   ],
   "source": [
    "ideal4 = []\n",
    "L = 5 * (10 **-6)\n",
    "B = 100 * (10 **9)\n",
    "D = 3550186388 * 8\n",
    "print(L)\n",
    "print(B)\n",
    "for spawn_value in spawn_min:\n",
    "    aux_value = L + D / B\n",
    "    ideal4.append(aux_value + spawn_value)\n",
    "print(ideal4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a6606f9f-fc4a-465f-a603-9acc7b146d5a",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "colors_m = ( \n",
    "    colors.to_rgba(\"red\"), #MCOLS\n",
    "    colors.to_rgba(\"blue\"), #MCOLA \n",
    "    colors.to_rgba(\"red\"), #MRMA1T\n",
    "    colors.to_rgba(\"mediumseagreen\"), #BCOLA\n",
    "    colors.to_rgba(\"orange\"), #BCOLA\n",
    "    )\n",
    "f=plt.figure(figsize=(22, 14))\n",
    "ax=f.add_subplot(111)\n",
    "\n",
    "x = np.arange(len(labels_aux))\n",
    "plot_index = 0\n",
    "#ax.plot(x, tots, color=colors_m[plot_index], linestyle='-', marker= '.', markersize=18, label=\"Sinc\")\n",
    "tota_tmp = []\n",
    "tots_tmp = []\n",
    "ideal_tmp = []\n",
    "ideal4_tmp = []\n",
    "for index in range(len(tota)):\n",
    "    tota_tmp.append(ideal2[index] / tota[index])\n",
    "    tots_tmp.append(ideal2[index] / tots[index])\n",
    "    ideal_tmp.append(ideal2[index] / ideal[index])\n",
    "    ideal4_tmp.append(ideal[index] / ideal4[index])\n",
    "    '.','v','s','p',\n",
    "plot_index = 1\n",
    "ax.plot(x, tots_tmp, color=colors_m[plot_index], linestyle='--', marker='v', markersize=18, label=\"Sinc\")\n",
    "plot_index = 2\n",
    "ax.plot(x, tota_tmp, color=colors_m[plot_index], linestyle=':', marker='s', markersize=18, label=\"Asinc\")\n",
    "plot_index = 3\n",
    "ax.plot(x, ideal_tmp, color=colors_m[plot_index], linestyle='-.', marker='p', markersize=18, label=\"Ideal\")\n",
    "plot_index = 4\n",
    "#ax.plot(x, ideal4_tmp, color=colors_m[plot_index], linestyle='-.', marker='h', markersize=18, label=\"Ideal4\")\n",
    "\n",
    "ax.set_xlabel(\"(NS,NT)\", fontsize=36)\n",
    "name_legend = \"Difference over Ideal\"\n",
    "ax.set_ylabel(name_legend, fontsize=36)\n",
    "plt.xticks(x, labels_aux,rotation=90)\n",
    "ax.tick_params(axis='both', which='major', labelsize=36)\n",
    "ax.tick_params(axis='both', which='minor', labelsize=36)\n",
    "plt.legend(loc='best', fontsize=30,ncol=2,framealpha=0.8)\n",
    "ax.axhline(y=1, color='black', linestyle='--')\n",
    "    \n",
    "#plt.ylim([0,1.1])\n",
    "f.tight_layout()\n",
    "f.savefig(\"Images/TEST\"+\".eps\", format=\"eps\", dpi=300)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "f37522d1-d4d8-4d86-a96e-ea0b262e0320",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[1.191402, 3.13309, 2.585917, 2.569179, 0.777284, 1.033414, 0.920364, 0.668779, 0.519809, 0.334906]\n",
      "[1.612513, 3.265418, 2.965351, 2.98502, 1.002663, 1.030409, 1.112991, 0.873688, 0.871016, 0.727469]\n",
      "[0.28416491103999997, 0.28464891103999995, 0.28507691103999994, 0.28549291103999996, 0.28460491103999996, 0.28505991103999995, 0.28544691104, 0.28506191103999995, 0.28555691103999997, 0.28546091104]\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAACI4AAAVtCAYAAACf1pfGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gV1P0/8E9CWEa2gOxRpAJupFJRi4BWrVoFRVyMalv3wCrVSp11YcVVR62IiqLV70+L2lonCCrgALVARZENYQpEdsbvD+qVmwRIQkKA+3o9z33KOfeMz70NJg/3nXPS8vPz8wMAAAAAAAAAgJSTXtEFAAAAAAAAAABQMQRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApKiMii6ArcvLy4sFCxZEjRo1Ii0traLLAQAAAAAAAAB2cvn5+ZGdnR2NGzeO9PStnykiOLKTW7BgQTRr1qyiywAAAAAAAAAAdjFz586Npk2bbnWM4MhOrkaNGhGx6f/MmjVrVnA1AAAAAAAAAMDObtWqVdGsWbNE5mBrBEd2ct9fT1OzZk3BEQAAAAAAAACg2L7PHGzN1i+yAQAAAAAAAABgtyU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFJVR0QUAAAAAALBryMvLi5ycnMjLy6voUgAAYJeTnp4eGRkZkZ6+c53xITgCAAAAAMAW5eTkRHZ2dmRnZ8fq1asruhwAANjlZWZmRo0aNaJGjRqRkVHxsY2KrwAAAAAAgJ3S6tWrY+7cuZGfnx+ZmZmx9957R5UqVSI9PT3S0tIqujwAANhl5OfnR15eXmzYsCGys7MjKysrFi1aFM2aNYvMzMwKrU1wBAAAAACAQr4PjWRmZkajRo12it+EBACAXV1mZmbUqVMncnJyYuHChTF37twKD4/sXBfnAAAAAABQ4XJychKhkSZNmgiNAABAGcvIyIgmTZpEZmZmzJ07N3JyciqsFsERAAAAAACSZGdnR35+fjRq1CjS0/0zMgAAlIf09PRo1KhR5OfnR3Z2dsXVUWE7AwAAAACwU8rOzo7MzEwnjQAAQDnLyMiIzMxMwREAAAAAAHYOeXl5sXr16qhRo0ZFlwIAACmhRo0asXr16sjLy6uQ/QVHAAAAAABI+P5u9SpVqlRwJQAAkBq+/9n7+5/FdzTBEQAAAAAAEr7/Lcf0dP98DAAAO8L3P3s7cQQAAAAAgJ1GWlpaRZcAAAApoaJ/9hYcAQAAAAAAAABIUYIjAAAAAAAAAAApSnAEAAAAAAAAACBFCY4AAAAAAAAAAKQowREAAAAAAAAAgBQlOAIAAAAAAAAAkKIERwAAAAAAAAAAUlRGRRcAAAAAAAAAFWX16tUxadKkmDlzZixevDjWrl0b1atXjzp16kTDhg3jkEMOiUaNGpXpnvPnz4/JkyfHrFmzYtWqVZGfnx977rlnNG/ePPbbb79o06ZNme63IyxevDg++eSTmDdvXqxYsSLWr18fmZmZUatWrWjRokW0bt06WrZsGWlpaRVdKgAFCI4AAAAAAAAl0rJly5g9e3ah/ocffjguuOCCUq05bNiwOO+88wr1t2jRImbNmlWqNWFLsrOzY/jw4fH888/H+PHjIzc3d6vjmzRpEieddFKcffbZ0aVLl1KFHxYtWhQPP/xwjBw5MqZPn77N/Xr37h2XXHJJtG7dusR7DR8+PAYMGJBo/+xnP4vRo0eXeJ1tWblyZTz++OPx+OOPx9SpU7c5vnbt2tGxY8c4+uij47jjjouOHTuWeU1A+enatWuMGTMm0c7Pz6/Aanac0aNHx9FHH51o33DDDXHjjTdWXEHlwFU1AAAAAADsFubPj5g2LWLOnIilSyPWrInIy6voqlLLE088Ueq5w4YNK8NKoGi5ublxzz33RLNmzeKyyy6L999/f5uhkYhNJ4Q88sgjceSRR8ZBBx0Ur732WrH33LBhQ9x8883RsmXLuOmmm7YZGvl+v6FDh0bbtm3j0ksvjezs7GLvt6O88sor0a5du7jqqquKFRqJiFixYkW8/fbbcf3118ehhx4aK1asKN8iIUV8f5rP94/yCIqxe3PiCAAAAAAAu7x16yI6doxYtKjwc9WqbXpUr77pseeeEZmZETVqbPrfPfb44X+/f2yp3bx5RIsWO/717SomTpwYU6ZMiQ4dOpRo3vTp0+P9998vp6pgk6ysrDj99NNj3LhxRT6/zz77RJMmTaJ+/fqRm5sbWVlZMW/evJgzZ07SuM8//zxOPPHEGDlyZPTp02ebe/bs2TM+/PDDQs9lZmZGhw4donHjxpGRkRELFiyIL7/8MpYtW5YYk5ubGw8++GC8+eabMWrUqGjbtm0pXnnZGz58eJx33nmRVyCdV61atWjfvn00b948MjMz47vvvoulS5fGf/7zn1i5cmUFVcsuYcn7EV/eH/HjyyLqd6noaiDlCI4AAAAAALDLq1o1okGDiMWLIwqemr5u3aZHUb/YnpYWkZ6+6X+/v3kiP3/To6hDCBo02HSiSdWqZf4SdmmVK1eOjRs3RsSmU0fuvvvuEs3f/LSRzdeCsjJv3rzo2rVrzJgxI6m/ZcuWcc0118SJJ54YzZo1K3Lu9OnT47XXXotHHnkk6bSQdevWbXXPRYsWRdeuXePLL79M6j/ooINi8ODBcfzxx0f16tWTnsvJyYnRo0fHkCFD4o033kj0f/nll3HUUUfFmDFj4sc//nGxXnN5+fTTT+P8889PCo20bt06brrppujZs2fssccehebk5+cn3seXXnppi+EdUtDquRGTromY81xEpEfM+XtE8z4RB98VkVn030mg7LmqBgAAAACAXV5aWsQf/lA4NLIt3wdEcnIiNm7c9MjJKTo0kp4e8aMfRVSpUjY1705OPPHExJ9HjBgROTk5xZ6bm5sbTz31VKJ90kknlWltsHHjxjj99NMLhUZuvPHG+O9//xsXXnjhFkMjERFt27aNK6+8MqZMmRKPPfZYNGrUaJt75uXlxdlnn10oNHLzzTfHxx9/HD179iwUGomIyMjIiB49esS///3vGD58eFSuXDnx3KJFi6JXr16xdu3abe5fnq688sqk6326dOkSkyZNinPOOafI0EhERFpaWvz4xz+OgQMHxtixY2Pq1KlxwQUXRKVKlXZU2exsctZEfHFTxCv7RMx98X+d/wsjzX1xU/8XN28aB5Q7wREAAAAAAHYLvXpFNGv2w8khZS0vL+KOO8pv/V3Zr371q8SfFy1aFK+99lqx5/7rX/+KhQsXFrkWlIXf/e53MX78+EQ7PT09hg8fHjfccENULcHxQRkZGXH++efHpEmT4sgjj9zq2Ntvvz3efvvtpL577rknBg8eXOywRL9+/eK5556LjIwfLhCYMmVKXHHFFcWuuazNmzcv3nvvvUQ7IyMjnnnmmahZs2aJ1mnXrl08/PDDUaNGjbIukZ1dfn7E7OcjRrXZFAzJWx+RXyBsmJ+zqf+LmzaNm/18yZOhQIkIjgAAAAAAsFvIyIgYNKj81u7RI+Koo8pn/V1d586do127don2E088Uey5m19T065duzjssMPKtDZS25QpU+KBBx5I6hs4cGD069ev1Gs2bNgw3nnnnejWrVuRzy9cuDBuvvnmpL4+ffrElVdeWeK9evbsGYMK/Iftr3/9a0yaNKnEa5WFsWPHJrV/+tOfRosWLSqkFnZByz+JeLNLxPt9ItZlReKEkS3K2zTu/T6b5i3/dEdUCSkpY9tDAAAAAABg1zBgwKYra1auLNt1c3IibrutbNfc3QwYMCCuueaaiIh47bXXYvHixdGgQYOtzlmyZEm8+uqriXZZnzYyderU+OKLL2LJkiWxatWqqFu3bjRq1CiOOOKIqFevXpnutXbt2hg3blzMnz8/Fi1aFJUqVYqf/OQncdRW0kYbN26MsWPHxjfffBNLliyJevXqRZMmTeLwww+POnXqlGl9ERHLly+PDz74ILKysmLp0qVRrVq1qF+/fhx00EHRoUOHMt9vZ3DHHXdE/mYnFeyzzz5x6623bve6GRkZ0bx58yKfu//++2PDhg2Jdq1ateLee+8t9V7XX399PPfcc0lX7dx9993xzDPPlHrN0lqwYEFSu2nTpju8BnZBaxdFfHZdxDdPRKR9f65BcU8Q+d+4ZR9FvH5oROsBEQfeFlG9YXlUCilLcAQAAAAAgN3GHntEXHllxM03b7papixkZESccEJEp05ls97uqm/fvnHddddFTk5O5OTkxNNPPx1XXXXVVuc89dRTsXHjxojY9EH8ueeeu911LFu2LIYMGRIjRoyI+fPnFzkmPT09Dj/88LjhhhuiR48exVq3f//+8eSTTybaM2fOjJYtW8bcuXPjuuuui5dffjm+++67pDm//OUviwyOZGdnx0033RSPP/54rFixotDzVatWjZNPPjnuvPPOaNWqVcyaNStatWqVeL5fv34xfPjwYtWdn58fzz//fNx7773x0UcfRd4W/mI0adIkLr300rjsssuievXqxVp7Z7dw4cJ47rnnkvouvfTSEl1PU1Lr1q2LRx99NKmvX79+0bBh6T/krlatWlxyySVJJ5b8/e9/jyFDhkTjxo1LvW5p5OQkXymyfPnyHbo/u5j8/Ihpd0d8ceOmq2ciPyI/t5Rr/e9rb+aTEbOfizjgpoh9r3J/XBn5+uuvY+LEibFgwYLIyMiIJk2axH777Zd0mlhZycnJiYkTJyZCk+vXr4/69etHy5Yto0uXLlGtWrXtWn/RokUxderUmDFjRqxYsSI2bNgQtWvXjr322is6duwYP/rRj8rolexeBEcAAAAAANitXHxxxO23R6xfXzbr5eZG/OlPZbPW7qxhw4ZxwgknxKhRoyJi03U12wqObH6lzQknnBANGzaMpUuXlrqGp556Ki699NJYtWrVVsfl5eXFuHHj4phjjolzzjknHn/88ahSpUqJ93v55ZdjwIABRYY/tmTKlCnx85//fIuhloiI9evXxwsvvBBvvPFGjBgxIvbbb78S1xYR8c0338Rpp51WrGtN5s+fH7///e/jkUceiVdffXW3OIHkrbfeSgo6VKtWLfr27Vuue06YMCG+/fbbpL7zzz9/u9c999xzY9CgQYmTTHJycuKtt94q99dTUMFThMaNGxfLli0r8xN82E3k50RMvqaM18yNyF0TMenqiB9fHpFWuWzXTzFvvvlm/P73v49PPy36GqBDDjkkBg4cGGefffZ27zVt2rS49dZb49VXX93i9+nq1avHySefHDfffHO0bdu2WOvm5ubGmDFj4sUXX4y33norvvrqq62Ob9q0aVx00UVx0UUXRa1atUr8OnZX6dseAgAAAAAAu4699or4zW8iKlXa/rUyMiL69Iko5ef2KWfzq2amTJkSH3300RbHTpgwIaZMmVLk3NL44x//GP369Uv6MCotLS323XffOOmkk+Kss86K448/PurXr580b8SIEXHCCScUOklhWyZMmBB9+vRJhEZq164dxxxzTJx55plx/PHHR4sWLQrN+fLLL6Nr166FQiN169aNY489Ns4888w49thjo27duhERsXLlyujdu3d8/vnnJaotImLixIlx2GGHFQqN1KtXL3r06BF9+vSJU089tVAoZdasWdGlS5eYPHlyiffc2YwZMyapfcghh5T7h4TvvfdeUnvvvfeO/ffff7vXrVevXhxyyCFJfWPHjt3udUvqpz/9aVJ79erVcdZZZxUKywA7t/z8/Lj00kvj2GOP3WJoJCLi008/jXPOOSfOOeecEn+f/F5ubm5ceeWVsd9++8Wzzz671XDn2rVr4/nnn48OHTrEfffdV6z177vvvujevXs8/PDD2wyNRETMmzcvrrvuujjooIO2+tpTjRNHAAAAAADY7QwcGPGXv2z/Onl5m669oXh+8YtfRMOGDWPRokURETFs2LDotIU7foYNG5b4c4MGDeKEE04o9b5PPvlk3HLLLYl2enp6XHzxxfG73/0umjdvnjQ2Pz8//vGPf8Tll18ec+bMiYiIt99+OwYPHhy33357sff89a9/HevXr4+mTZvG3XffHaeddlpU2iytlJ+fH7Nnz060c3Nz49xzz006UaV+/fpxzz33RJ8+fSIj44ePbHJycmLkyJExcODAWLp0aZx33nnFfzMiIisrK0455ZSkvQ477LC45ZZbokePHpFW4GqHr7/+Oq6++up4+eWXI+KHwMonn3wSNWrUKNHeO5P3338/qb2lr8Wy9MEHHyS1Dz300DJbu2PHjjF+/Pgt7rUj7LvvvnHooYfGxx9/nOh74403ok2bNvGrX/0qTj311PjJT36S9PUM7HwuuuiieOSRR5L60tPT49BDD40WLVrEhg0bYtq0aTF9+vSIiHjmmWeidu3aJd5n7dq1ccopp8Qbb7yR1F+5cuU46KCDomnTplG1atXIysqKiRMnxpo1ayJi0/fBK664Ir799tu48cYbt7pHwSvYqlSpEvvuu280bdo0atWqFbm5ubFkyZL47LPPkq7XmjVrVnTr1i0++eQT19eEE0cAAAAAANgNtWwZ0bv3phNDSqtSpYgBAyLatCmzsnZ7GRkZcc455yTazz33XKxbt67QuO9/o/h75557blSuXLrrBmbPnh0XXnhhol21atV47bXX4v777y8UGonYdArJKaecEh999FG02ez/3CFDhsTMmTOLvW92dna0bt06PvzwwzjjjDOSQiPf79OyZctE+7HHHks6gaV+/foxduzYOOeccwp9yJ6RkRHnnntujBkzJvbaa68SX99z3nnnxcKFC5Pa77//fhxzzDGFQiMREW3atImXXnopLrvsskTfV199FUOHDi3Rvjubgie7tGvXrtz3nDdvXlK7LK/8KXg6TMG9dpR77rmn0Nfs8uXL4+67744uXbpEzZo148gjj4yBAwfGyJEjkwJUQMV78cUXC4VGzj777Jg7d25MmDAh/v73v8fLL78cX375ZYwfPz4OPvjgiIj4y1/+UuITsC6++OKk0EitWrVi6NChsWzZspg4cWL8v//3/2LkyJHx7rvvxtKlS+Puu++OatWqJcbffPPN8a9//Wub++y9994xaNCgGDt2bKxevTo+++yzeO211+LZZ5+N559/Pt55551YsmRJ/Pvf/068nohNQcmyuIZndyA4AgAAAABAmVq9esuPghmCrY1du7b0Y9esibj00ohSnqoeERFpaRHXXJPct3bt1uso7dh164o3blew+ZUzK1asiJdeeqnQmBdffDFWrlyZaA8YMKDU+w0ZMiTWbvYFMHTo0DjuuOO2Oa9Bgwbx7LPPJtq5ubklDkoMHz48mjZtWqyxDz74YKH2j3/8463Oad++fbGP6v/exx9/HP/85z8T7Z/+9Kfx17/+tVCwpSj33HNPHHDAAUk1rl+/vkT77yw2btwY2dnZSX2l+W35ktr8t9kjIurUqVNmaxesf9WqVaW+OmJ7HHnkkTF8+PCoWrVqkc+vXbs2xo0bF0OHDo2zzjorWrZsGS1atIiLL744JkyYsIOrJSIiclaX/JG32ddWXs7/+teWfN0d9bpyN/zQn59X9P45a0v+PuRu9t/A/Pzyf03lbO3atXHxxRcn9Q0aNChGjBgRjRs3LjT+sMMOi7Fjx8bhhx8eEVGia6leeOGFeOKJJxLtFi1axOTJk+OKK64o8jSr6tWrx1VXXRVvv/12IjySn58fl112WaFTRTZ31llnxZw5c+KOO+6II444YosnHqWnp8exxx4bH374Yfz85z9P9E+YMCFGjx5d7Ne1uxIcAQAAAACgTO2555YfvXolj23QYMtjjz8+eWzLllsee9RRyWPbt4/o0mX7XkdOTsSxxyb3HXXUlmvY7HCJiNhU/5bGNmiQPLZXry2P3dW0b98+DjvssER78ytpiur7yU9+UupTGVavXp20VuvWreO3v/1tsed36tQpjjzyyER71KhRxZ7bpUuXpLlb8/nnn8eUKVMS7bZt20bv3r2LNfess85KOhllW+6///6k9m233Rbp6cX7OKhSpUpx+eWXJ9pLliyJDz/8sNh770wKBjgiKiY4UpZ7FrVWUa9zRzj77LNjwoQJ0b1792KNnzNnTjz00EPRuXPn6NatW3z22WflXCFJ/r5nyR/zNgv9zXtpU9/oAt+Y/9Fy62u8WHbBqSK9WOeHvabc9kP/ymmb+v7RMnn86ONL/j58OvCH+euXburbhY0cOTIWL16caHfq1Cluu+22rcyIyMzMjJEjR0ZmZmax98nPz4+bN7vrLyMjI0aNGpV0EteWHH744Ulzv/7668RVakVp3LhxiU4tq1q1ajzxxBNJc5555pliz99dCY4AAAAAAABlavNTR955552YM2dOov3NN9/EmDFjEu3tOW1k3LhxSaeNnHbaacUOSXzv6KOPTvx59uzZSbVuzSmnnFLsPT744IOk9umnn17suSUd/9ZbbyX+vPfee8fPfvazEu21+fsRETF27NgSzaf8FHXNUEU68MAD46233oqPP/44Lr/88mjVqlWx5r377rvRuXPnGDFiRDlXCBT01FNPJbVvvPHGYn3fbN68efz6178u9j7vvvtu/Oc//0m0zz777KQTrbbl4osvTrqypiTBzuJo1KhR4hSViMLfp1PRdtzuCAAAAAAAhX333ZafK3hbxma/9FpIwc8xZs0q/tipUzedKJ+fH9G5c8S0aRFbOeW80FoDB0bceOOm62o29957xV/nX/8q/tj/+7+I3Nzijd0V9OnTJ6644opYu3Zt5OXlxZNPPhmDBw+OiE2njeTn50fEpmPpzzzzzFLvM27cuKR248aNY9bWvlCKUKVKlaT2N998E82bN9/mvIMPPrjYexQ8XeHQQw8t9tyITb8RXhwzZsyIhQsXJtpt2rSJ2bNnl2ivDRs2JLVnzJhRovlbkpWVFesK3lW1BXvvvXfSB4alUbdu3UJ9m1+PVF7q1q0bCxYsKJc9V6xYUeR+Fa1jx47RsWPHuPfee2PevHnx4YcfxqeffhqffvppTJgwocj3YN26ddG/f/9o0KBBHFvwaCfKXu+tfGPekvTNriJqeur/1ijwzfaXs7a+Rt7G8j115LRvI9L/d2pE2mYnTtRqV/Rr7vqviCjmN+bvpW32cXrVvUr3Xu4kNm7cGBMnTky069atm3Rly7acffbZce+99xZr7JtvvpnUPuOMM4q9T0TEHnvsET/5yU/ivffei4jShxjXrFkT2dnZsW7dusTPHt/b/Cqx//73v5Gfn7/TBfR2JMERAAAAAADKVAlOMi+3sXvs8cOfBw+O6NOnZHOvu67o/apXL/46JRm7nZ+R73Rq1qwZvXr1SpwoMHz48Lj++usjPz8/6bede/bsGbVq1Sr1PnPnzk1qX3HFFXHFFVeUer2I4l/90aDgfUNbsXTp0qR2ixYtSlRTcYIsEYXfj3HjxhX7FIgtKaurUPr06ZN00szWvPvuu9G1a9ft2q9y5cpRo0aNyM7OTvQVFbwoawWDI99++22ZrV1wrZo1a0ZGxs71UV/Tpk3j9NNPT5ySk5eXFxMnToynn346hg0blhQeys3NjV//+tfx1VdfFQpwUcYySvANtCjpGZseJV03b+P27bstGZk/BEc2l5ZedG0ZJfjGXJS0tO1/LyvQlClTkk7p6tixY1QqmOjdioMOOiiqVq0a69ev3+bYgsHOunXrljjYWbNmzcSfZ82aFXl5eVs9HSUvLy9Gjx4dL774Ynz00UcxderUWLNmTbH2ysvLi1WrVm3XzyS7up3ruwkAAAAAAJSxXr0imjWLmDdv0wkkW5OeHjFoUESdcvwF6VTxq1/9KhEc+f56mnXr1iWFG7bnmpqIiGXLlm3X/KJsHjTYmho1ahR7zYKBhZLMjUj+8GxrKvL92Bk1btw4vvzyy0R72rRp5b5nkyZNkq5nmDJlSpmtXXCtJk2alNna5SU9PT06d+4cnTt3jquuuipOOeWU+OKLLxLPz5kzJ1544YU4++yzK7BKSA2LFi1Kau+zzz4lmp+RkRGtWrWK//73v9scWzDI2Llz5xLtVVBeXl6sWLFii6csjR07Ni655JL4/PPPS73HypUrUzo4UrKL/gAAAAAAYBeTkbEpDFIctWpFXH55+daTKrp27Zp02sUTTzwRw4YNS7RbtGgR3bp12649Cl6rUhYKHmVfFqpWrZrULmndxR2/q7wfO0qXLl2S2ptf0VBeDj/88KT2Rx99VGZrf/zxx1vda2fXunXr+Oc//xmZBY5zeuONNyqoIkgtRZ1aVFLFDVbsyCDjiy++GN27d9+u0EjEpnBKKhMcAQAAAABgtzdgQMS2Ph9JS4u4/vqIEh4GwRakpaVF//79E+0XX3wxRo0alWj3798/0tLStmuPvfbaK6n9wQcfRH5+/nY9Nq+5rNQpcIRNSa8vKe51MQXfj9/85jfb/X6MHj26RLVuyejRo4u95/ZeU/O9n/3sZ0ntTz/9NFauXFkma2/JkUcemdTOyspKOmGjtJYtWxaffvrpVvfaFTRt2jTOOOOMpL7inF4AlL3t/R68NTsqyDh79uzo169fbNz4w7VIDRo0iCuvvDL+3//7f/H555/H0qVLY82aNZGXl5f0vaZfv35lXuOuTHAEAAAAAIDd3h57RFx55aaraIqSlhbRoEHEhRfu2Lp2d/3794/0/73pa9asifXr10dE4VBJaTVs2DCpPX369O1eszy0aNEiqV3SIEFxx+8q78eO0qNHj8jIyEi0161bF08//XS57tm5c+eoXbt2Ut/jjz++3euOGDEi6YPYjIyM6NGjx3avWxEOOuigpHZJg1RA6RQMMZYmSFfcOZsHGatVq1YotFGaR8uWLQvtc+edd8aaNWsS7ZNOOim++eabuOeee+LUU0+N/fffP+rVqxfVq1cvFJRZtWpViV//7kxwBAAAAACAlHDxxRGVKxf9XH5+xE03RVSvvmNr2t01b948unfvXqj/6KOPLvIDoJIqeFXHznrlRefOnZPa7777bonmF3d8hw4dkq4R+PDDD7d4tH8qaNy4caHTLR544IFy+U3471WvXj1+85vfJPU9+eSTsXjx4lKvuW7dunjggQeS+k477bRo0qRJqdesSJUqVUpqF/fqC3ZBaRkRBw+JqLRHRFqlbY8v1pqVIjIyIw6+e9P6FFvBcOFXX31Vovk5OTkxc+bMEu+1bt26mDNnTon2Kq5//OMfiT/vueeeMWLEiELXYW3JggULyqWmXZXgCAAAAAAAKWGvvSJ+85uIAp9ZRlpaRPPmEb/6VcXUtbv7VRFvbFF9pdG9e/ekD6FHjRq1XR/Ql5cjjjgiqlWrlmj/4x//KHadWVlZSVf8bE2lSpWSgjrr168v9xM2dnaDBg1Kak+fPj3++Mc/bve6OTk5W/wg9PLLL4/Km6XUVqxYEZdffnmp97r11ltjxowZSX2/+93vSr1eRZs6dWpSe1cNwFAMaWkR7X4XcfI3Ea37R0Ra6cMeaRmb5rfuH3HSjIh2V21an2Lr0KFDVN8sIfvJJ59ETk5OsedPnjw5cXLYtuyIYOeaNWuSwh9HHXVU1NzWvYT/s27dupg0aVKZ17QrExwBAAAAACBlDBy46XSRzeXnR9x665ZPI2H79OzZM8aOHZv0OO2008pk7Tp16sTZZ5+daH/33Xc75QfqtWvXTjr5Yv369XHFFVcUa+5ll11WohMyLr300qT2TTfdFAsXLiz2/N3N/vvvHxdddFFS35AhQ2LEiBGlXnPRokXRvXv3eOedd4p8vnHjxjF48OCkvueeey6GDh1a4r1efvnluPPOO5P6zjvvvOjYsWOJ1yoLM2fOjBUrVpR6/ooVK+Lvf/97Ul+3bt22syp2etUbRhz2t4jjPo6o1+l/ncUNffzv4+x6P4k47pNN61RvuPUpFKly5crxk5/8JNFevnx5/Pvf/y72/GeeeabYY3/+858ntf/2t78Ve25xFfxvUUlOL3r22WfL9fSpXZHgCAAAAAAAKaNly4jevSMy/vcLz+npEW3bRpx1VoWWtVurUqVKHHHEEUmPqlWrltn6N954Y9J6Tz/9dAwaNChyc3NLtM7UqVPjvffeK7O6CrrmmmuiSpUqifbIkSNj4MCBW/xt740bN8bll18eL7zwQon26dq1axxzzDGJ9uLFi+OEE06IefPmlWid7OzsePbZZ0s0Z2c1dOjQ6NSpU6Kdl5cXffv2jVtvvbVEHxzm5ubG448/HgcffPA2v1b+8Ic/RNeuXZP6Bg4cGH/605+K/bX59NNPxxlnnJH0NdKuXbu4//77i11zWRszZky0bNky/vjHP5b4dJ81a9bEmWeeGUuWLEn0Va1aNXr27FnWZbKzqntIxDHvR3R5PqLa3rHt8EhaRPW9N40/ZlxE3YN3RJW7tb59+ya1b7rppsjLy9vmvDlz5sRjjz1W7H2OP/74+NGPfpRoT5w4MYYNG1b8QouhTp06Se3//ve/xZq3cuXKuOWWW8q0lt2B4AgAAAAAACnlmmsivv8cNi8v4rbbCl9fw66jVatW8de//jWp76677oojjjgiXnnlla0ewz9r1qz4y1/+Et26dYsOHTps8QSJstC+ffu46aabkvqGDh0aBx54YNx7770xYcKE+Oqrr2LChAlx7733xoEHHpgICPTp06dEez355JPRtGnTRHvy5MlxwAEHxF133RVLly7d4rzs7OwYNWpUnHfeedGkSZO47rrrSrTvzqpKlSrx4osvRsuWLRN9+fn5MXjw4Nh3333j0Ucfjfnz529x/ldffRVDhw6N9u3bx/nnn1+sE1zS09Pj2WefjTZt2iT1X3/99dGpU6d46aWXYt26dYXm5ebmxttvvx0///nPo2/fvknBlvr168eLL74Ye+yxRzFedbJ169bFrFmzSvUo+Fv933/o2qRJkzjxxBPj2Wef3WowafXq1TFixIg48MAD4/XXX0967ve//33S1yopIC0tokXviJO/jtj/xoj0qoWvr0nL2NS//00RJ329abxracrEmWeeGQ0aNEi0P/roo/jDH/6w1Tnfh75Wr15d7H0yMjLi5ptvTuq78MIL4//9v/9XsoIj4q233opvvvmmUH/16tVjn332SbQnTZq0zStx1qxZE3369IlZs2aVuI7dXSkvkQIAAAAAgF3TwQdHdOsW8c47EQceGOGX3Xd9ffv2jaysrLj22msTvzk9fvz4OPnkk2OPPfaIgw8+OBo2bBjVq1eP7OzsWLp0aUydOnW7rtwojUGDBsWcOXPi4YcfTvRNnTo1rrzyyi3O6datW9x6663x3HPPJfrStvEBaqNGjeLVV1+NE044IRYsWBAREd9++20MGjQofv/730e7du2idevWUatWrVi/fn2sWLEiZsyYEbNmzYr8ze5yqlu3bmlf6k6nefPm8f7778dpp50WH374YaJ/5syZccEFF0RERNu2baNp06ax1157RW5ubmRlZcXcuXNjzpw5Ra65rQBHo0aNYsyYMXHqqafGxIkTE/2TJk2Knj17xp577hn77bdfNGrUKDIyMmLhwoUxbdq0WLZsWaG12rRpE6NGjYp27dqV5uXHhAkTolWrVqWae8MNN8SNN95YqD8nJydee+21eO211yIiokmTJvGjH/0o6tWrF5mZmZGdnR2zZ8+OqVOnFnmyS+/eveP6668vVU3sBjL2iNj/jxGtB0RMHhQxe2RsOvMgL6L56REH3RmR2ayiq9ztVK9ePR588MHo3bt3ou+OO+6IefPmxZ133hmNGzdOGj9x4sS48MIL49NPP42ITVevFfd751lnnRVvv/124qSRDRs2RK9eveKss86KgQMHbvHKrdzc3Pj8889j1KhR8fzzz8e0adPi3XffjdatWxcae8YZZ8Stt96aaJ9++unx0EMPxZlnnhnp6T+coZGfnx9vv/12XHXVVfH5559HxKYw3uYnIKU6wREAAAAAAFLO4MERixZF3HWXX2LeXVxzzTVxwAEHxIABAyIrKyvRv2bNmnj//feLtUbBY+/LWlpaWjz00EPRpk2buOGGG+K7777b6vhLLrkk/vznP8eMGTOS+mvUqLHNvQ488MCYNGlSnHvuuUm/gZ2fnx9Tp06NqVOnbnON8n4/drTGjRvHe++9F0OHDo1bb701Vq1alfT89OnTY/r06dtc59BDD4077rgjunfvXqw9x44dG3/605/irrvuSjpl5Lvvvovx48dvdX6lSpXiN7/5Tdxxxx1Rs2bNbe5X3ho1ahS1atWKlStXFnpu/vz5Wz255XvVq1ePa6+9Nq677rqo5LgnMptFdHk2ou3FEV8+EPHjSyPqd6noqnZrp59+elxwwQXxyCOPJPpGjBgRzz77bHTq1ClatGgRGzZsiKlTpyb9N/HCCy+MqVOnxpgxY4q91yOPPBLffvttvPTSS4m+Z599Np599tmoX79+HHjggVGvXr1IT0+PVatWxYIFC2LatGlFnshUlKuuuiqGDRuWCEmuWrUqzjnnnPjd734Xhx56aNSqVSuWL18ekydPTjot6uyzz46MjIx48skni/1adneCIwAAAAAApJyuXSP+85+KroKydtxxx8XMmTNj2LBh8dhjj8Vnn32WdIJGQZUrV45OnTrFscceG2eddVbSkfflaeDAgXHmmWfG008/Ha+88krMmDEjli1bFnXr1o0mTZpEt27dol+/ftGhQ4eIiEK/3V2rVq1i7dOgQYP497//HWPHjo177rkn3nzzzW1eNdCqVavo3r179OrVK4455phSvb6dWUZGRlx99dXx29/+NoYPHx7PPfdcTJgwIXFSzZY0a9YsTj755DjnnHOic+fOJdqzSpUqcdNNN8WFF14YDz30UIwcOTK+/vrrrc5p3LhxnH766XHppZfGj370oxLtV55+/vOfx5IlS2L06NHx+uuvx/vvvx+ffvppbNy4cZtz27ZtG3369InzzjsvmjdvvgOqZZdSv4vAyA700EMPRXp6ejz00EOJvry8vJgwYUJMmDCh0Pgzzjgj7r///ujRo0eJ9qlcuXL83//9XwwZMiRuuOGGpEDIkiVL4q233irWGpmZmUU+V7t27Xj11VfjuOOOi8WLFyf6s7Ky4tVXXy1yztlnnx1PPPFE/PrXvy7Ra9ndpeVv7ScmKtyqVasSyc2dIUkKAAAAAOze1q1bFzNnzoxWrVpFtWrVKroc2C7Lly+P8ePHx8KFC2P58uWxcePG2HPPPaNBgwbRtm3b2Hfffbd53cjO4PHHH4/zzz8/0X7wwQfj4osvLvE6OTk58fHHH8fXX38dy5Yti+zs7Nhjjz2iVq1a0bp162jXrl3svffeZVn6LuG7776LSZMmxTfffBNLliyJtWvXxh577BG1a9eORo0aRceOHaNhw4ZluufcuXNj8uTJMXv27Fi1alXk5+dHZmZmNG/ePPbff/8dFmIqC+vXr4+vv/46vvrqq1i4cGFkZ2cn/q7VrFkzWrRokThVACgfLVu2jNmzZyfa7777bnTt2nWb895444249tprE1fRFHTggQfGlVdeGf369YuIiK5duyadOFKSqEFWVlbcd999MXLkyKRai1KjRo048sgj4xe/+EWcccYZ2/zvx8KFC+P3v/99jBw5ssggW1paWnTp0iUuv/zyOO200yIion///kknjsycOTNatmxZ5PqjR4+Oo48+OtHe0hVe26M8fgYvSdZAcGQnJzgCAAAAAOxIgiOw8+nXr1889dRTifaHH35Y4lMvAGBLvvrqq5g4cWIsXLgw0tPTo0mTJrHffvslTr4qazNnzoxPP/00lixZEt9++22kp6dHjRo1onHjxrHvvvvGPvvsU6qrrFasWBHjxo2Lb775Jr777ruoW7du7L333nHooYdG06ZNy+GVlB3BEbZKcAQAAAAA2JEER2DnsmzZsmjWrFmsXbs2IiKqVasW3377rb+fALAbqejgSHqZ7AgAAAAAAECZu+iiixKhkYiI3r17C40AAGVKcAQAAAAAAGAHOf7442P8+PHbHJednR19+/aNv//974m+9PT0uOyyy8qzPAAgBWVUdAEAAAAAAACp4vXXX4/XX389OnToEKecckp06tQpWrRoEXvuuWdkZ2fHnDlzYvTo0fHUU0/F8uXLk+ZeffXV0bFjxwqqHADYXQmOAAAAAAAA7GBTpkyJKVOmFHv8WWedFbfccks5VgQApCpX1QAAAAAAAOwg9erVK9H4Bg0axH333RfPPPNMVK5cuZyqAgBSmRNHAAAAAAAAdpCsrKwYO3ZsjBkzJj7++OOYMWNGZGVlxerVqyMtLS3q1KkTDRo0iE6dOsXRRx8dvXr1iurVq1d02QDAbkxwBAAAAAAAYAfJyMiIo48+Oo4++uiKLgUAICJcVQMAAAAAAAAAkLIERwAAAAAAAAAAUpTgCAAAAAAAAABAihIcAQAAAAAAAABIUYIjAAAAAAAAAAApSnAEAAAAAAAAACBFCY4AAAAAAAAAAKQowREAAAAAAAAAgBQlOAIAAAAAAAAAkKIERwAAAAAAAAAAUpTgCAAAAAAAAABAihIcAQAAAAAAAABIUYIjAAAAAAAAAAApSnAEAAAAAAAAACBFCY4AAAAAAAAAAKQowREAAAAAAAAAgBQlOAIAAAAAAAAAkKIERwAAAAAAAAAAUlRGRRewq9qwYUNMnjw5pk+fHosXL441a9ZEtWrVonbt2tGqVavYd999o0mTJhVdJgAAAAAAAADAFgmOlNBrr70Wf/vb3+KNN96INWvWbHVs48aN48gjj4wTTjghevXqFZmZmTuoSgAAAAAAAACAbRMcKaZPPvkkLrzwwvjoo4+KPWfBggXx/PPPx/PPPx+tW7eOI444ohwrBAAAAAAAoKRWr14dkyZNipkzZ8bixYtj7dq1Ub169ahTp040bNgwDjnkkGjUqFGZ7jl//vyYPHlyzJo1K1atWhX5+fmx5557RvPmzWO//faLNm3alOl+ALA1giPFcN9998XVV18dGzdurOhSAAAAAACgwrVs2TJmz55dqP/hhx+OCy64oFRrDhs2LM4777xC/S1atIhZs2aVak3Ykuzs7Bg+fHg8//zzMX78+MjNzd3q+CZNmsRJJ50UZ599dnTp0iXS0tJKvOeiRYvi4YcfjpEjR8b06dO3uV/v3r3jkksuidatW5d4r+HDh8eAAQMS7Z/97GcxevToEq9TWtddd13cfvvtSX1/+MMf4tZbb91hNQBQfOkVXcDO7vrrr48rrriiUGgkLS0tDjnkkBg0aFA88MAD8fzzz8fTTz8d9913X1xwwQVx2GGHRXq6txcAAAAAgNTxxBNPlHrusGHDyrASKFpubm7cc8890axZs7jsssvi/fff32ZoJGLTCSGPPPJIHHnkkXHQQQfFa6+9Vuw9N2zYEDfffHO0bNkybrrppm2GRr7fb+jQodG2bdu49NJLIzs7u9j7VbTc3Nx46qmnCvUPHz68WO81ADueE0e24i9/+Uv86U9/KtTfq1evGDJkSLRq1Wqr85ctWxajRo2KRx99tFTJUwAAAAAASmDOnIilS8t3j732imjevHz32IVNnDgxpkyZEh06dCjRvOnTp8f7779fTlXBJllZWXH66afHuHHjinx+n332iSZNmkT9+vUjNzc3srKyYt68eTFnzpykcZ9//nmceOKJMXLkyOjTp8829+zZs2d8+OGHhZ7LzMyMDh06ROPGjSMjIyMWLFgQX375ZSxbtiwxJjc3Nx588MF48803Y9SoUdG2bdtSvPId6/XXX4/58+cX6p8/f378+9//jhNOOKECqgJgawRHtuCTTz6JgQMHJvVVqlQphg8fHuecc06x1qhXr14MGDAgBgwYEPn5+eVRJgAAAAAAEZtCIz/+ccS6deW7T7VqEV9+KTxSQOXKlRMndz/xxBNx9913l2j+5qeNbL4WlJV58+ZF165dY8aMGUn9LVu2jGuuuSZOPPHEaNasWZFzp0+fHq+99lo88sgjSaeFrNvGf28WLVoUXbt2jS+//DKp/6CDDorBgwfH8ccfH9WrV096LicnJ0aPHh1DhgyJN954I9H/5ZdfxlFHHRVjxoyJH//4x8V6zRXl8ccf3+pzgiMAOx93qRQhLy8vfv3rX8eGDRuS+p944olih0YKcuIIAAAAAEA5Wrq0/EMjEZv2KO9TTXZBJ554YuLPI0aMiJycnGLPLXitxUknnVSmtcHGjRvj9NNPLxQaufHGG+O///1vXHjhhVsMjUREtG3bNq688sqYMmVKPPbYY9GoUaNt7pmXlxdnn312odDIzTffHB9//HH07NmzUGgkIiIjIyN69OgR//73v2P48OFRuXLlxHOLFi2KXr16xdq1a7e5f0VZvHhxvPrqq4l227ZtY5999km0X3nllViyZElFlAbAVgiOFGHEiBExadKkpL5evXrFueeeW0EVAQAAAADAzutXv/pV4s+LFi2K1157rdhz//Wvf8XChQuLXAvKwu9+97sYP358op2enh7Dhw+PG264IapWrVrsdTIyMuL888+PSZMmxZFHHrnVsbfffnu8/fbbSX333HNPDB48OCpVqlSs/fr16xfPPfdcZGT8cIHAlClT4oorrih2zTvaU089lXRiUL9+/aJfv36J9saNG+Ppp5+uiNIA2ArBkSLcddddSe2MjIy49957K6YYAAAAAADYyXXu3DnatWuXaD/xxBPFnrv5NTXt2rWLww47rExrI7VNmTIlHnjggaS+gQMHJoUZSqphw4bxzjvvRLdu3Yp8fuHChXHzzTcn9fXp0yeuvPLKEu/Vs2fPGDRoUFLfX//610K/AL2z2Pzvc3p6evTt2zf69u0b6ek/fCS5tatsAKgYGdseklrGjx8fU6ZMSeo78cQTo2nTphVUEQAAAAAA7PwGDBgQ11xzTUREvPbaa7F48eJo0KDBVucsWbIk6VqLsj5tZOrUqfHFF1/EkiVLYtWqVVG3bt1o1KhRHHHEEVGvXr0y3Wvt2rUxbty4mD9/fixatCgqVaoUP/nJT+Koo47a4pyNGzfG2LFj45tvvoklS5ZEvXr1okmTJnH44YdHnTp1yrS+iIjly5fHBx98EFlZWbF06dKoVq1a1K9fPw466KDo0KFDme+3M7jjjjsiPz8/0d5nn33i1ltv3e51MzIyonnz5kU+d//998eGDRsS7Vq1am3XLyhff/318dxzzyVdtXP33XfHM888U+o1y8MHH3wQ06ZNS7S7d++e+Hyte/fu8eabb0bEpr+X48ePj86dO1dInQAUJjhSwAsvvFCob8CAARVQCQAAAAAA7Dr69u0b1113XeTk5EROTk48/fTTcdVVV211zubXWmRkZJTJlfHLli2LIUOGxIgRI2L+/PlFjklPT4/DDz88brjhhujRo0ex1u3fv388+eSTifbMmTOjZcuWMXfu3Ljuuuvi5Zdfju+++y5pzi9/+csigyPZ2dlx0003xeOPPx4rVqwo9HzVqlXj5JNPjjvvvDNatWoVs2bNilatWiWe79evXwwfPrxYdefn58fzzz8f9957b3z00UeRl5dX5LgmTZrEpZdeGpdddllUr169WGvv7BYuXBjPPfdcUt+ll15aoutpSmrdunXx6KOPJvX169cvGjZsWOo1q1WrFpdccknSiSV///vfY8iQIdG4ceNSr1vWCp4k0r9//6Q/fx8c+X6s4AjAzsNVNQVs/k0rYtMPjz/72c8qqBoAAAAAANg1NGzYME444YREuzjX1Ww+5oQTTtiuD9cjNgVRWrduHXfeeecWQyMREXl5eTFu3Lg45phj4txzz006HaIkXn755TjggANixIgRhUIjWzJlypRo165d/PnPfy4yNBIRsX79+njhhRfi4IMPTjqRpaS++eab6NixY5x55pkxYcKELYZGIiLmz58fv//976N9+/aFTmbfVb311luRk5OTaFerVi369u1brntOmDAhvv3226S+888/f7vXPffcc6NKlSqJdk5OTrz11lvbvW5Z+e677+Lvf/97ol2zZs049dRTE+1TTz01atWqlWg///zzsXr16h1aIwBbJjiymezs7PjPf/6T1Ne+ffukb2QzZsyIG2+8MY466qho0KBBVK5cOWrXrh1t2rSJbt26xa233hofffTRji4dAAAAAAAq3OZXzUyZMmWr/14+YcKEpIDC9l5T88c//jH69esXq1atSvSlpaXFvvvuGyeddFKcddZZcfzxx0f9+vWT5o0YMSJOOOGEpIBBcUyYMCH69OmTCH/Url07jjnmmDjzzDPj+OOPjxYtWhSa8+WXX0bXrl0LhVrq1q0bxx57bJx55plx7LHHRt26dSMiYuXKldG7d+/4/PPPS1RbRMTEiRPjsMMOi0mTJiX116tXL3r06BF9+vSJU089Nfbbb7+k52fNmhVdunSJyZMnl3jPnc2YMWOS2occckjSZz7l4b333ktq77333rH//vtv97r16tWLQw45JKlv7Nix271uWXn++eeTwlO9e/dOOrmmevXq0bt370Q7Ozu7yFsAAKgYrqrZzH/+85+ke+4iIg4++OCIiFi9enVcc8018cgjjxRK5K5cuTJWrlwZM2bMiHfffTcGDx4cRx11VPzpT3+KI444YofVDwAAAAAAFekXv/hFNGzYMBYtWhQREcOGDYtOnToVOXbYsGGJPzdo0CDptJKSevLJJ+OWW25JtNPT0+Piiy+O3/3ud9G8efOksfn5+fGPf/wjLr/88pgzZ05ERLz99tsxePDguP3224u9569//etYv359NG3aNO6+++447bTTolKlSkn7zJ49O9HOzc2Nc889N5YuXZroq1+/ftxzzz3Rp0+fyMj44SObnJycGDlyZAwcODCWLl0a5513XvHfjIjIysqKU045JWmvww47LG655Zbo0aNHpKWlJY3/+uuv4+qrr46XX345In4IrHzyySdRo0aNEu29M3n//feT2lv6WixLH3zwQVL70EMPLbO1O3bsGOPHj9/iXhVpa9fUbN732GOPJc0pahwAO54TRzbzzTffFOpr0qRJfPXVV3HggQfGQw89tNVj3Db33nvvxVFHHRW33XZbWZcJAAAAAAA7pYyMjDjnnHMS7eeeey7WrVtXaNzatWvj+eefT7TPPffcqFy5cqn2nD17dlx44YWJdtWqVeO1116L+++/v1BoJGLTKSSnnHJKfPTRR9GmTZtE/5AhQ2LmzJnF3jc7Oztat24dH374YZxxxhlJoZHv92nZsmWi/dhjjyWdwFK/fv0YO3ZsnHPOOUmhkYhN7+O5554bY8aMib322ispAFIc5513XixcuDCp/f7778cxxxxTKDQSEdGmTZt46aWX4rLLLkv0ffXVVzF06NAS7buzKXiyS7t27cp9z3nz5iW1O3ToUGZrFzwdpuBeFWXatGnx4YcfJtr77LNPdOnSpdC4ww8/PNq2bZtojxs3Lr788ssdUiMAWyc4spnNf4j6XuXKleO4446LGTNmJPWnp6dH48aNo3379tGwYcMif9DKz8+PP/zhD3HppZcWu4b169fHqlWrkh4AAAAAALuU1as3PTY/4XnDhk1969cXPXbzX9rbuHFTX8HAwdbGFly3PK1dG7H5tSa5uZtqWLu28LjVq4seu2ZN8th16zb1b9xYeOwuZvMrZ1asWBEvvfRSoTEvvvhirFy5MtEeMGBAqfcbMmRIrN3svR86dGgcd9xx25zXoEGDePbZZxPt3NzcEgclhg8fHk2bNi3W2AcffLBQ+8c//vFW57Rv3z7uu+++EtX08ccfxz//+c9E+6c//Wn89a9/LRRsKco999wTBxxwQFKN63fk360ytHHjxsjOzk7qq127drnvu3z58qR2nTp1ymztgvWvWrWqxFcslYeCp43069dvi2MLnjCy+clDAFQcwZHNfPvtt4X6hgwZknQSSbNmzeKxxx6LxYsXx/z582PKlCmRlZUVc+fOjbvvvrvIHwAefPDBePLJJ4tVw+233x61atVKPJo1a1b6FwQAAAAAUBH23HPTY/NTEoYM2dR3ySXJYxs02NT/vytDIiLiL3/Z1Ffweo6WLTf1T5v2Q9/w4Zv6rr22rF/Flh1xRMS///1D+513NtXw058mjzv++E39mwcnxo/f1Hfggclje/Xa1P/MMz/0ffHFpr5dTPv27eOwww5LtIv6YHjzvp/85CelPpVh9erVSWu1bt06fvvb3xZ7fqdOneLII49MtEeNGlXsuV26dEmauzWff/55TJkyJdFu27Zt9O7du1hzzzrrrKSTUbbl/vvvT2rfdtttkZ5evI+DKlWqFJdffnmivWTJkqSTJHYlBQMcERUTHCnLPYtaq6jXuSNt3Lgxnn766UQ7PT09+vbtu8Xxffv2Tfp6fOqpp3aK8AtAqhMc2UxRqdnNj9Dr0aNHTJ06Nc4///yoV69e0rgmTZrEVVddFVOnTo3999+/0DqXXHJJsb55X3vttbFy5crEY+7cuaV4JQAAAAAAUHE2P3XknXfeiTmbBYO++eabGDNmTKK9PaeNjBs3Lum0kdNOO63YIYnvHX300Yk/z549O6nWrTnllFOKvccHH3yQ1D799NOLPbek4996663En/fee+/42c9+VqK9Nn8/IiLGjh1bovmUn6JOv69or7zySixevDjR7tat21Z/KbpJkybRo0ePRDsrKyvphBwAKkbGtoekjvzNj00soF27dvHKK69EtWrVtrrG3nvvHW+++Wbst99+SXcOfvfdd3HffffFTTfdtNX5VatWjapVq5ascAAAAACAncl332363z32+KHv6qsjrrgiIqPAP0t//4Fj9eo/9F18ccSvfx1R8GqNWbMKj+3fP+KssyI+/zzi8MPLoPhiGDcuYrMTNaJbt02vuWBg4V//2nStzub/5tu586axBT8A/r//23Q1TZUqP/Ttv/8P7+Uupk+fPnHFFVfE2rVrIy8vL5588skYPHhwRGw6beT7f4+vXr16nHnmmaXeZ9y4cUntxo0bx6zvv06Kqcrm73lsCrY0b958m/MOPvjgYu/x2WefJbUPPfTQYs+N2HQySnHMmDEjFi5cmGi3adMmZs+eXaK9NmzYUGjNspCVlZX0y7pbs/fee2/z85htqVu3bqG+za9HKi9169aNBQsWlMueK1asKHK/ilTwRKGCV9EUpX///vHGG28k2o8//nicfPLJZV0aACUgOLKZypUrb/G5hx9+uNg/pDRs2DDuuOOOOP/885P6//rXv24zOAIAAAAAsMvLzCzcV6VKcihia2MrV970KMnYHfkLedWrJwdgKlUqurbNAy7bGlvUvz9vaewuoGbNmtGrV68YMWJEREQMHz48rr/++sjPz4+nnnoqMa5nz55Rq1atUu9T8NTuK664Iq644opSrxdR/Ks/GjRoUOw1N/9F04iIFi1alKim4gRZIgq/H+PGjYtWrVqVaK+CyuoqlD59+iSdNLM17777bnTt2nW79qtcuXLUqFEjsrOzE31FBS/KWsHgyLfffltmaxdcq2bNmpFRMIy3Ay1YsCBef/31pHp69uy5zXmnnnpq1KpVKxGq+ec//xlZWVmx9957l1utAGydq2o2k7mFH8D333//Eh/ldvbZZ0edOnWS+rKysuK///1vqesDAAAAAIBdxebX1Xx/Pc0bb7yRFG7YnmtqIiKWLVu2XfOLsnnQYGtq1KhR7DULBhZKMjdi0wfyxVGR78fOqHHjxkntadOmlfueTZo0SWpPmTKlzNYuuFbBvXa04cOHR25ubqLdu3fvqF5UYK6AatWqRZ8+fRLtnJycePLJJ8ulRgCKR3BkM/Xq1Suy/9hjjy3xWtWqVYsjjzyyUH/BY/MAAAAAAGB31LVr16TTLp544omkay1atGgR3bp12649Cl6rUha2dq19aRW8or6kdRd3/K7yfuwoXbp0SWpPnDix3Pc8vMCVWR999FGZrf3xxx9vda8dKT8/v9A1NX/7298iLS2tWI9HH300aW7BtQDYsQRHNtOoUaMi+0tyT+G25m1+PBkAAAAAAOyu0tLSon///on2iy++GKNGjUq0+/fvH2lpadu1x1577ZXU/uCDDyI/P3+7HpvXXFYKnlBe0utLintdTMH34ze/+c12vx+jR48uUa1bMnr06GLvub3X1Hyv4Gnyn376aeJ6lPJS8JeKs7Ky4osvvtjudZctWxaffvrpVvfakcaMGRMzZswos/WmT5/ul68BKpDgyGZat25dZP+WTiLZlqLmlccxcQAAAAAAsDPq379/pKdv+ihizZo1sX79+ogoHCoprYYNGya1p0+fvt1rlocWLVoktUsaJCju+F3l/dhRevToERkZGYn2unXr4umnny7XPTt37hy1a9dO6nv88ce3e90RI0YknSiTkZERPXr02O51S6ssXtOOWBOA4hEc2cw+++wTlSpVKtRf8Ai54qpWrVqhvnXr1pVqLQAAAAAA2NU0b948unfvXqj/6KOPjpYtW273+gWv6njjjTe2e83y0Llz56T2u+++W6L5xR3foUOHqFWrVqL94YcfRnZ2don22p00btw4zjjjjKS+Bx54oFyu9Ple9erV4ze/+U1S35NPPhmLFy8u9Zrr1q2LBx54IKnvtNNOiyZNmpR6ze2xcuXK+L//+79Eu0qVKjFlypSYOXNmiR7Tp0+PzMzMxDovvPBCSn+9AlQkwZHN7LHHHtG+fftC/aU9tmzFihWF+kp7egkAAAAAAOyKfvWrXxWrrzS6d++e9Auho0aN2q4P6MvLEUcckfTLpv/4xz+KXWdWVlbSFT9bU6lSpaSgzvr168v9hI2d3aBBg5La06dPjz/+8Y/bvW5OTk7MmTOnyOcuv/zyqFy5cqK9YsWKuPzyy0u916233lroWpjf/e53pV5vez377LOxdu3aRPv444+P9u3bR8uWLUv02GeffeKXv/xlYp3Vq1fHc889VxEvCSDlCY4UUNS9eTNnzizVWrNmzSrUV79+/VKtBQAAAAAAu6KePXvG2LFjkx6nnXZamaxdp06dOPvssxPt7777rkI/UN+S2rVrJ518sX79+rjiiiuKNfeyyy4r0QkZl156aVL7pptuioULFxZ7/u5m//33j4suuiipb8iQITFixIhSr7lo0aLo3r17vPPOO0U+37hx4xg8eHBS33PPPRdDhw4t8V4vv/xy3HnnnUl95513XnTs2LHEa5WVglfKnHXWWaVeq+Bc19UAVAzBkQJ+8YtfFOr74IMPSrVWUfMOPvjgUq0FAAAAAAC7oipVqsQRRxyR9CjtFfFFufHGG5PWe/rpp2PQoEGRm5tbonWmTp0a7733XpnVVdA111wTVapUSbRHjhwZAwcOjJycnCLHb9y4MS6//PJ44YUXSrRP165d45hjjkm0Fy9eHCeccELMmzevROtkZ2fHs88+W6I5O6uhQ4dGp06dEu28vLzo27dv3HrrrSUK5eTm5sbjjz8eBx988Da/Vv7whz8U+mXlgQMHxp/+9Kdif20+/fTTccYZZyR9jbRr1y7uv//+Ytdc1j777LP45JNPEu0aNWrESSedVOr1fv7zn8dee+2VaE+YMCGmTJmyXTUCUHKCIwV079499t5776S+1157LZYvX16idb744ouYPHlyUl/16tXjpz/96faWCAAAAAAA/E+rVq3ir3/9a1LfXXfdFUcccUS88sorWwxmRGw6Ofwvf/lLdOvWLTp06LDFEyTKQvv27eOmm25K6hs6dGgceOCBce+998aECRPiq6++igkTJsS9994bBx54YCIg0KdPnxLt9eSTT0bTpk0T7cmTJ8cBBxwQd911VyxdunSL87Kzs2PUqFFx3nnnRZMmTeK6664r0b47qypVqsSLL74YLVu2TPTl5+fH4MGDY999941HH3005s+fv8X5X331VQwdOjTat28f559/frFOcElPT49nn3022rRpk9R//fXXR6dOneKll16KdevWFZqXm5sbb7/9dvz85z+Pvn37JgVb6tevHy+++GLssccexXjVydatWxezZs0q1WPFihWJdQqeCHLKKadE9erVS1zP9zIyMgqdQDRs2LBSrwdA6WRUdAE7m4yMjPjtb3+b9MPb2rVr44477oi77rqr2OvccMMNhfpOOumkMk1RAwAAAAAAEX379o2srKy49tprIy8vLyIixo8fHyeffHLssccecfDBB0fDhg2jevXqkZ2dHUuXLo2pU6cmfSC+IwwaNCjmzJkTDz/8cKJv6tSpceWVV25xTrdu3eLWW2+N5557LtGXlpa21X0aNWoUr776apxwwgmxYMGCiIj49ttvY9CgQfH73/8+2rVrF61bt45atWrF+vXrY8WKFTFjxoyYNWtW5OfnJ9apW7duaV/qTqd58+bx/vvvx2mnnRYffvhhon/mzJlxwQUXRERE27Zto2nTprHXXntFbm5uZGVlxdy5c2POnDlFrrmtAEejRo1izJgxceqpp8bEiRMT/ZMmTYqePXvGnnvuGfvtt180atQoMjIyYuHChTFt2rRYtmxZobXatGkTo0aNinbt2pXm5ceECROiVatWpZp7ww03xI033hjr16+PZ555Jum57bmmZvM1HnnkkUT76aefjjvuuCMqV6683WsDUDyCI0W4/PLL44EHHkg6ZeTPf/5zHHXUUXHiiSduc/79998fL730UlJfWlpaofvsAAAAAAAoI3vtFVGtWkQRv8FfpqpV27QXO51rrrkmDjjggBgwYEBkZWUl+tesWRPvv/9+sdaoU6dOeZUXEZs+K3jooYeiTZs2ccMNN8R333231fGXXHJJ/PnPf44ZM2Yk9deoUWObex144IExadKkOPfcc+ONN95I9Ofn58fUqVNj6tSp21yjvN+PHa1x48bx3nvvxdChQ+PWW2+NVatWJT0/ffr0mD59+jbXOfTQQ+OOO+6I7t27F2vPsWPHxp/+9Ke46667kk4Z+e6772L8+PFbnV+pUqX4zW9+E3fccUfUrFlzm/uVp5deeinps7P69etHjx49tnvdI444Ipo3b54I6CxZsiRGjRoVvXr12u61ASgewZEi1KlTJ+6+++741a9+lejLy8uLnj17xl133RWXXHJJZGQUfuvWrFkTN998c9x5552Fnjv//PNjv/32K9e6AQAAAABSVvPmEV9+GbGVazjKxF57bdqLndJxxx0XM2fOjGHDhsVjjz0Wn332WdIJGgVVrlw5OnXqFMcee2ycddZZsc8+++yQOgcOHBhnnnlmPP300/HKK6/EjBkzYtmyZVG3bt1o0qRJdOvWLfr16xcdOnSIiCh0MkqtWrWKtU+DBg3i3//+d4wdOzbuueeeePPNN2P16tVbndOqVavo3r179OrVK4455phSvb6dWUZGRlx99dXx29/+NoYPHx7PPfdcTJgwIXFSzZY0a9YsTj755DjnnHOic+fOJdqzSpUqcdNNN8WFF14YDz30UIwcOTK+/vrrrc5p3LhxnH766XHppZfGj370oxLtV14KXlPTu3fvIj8vK6m0tLTo06dP0sn/jz/+uOAIwA6Ulr+1n5hS3LnnnhsjRowo1N+iRYs45ZRTYr/99otatWrF8uXL45NPPol//OMfsXjx4kLjO3XqFGPHji3VNTWrVq2KWrVqxcqVKys8SQoAAAAA7P7WrVsXM2fOjFatWkW1atUquhzYLsuXL4/x48fHwoULY/ny5bFx48bYc889o0GDBtG2bdvYd999t3ndyM7g8ccfj/PPPz/RfvDBB+Piiy8u8To5OTnx8ccfx9dffx3Lli2L7Ozs2GOPPaJWrVrRunXraNeuXey9995lWfou4bvvvotJkybFN998E0uWLIm1a9fGHnvsEbVr145GjRpFx44do2HDhmW659y5c2Py5Mkxe/bsWLVqVeTn50dmZmY0b9489t9//x0WYgJg51AeP4OXJGsgOLIVGzZsiD59+hS6dqYkOnfuHC+//HKpf6AQHAEAAAAAdiTBEdj59OvXL5566qlE+8MPPyzxqRcAwM6rooMj6WWy426qSpUq8eKLL8Ytt9xS4tNCMjIy4qKLLorRo0eXeQoVAAAAAABIDcuWLYsXXngh0a5WrVocdNBBFVcQALDbERzZhvT09Lj++utj2rRpcfHFF0fdunW3Or5hw4Zx/vnnx7Rp0+Ivf/lLqa6nAQAAAAAAiIi46KKLYu3atYl27969nQYEAJSpjIouYFfRqlWrePDBB+P++++PyZMnx5QpUyIrKys2bNgQtWvXjr322ivatWsX+++/f6SlpVV0uQAAAAAAwE7o+OOPjxtuuGGbV81kZ2fHxRdfHH//+98Tfenp6XHZZZeVd4kAQIoRHCmh9PT0OOSQQ+KQQw6p6FIAAAAAAIBdzOuvvx6vv/56dOjQIU455ZTo1KlTtGjRIvbcc8/Izs6OOXPmxOjRo+Opp56K5cuXJ829+uqro2PHjhVUOQCwuxIcAQAAAAAA2MGmTJkSU6ZMKfb4s846K2655ZZyrAgASFXpFV0AAAAAAABAqqhXr16Jxjdo0CDuu+++eOaZZ6Jy5crlVBUAkMqcOAIAAAAAALCDZGVlxdixY2PMmDHx8ccfx4wZMyIrKytWr14daWlpUadOnWjQoEF06tQpjj766OjVq1dUr169ossGAHZjgiMAAAAAAAA7SEZGRhx99NFx9NFHV3QpAAAR4aoaAAAAAAAAAICUJTgCAAAAAAAAAJCiBEcAAAAAAAAAAFKU4AgAAAAAAAAAQIoSHAEAAAAAAAAASFGCIwAAAAAAAAAAKUpwBAAAAAAAAAAgRQmOAAAAAABQSH5+fkWXAAAAKaGif/YWHAEAAAAAICE9fdM/G+fl5VVwJQAAkBq+/9n7+5/FdzTBEQAAAAAAEjIyMiIiYsOGDRVcCQAApIbvf/b+/mfxHU1wBAAAAACAhPT09MjMzIzs7OyKLgUAAFJCdnZ2ZGZmOnEEAAAAAICdQ40aNWL16tWRk5NT0aUAAMBuLScnJ1avXh01atSosBoERwAAAAAASFKjRo1IS0uLhQsXJu5bBwAAylZeXl4sXLgw0tLSBEcAAAAAANh5ZGRkRLNmzWL16tUxf/58J48AAEAZy8nJifnz58fq1aujWbNmkZGRUWG1VNzOAAAAAADstDIzM6NZs2Yxd+7c+OqrryIzMzNq1KgRVapUifT09EhLS6voEgEAYJeRn58feXl5sWHDhsjOzo7Vq1dHWlpaNGvWLDIzMyu0NsERAAAAAACKlJmZGW3atIns7OzIzs6OrKysii4JAAB2eZmZmbH33ntHjRo1KvSkke9VfAUAAAAAAOy0MjIyok6dOlGnTp3Iy8uLnJycyMvLq+iyAABgl5Oenh4ZGRmRnp5e0aUkERwBAAAAAKBY0tPTo0qVKhVdBgAAUIZ2rhgLAAAAAAAAAAA7jOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHitC/f/9IS0srk8dxxx1X0S8HAAAAAAAAAKBIgiMAAAAAAAAAAClKcAQAAAAAAAAAIEVlVHQBu4LKlStH+/btSzX3Rz/6URlXAwAAAAAAAABQNgRHiqFx48YxefLkii4DAAAAAAAAAKBMuaoGAAAAAAAAACBFCY4AAAAAAAAAAKQowREAAAAAAAAAgBQlOAIAAAAAAAAAkKIERwAAAAAAAAAAUpTgCAAAAAAAAABAihIcAQAAAAAAAABIURkVXcCuYM2aNXH77bfHuHHj4r///W8sWbIk1q9fH3Xr1o26detG27Zt46ijjopu3brFgQceWNHlAgAAAAAAAAAUS1p+fn5+RRexs+nfv388+eSTpZp7+OGHx6BBg+Lkk08uk1pWrVoVtWrVipUrV0bNmjXLZE0AAAAAAAAAYPdVkqyBq2rK2AcffBC//OUvo3fv3rFq1aoSz1+/fn2sWrUq6QEAAAAAAAAAUB4ER0qgbt260bp162jfvn00atQoKleuvMWxL7zwQnTs2DGysrJKtMftt98etWrVSjyaNWu2vWUDAAAAAAAAABRJcGQr9t9//7j22mvjnXfeiaVLl8ayZctixowZMWXKlFiwYEFkZ2fH2LFj48orr4w999yz0Pyvv/46TjzxxFi9enWx97z22mtj5cqVicfcuXPL8iUBAAAAAAAAACSk5efn51d0ETubF154IVq1ahWHHnposecsW7YsBgwYEK+88kqh5y655JJ44IEHSlVLSe4dAgAAAAAAAAAoSdZAcKSMnXfeeTFs2LCkvsqVK8d///vfaN26dYnXExwBAAAAAAAAAEqiJFkDV9WUsUcffTQ6duyY1Ldx48a4//77K6giAAAAAAAAAICiCY6UsYyMjLjjjjsK9f/rX/+qgGoAAAAAAAAAALZMcKQcdO/ePRo2bJjUN3369Jg3b14FVQQAAAAAAAAAUJjgSDlIS0uLo446qlD/nDlzKqAaAAAAAAAAAICiCY6Uk0aNGhXqW7JkSQVUAgAAAAAAAABQNMGRcpKZmVmob+3atRVQCQAAAAAAAABA0QRHyklRp4vstddeFVAJAAAAAAAAAEDRBEfKybRp0wr11a9fvwIqAQAAAAAAAAAomuBIOVi+fHmMHz8+qa9atWrRtm3bCqoIAAAAAAAAAKAwwZFycPfdd0dubm5SX9euXaN69eoVVBEAAAAAAAAAQGGCI2Xs448/jnvvvbdQ/2mnnbbjiwEAAAAAAAAA2ArBkc3MnDkzHn300Vi/fn2p5n/00Udx4oknxtq1a5P627ZtG/369SuLEgEAAAAAAAAAyozgyGZWrlwZF1xwQbRu3ToGDx4cn332WbHmLVmyJAYPHhxdunSJRYsWJT2Xnp4e9957b2RkZJRHyQAAAAAAAAAApZaWn5+fX9FF7CwmT54cBx98cFJf06ZN45BDDokDDjggGjVqFLVq1YqqVavGt99+G/Pnz48PPvggxo4dG+vWrStyzQceeCAuueSSUte0atWqqFWrVqxcuTJq1qxZ6nUAAAAAAAAAgNRQkqyBYzC2Yd68eTFv3rwYNWpUieZVq1Yt7r777rj44ovLqTIAAAAAAAAAgO0jOFIOjjjiiHj00Uejffv2FV0KAAAAAAAAAMAWCY5sZr/99ov33nsvRo8eHePGjYtJkybFkiVLijW3RYsWccwxx8SFF14YhxxySDlXCgAAAAAAAACw/dLy8/PzK7qIndnChQvjm2++iblz58aSJUtizZo1sXHjxqhRo0bUqVMn6tevH4ccckg0bNiwXPYvyb1DAAAAAAAAAAAlyRo4cWQbGjVqFI0aNaroMgAAAAAAAAAAylx6RRcAAAAAAAAAAEDFEBwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjmyn/Pz86Nq1a6SlpRV6dO3ataLLAwAAAAAAAADYIsGR7fTAAw/EmDFjKroMAAAAAAAAAIASExzZDl9//XVce+21FV0GAAAAAAAAAECpCI6UUl5eXgwYMCDWrFlT0aUAAAAAAAAAAJSK4Egp3XvvvTFu3LhE+7DDDqvAagAAAAAAAAAASk5wpBSmT58e119/faJdt27duP/++yuwIgAAAAAAAACAkhMcKaG8vLzo379/rF27NtF33333RYMGDSqwKgAAAAAAAACAkhMcKaG77747Pvzww0T7F7/4RZxzzjkVWBEAAAAAAAAAQOkIjpTAtGnT4oYbbki0a9asGY888kgFVgQAAAAAAAAAUHqCI8WUm5sb/fv3j3Xr1iX67r777mjatGkFVgUAAAAAAAAAUHqCI8V01113xcSJExPtbt26xa9//esKrAgAAAAAAAAAYPsIjhTDlClT4sYbb0y0MzMz429/+1vFFQQAAAAAAAAAUAYER7YhJycn+vXrFxs2bEj03XbbbdGqVasKrAoAAAAAAAAAYPsJjmzD7bffHp988kmiffjhh8cll1xSgRUBAAAAAAAAAJQNwZGt+Pzzz+OWW25JtKtVqxbDhg2L9HRvGwAAAAAAAACw68uo6AJ2Vhs3box+/frFxo0bE3033HBD/PjHPy7XfdevXx/r169PtFetWlWu+wEAAAAAAAAAqcvRGVtw6623xuTJkxPtjh07xtVXX13u+95+++1Rq1atxKNZs2blvicAAAAAAAAAkJoER4owadKkuO222xLtypUrx7Bhw6JSpUrlvve1114bK1euTDzmzp1b7nsCAAAAAAAAAKnJVTUFbNiwIfr16xc5OTmJvmuvvTYOOOCAHbJ/1apVo2rVqjtkLwAAAAAAAAAgtTlxpICbbropvvjii0R7v/32iz/84Q8VWBEAAAAAAAAAQPkQHNnMxx9/HHfddVeiXalSpRg2bFhUqVKlAqsCAAAAAAAAACgfgiP/s379+ujfv3/SFTUDBw6MTp06VWBVAAAAAAAAAADlR3Dkf+67776YMmVKor3PPvvEzTffXIEVAQAAAAAAAACUr4yKLmBnsWDBgqR2dnZ2dO7cudjzN2zYUKjv448/joMOOqhQ/+TJk0taHgAAAAAAAABAmRMc2YKsrKzIysrarjVWr14dn332WRlVBAAAAAAAAABQtlxVAwAAAAAAAACQogRHAAAAAAAAAABSlODI/9x7772Rn59f6sfMmTMLrfmzn/2syLEAAAAAAAAAADsDwREAAAAAAAAAgBQlOAIAAAAAAAAAkKIERwAAAAAAAOD/s3ff4VGVaR/Hv5OEDgldXBVEVLCBolhQLIgFda1YFjt2AV3b2hArYi/YK/auq2tBERHsFRE7ioqCAgKS0CHJef943pCEHjIzZ5J8P9eVizNPzjzPrSuY9fzmviVJqqEMjkiSJEmSJEmSJEmSJNVQBkckSZIkSZIkSZIkSZJqKIMjkiRJkiRJkiRJkiRJNVROug6KoohJkybx+++/M3v2bObOnUthYSH169enQYMGtGzZkjZt2tCwYcN0lSRJkiRJkiRJkiRJklSjpSw48tVXXzFq1Cg+/fRTPv30U37++WcKCwtX+b6mTZvSqVMnunTpwnbbbcfuu+9Oo0aNUlWmJEmSJEmSJEmSJElSjZWIoihK1majR4/miSee4LXXXuOPP/5Ysl7RIxKJxJLrnJwcunbtygEHHEDv3r1p2bJlssqtEgoKCsjLyyM/P5/c3Ny4y5EkSZIkSZIkSZIkSRmuIlmDSgdHpk6dyl133cXDDz/Mb7/9BiwbFCkbBFkdK3p/dnY2e+21F6eeeir77rtvJaquOgyOSJIkSZIkSZIkSZKkikhLcOTbb7/l+uuv56mnnmLRokXlwh5LB0Uq03Fk6T1KvrfRRhtx1lln0adPH2rVqlXR8qsMgyOSJEmSJEmSJEmSJKkiUhoc+fnnnxk4cCBPPfUUURQtE+iA8kGRunXrsskmm9CmTRvWXXdd1l57berXr0+9evXIyclh/vz5zJ8/n5kzZzJp0iQmT57M999/z59//lm+0OXsn0gkWHfddbn00ks57rjjyMrKqshfSpVgcESSJEmSJEmSJEmSJFVESoIj+fn5DBw4kLvvvpvCwkKiKFpumKN169bstttu7LbbbnTp0oX27duvUaBjxowZjB07lnfffZe3336bjz/+mEWLFoWi///csgGSjTfemFtvvZU999yzwmdlMoMjkiRJkiRJkiRJkiSpIpIeHBk6dCgXXnghf/31V7nASMlbN9lkE3r16kWvXr3YYostkvCXsKw5c+bwyiuv8Pzzz/Paa68xf/785QZIDjzwQG655RbWW2+9lNSRbgZHJEmSJEmSJEmSJElSRSQ9OJKVlbVMd5H69etz2GGHcdJJJ7HDDjtUvuoKKCgo4JFHHuH+++9n3LhxQAiNlIRaLr30UgYOHJjWmlLF4IgkSZIkSZIkSZIkSaqIimQNKjRDJooimjZtymWXXcbvv//Ogw8+mPbQCEBubi79+vVj7NixjBgxgt13353VnLgjSZIkSZIkSZIkSZKk/7fawZG8vDyuvfZaJk6cyMCBA2nSpEkq61pt3bt358033+STTz4xQCJJkiRJkiRJkiRJklQBOatz07nnnstFF11E48aNU1zOmttmm2148803GTFiBH///Xfc5UiSJEmSJEmSJEmSJGW8RGSLjoxWkblDkiRJkiRJkiRJkiRJFckarPaoGkmSJEmSJEmSJEmSJFUvBkckSZIkSZIkSZIkSZJqKIMjkiRJkiRJkiRJkiRJNZTBEUmSJEmSJEmSJEmSpBrK4IgkSZIkSZIkSZIkSVINlRN3AUubOXMmr7/+OuPGjSM/P58WLVrQqVMn9ttvP+rUqRN3eZIkSZIkSZIkSZIkSdVGSoIj48ePL/d6gw02ICdn1UcNHjyYq6++mnnz5i3zvby8PG688UaOP/74pNUpSZIkSZIkSZIkSZJUkyU9OPLBBx/QrVu3Ja/XWWcdfv3111W+r2/fvtx9991EUbTc78+aNYsTTzyRb7/9luuvvz5Z5UqSJEmSJEmSJEmSJNVYWcne8LnnniOKoiUBkJNPPpmsrJUf88ILL3DXXXcBkEgkVvgVRRE33XQTDz/8cLLLliRJkiRJkiRJkiRJqnGSHhx5++23SSQSS1736tVrpfdHUcTFF1+8zNrSX8CS8Mh//vMfZs+enezSJUmSJEmSJEmSJEmSapSkBkfmzp3L119/veT1+uuvT4cOHVb6ntdff50ffvhhSSgEoGfPnowdO5YFCxbwyy+/cOaZZ5YbYTN9+nQeeOCBZJYuSZIkSZIkSZIkSZJU4yQ1ODJ+/HiKioqA0B2kS5cuq3zPk08+ueS65D0vv/wyHTt2pHbt2rRp04abb76Z8847jyiKlgRMnnjiiWSWLkmSJEmSJEmSJEmSVOMkNTjy66+/lnu92WabrfI9r732WrluIwMHDiQra9myBg4cSF5e3pLXn3/+ueNqJEmSJEmSJEmSJEmSKiGpwZEpU6YALAmBrL322iu9f9y4ccycOXPJ6+bNm9OzZ8/l3tugQQP22muvciNrxo0bV9mSJUmSJEmSJEmSJEmSaqykBkfmzZtX7nVubu5K73/vvfeWXCcSCXr27EkikVjh/Z07dy73+qefflqDKiVJkiRJkiRJkiRJkgRJDo4sWLCg3OucnJyV3v/ZZ58BpR1Kdt1115Xev+6665Z7nZ+fX8EKJUmSJEmSJEmSJEmSVCKpwZF69eqVez1nzpyV3v/ee++V6zDSrVu3ld5ft25dgCXvWdX+kiRJkiRJkiRJkiRJWrGkBkdKRtOUBDsmTpy4wnsnT55cbtRMs2bNaNeu3Ur3nzt3brnXtWrVWtNSJUmSJEmSJEmSJEmSarykBkfatGlT7vWnn366wntfeeWVJdeJRIKuXbuucv9Zs2YBpaNtGjVqtAZVSpIkSZIkSZIkSZIkCZIcHOnUqdOS6yiKGDlyJDNmzFjuvQ8//PCS+wB22WWXVe7/yy+/lHvdqlWrNS1VkiRJkiRJkiRJkiSpxktqcKRly5ZsuummS17Pnz+fc845Z5n7XnjhBT766KMlI20A9tlnn1Xu/8UXX5R7vcEGG1SiWkmSJEmSJEmSJEmSpJotJ9kb9u7dmwEDBpBIJIiiiEcffZTJkydzwgkn0KxZM9577z1uuOGGJd9PJBJsvfXWtG/ffqX7FhYWMmbMmCXvy87OZqONNkp2+ZIkSZIkSZIkSZIkSTVGIiqZFZMk+fn5bLzxxkyfPh1gSTikrJK1kl+ffvppevXqtdJ933zzTfbaa68l79tqq634/PPPk1l6RiooKCAvL4/8/Hxyc3PjLkeSJEmSJEmSJEmSJGW4imQNkjqqBiAvL4/bb799yeuSoEfZr5IgSSKRoEePHqsMjUAYbwOloZOuXbsmu3RJkiRJkiRJkiRJkqQaJenBEYBDDz2Ue+65h9q1ay8JepT9KgmQdOnShSeffHKV+82ZM4cnn3yyXOeSvfbaKxWlS5IkSZIkSZIkSZIk1RgpCY4AnHjiiYwbN44+ffrQrFmzJWERgE6dOnHLLbfwzjvv0LRp01Xu9eCDD1JQULDk/XXr1qVHjx6pKl2SJEmSJEmSJEmSJKlGSEQlaYwUmzNnDrNnz6Zp06bUqVOnQu/98MMPmTZt2pLXeXl57LrrrkmuMDNVZO6QJEmSJEmSJEmSJElSRbIGOWmqiYYNG9KwYcM1eu8OO+yQ5GokSZIkSZIkSZIkSZKUslE1kiRJkiRJkiRJkiRJymwGRyRJkiRJkiRJkiRJkmoogyOSJEmSJEmSJEmSJEk1lMERSZIkSZIkSZIkSZKkGsrgiCRJkiRJkiRJkiRJUg21WsGRrl278sEHH6S6lkqbO3cuAwcO5MYbb4y7FEmSJEmSJEmSJEmSpIy3WsGRjz76iG7dunHIIYfw5ZdfprqmCluwYAFDhgyhXbt2DBo0iLlz58ZdkiRJkiRJkiRJkiRJUsar0KiaF198kc6dO7Pffvvx/vvvp6qm1TZz5kwGDRpEmzZtOOuss5g2bVrcJUmSJEmSJEmSJEmSJFUZqxUcycnJWXIdRRHDhg1j5513pmPHjtx5553k5+enrMDleffddzn66KNZd911GThwIH/99RdRFJFIJIiiiNq1a6e1HkmSJEmSJEmSJEmSpKooEUVRtKqbvv32W/r168eoUaNIJBJACJAAJBIJateuTY8ePejVqxf77rsvzZs3T2qRRUVFfPjhhzz//PO88MILTJo0aZkaoiiiUaNGXHbZZZxxxhlkZ2cntYa4FBQUkJeXR35+Prm5uXGXI0mSJEmSJEmSJEmSMlxFsgarFRwp8dRTT3HRRRfx66+/LjdAUmLTTTdl1113ZZtttqFjx45suumm1KlTZ7X/An777Te++uorvvzyS959913ef/995s6du9zzoigiKyuLo446imuuuYZWrVqt9jlVgcERSZIkSZIkSZIkSZJUESkLjgAsXryYe+65h6uvvpopU6aUC4yU3arseiKRoGXLlqyzzjq0atWKBg0aUK9ePbKzs1mwYAHz589n5syZTJo0icmTJ7Nw4cJyZy5v35K1Aw88kKuuuopNN920In8ZVYbBEUmSJEmSJEmSJEmSVBEpDY6UWLBgAUOHDuXWW29l/PjxYbMVhEjKHVjmnqWtznuiKKJ27docccQRnHPOOWyxxRZrUn6VYXBEkiRJkiRJkiRJkiRVRFqCI2W9+uqrDB06lFdffXVJt5AVBURWdtyq3rPxxhtz9NFHc8IJJ1S7kTQrYnBEkiRJkiRJkiRJkiRVRNqDIyVmzZrFCy+8wKuvvsqIESOYPXt2+cNW0m2kxNLldOrUiX322YcDDzyQLl26JKvUKsPgiCRJkiRJkiRJkiRJqojYgiNlFRYW8sUXX/Dpp5/y2WefMX78eH799VemTJlCcXHxMvc3atSINm3asMEGG9CxY0e6dOnCdtttR8uWLVNRXpVhcESSJEmSJEmSJEmSJFVERbIGOakqIicnhy5duizTJaS4uJg5c+Ywb948ioqKqFevHg0aNKBOnTqpKkWSJEmSJEmSJEmSJEnLkbLgyIpkZWWRm5tr9wxJkiRJkiRJkiRJkqSYZcVdgCRJkiRJkiRJkiRJkuJhcESSJEmSJEmSJEmSJKmGMjgiSZIkSZIkSZIkSZJUQxkckSRJkiRJkiRJkiRJqqEMjkiSJEmSJEmSJEmSJNVQOek66K+//mLYsGGMHj2aL774gunTpzNjxgwWLFhAIpGgsLAwXaVIkiRJkiRJkiRJkiSJNARHJk2axODBgxk6dCgLFy4EIIqiCu1x5JFH8vLLLy953bdvXwYPHpzUOiVJkiRJkiRJkiRJkmqaRFTRFEcFvPrqqxxzzDHMmjWrXFgkkUgsuY6iiEQiQVFR0Qr3+fDDD9lxxx2XvF5rrbWYPHkyWVnVf9JOQUEBeXl55Ofnk5ubG3c5kiRJkiRJkiRJkiQpw1Uka5Cy5MX999/PAQccwN9//70kHFISGImiqEJdR3bYYQd22GGHJe+fNm0aw4cPT0ndkiRJkiRJkiRJkiRJNUVKgiNvv/02p59+OsXFxUsCI1EU0bBhQ/bff3/OPPNM1lprrQrt+a9//WtJAAXg9ddfT0XpkiRJkiRJkiRJkiRJNUbSgyOLFy+mT58+FBYWLgmM5OTkcNVVVzF16lRefPFFbr75Zlq1alWhfXv16rVkNE0URYwYMSLZpUuSJEmSJEmSJEmSJNUoOcne8P7772fixIlLQiO1a9fmlVdeoUePHpXat1WrVrRv357vv/8egO+++4558+ZRv379ZJQtSZIkSZIkSZIkSZJU4yS948gDDzwAsGSszBVXXFHp0EiJrbfemiiKlrwuCZFIkiRJkiRJkiRJkiSp4pIaHJk5cyZffPEFiUQCgBYtWnDmmWcmbf/NNtus3Osff/wxaXtLkiRJkiRJkiRJkiTVNEkNjnz00UdLOoIkEgn22Wcf6tSpk7T9mzZtWu71zJkzk7a3JEmSJEmSJEmSJElSTZPU4MjUqVMBloRHunTpksztady4McCSjiazZ89O6v6SJEmSJEmSJEmSJEk1SVKDI9OnTy/3unnz5sncnsWLF5d7XRJQkSRJkiRJkiRJkiRJUsUlNTiSnZ1d7nVhYWEyt18ymqYkMNKsWbOk7i9JkiRJkiRJkiRJklSTJDU40qJFi3KvS4IeyfLNN9+Ue21wRJIkSZIkSZIkSZIkac0lNTjSsmVLABKJBADjxo1L5vaMGjVqyd4Abdu2Ter+kiRJkiRJkiRJkiRJNUlSgyPbbLPNkmBHFEW8/fbbSdv73Xff5YcffljyOi8vj06dOiVtf0mSJEmSJEmSJEmSpJomqcGRZs2asfXWWy95PWHCBN56661K7xtFEZdccsmS14lEgm7dupXrPiJJkiRJkiRJkiRJkqSKSWpwBODAAw8kiiISiQRRFHHWWWdRWFhYqT0vvvhi3nnnnSV7Ahx99NHJKFeSJEmSJEmSJEmSJKnGSnpwpH///jRr1mzJ62+++YbDDz+coqKiCu9VWFhI3759ufbaa5d0F0kkEmy88cb06tUraTVLkiRJkiRJkiRJkiTVREkPjjRq1IgBAwaU6zry4osv0qVLF0aPHr1ae8ydO5ehQ4fSoUMH7r777iVdRkp+HTRoULLLliRJkiRJkiRJkiRJqnFyUrHpmWeeyQcffMCzzz67JDwyduxYunfvTtu2benatSt//vnnkiAIwG233cYvv/zCuHHjeP/991m0aNGS75fskUgk6NevHwcffHAqypYkSZIkSZIkSZIkSapRElHZ9EYSLVy4kD322IP33ntvyZiZskGQsq/Lri3vvpK1vffem5dffpns7OxUlJyRCgoKyMvLIz8/n9zc3LjLkSRJkiRJkiRJkiRJGa4iWYOkj6opUadOHUaOHEn//v3LBUFKuocsnVcpWSvpLFI2XBJFEf379+eVV16pUaERSZIkSZIkSZIkSZKkVEpZcAQgJyeHW2+9lWHDhrH99tuXC4yUhEOW9wWlgZEtt9ySl19+mVtvvZWsrJSWK0mSJEmSJEmSJEmSVKOkbFTN8rz//vs899xzjB49mnHjxlFcXLzc+9Zff3169OjBAQccwL777puu8jKSo2okSZIkSZIkSZIkSVJFVCRrkNbgSFlz5szhzz//ZMaMGfz999/Uq1eP5s2bs9Zaa9GiRYs4SspIBkckZZTffoPp01N7RvPm0Lp1as+QJEmSJEmSJEmSqrGKZA1y0lTTMho2bMhGG23ERhttFFcJkqSK+O03aN8eFixI7Tl168IPPxgekSRJkiRJkiRJktIgK+4CJElVxPTpqQ+NQDgj1V1NJEmSJEmSJEmSJAEGRyRJkiRJkiRJkiRJkmosgyOSJEmSJEmSJEmSJEk1lMERSZIkSZIkSZIkSZKkGsrgiCRJkiRJkiRJkiRJUg2Vk66DfvnlF8aMGcMPP/zArFmzyM/PZ/HixWu8XyKR4IEHHkhihZIkSZIkSZIkSZIkSTVLSoMjc+bM4Y477mDo0KH8+OOPSds3iiKDI5IkSZIkSZIkSZIkSZWUsuDIK6+8wqmnnsqff/5JFEVJ2zeRSCRtL0mSJEmSJEmSJEmSpJosJcGRxx57jOOPP56ioiLAsIckSZIkSZIkSZIkSVImSnpw5Ntvv6VPnz4UFRWVC4yU7TrSqFEjGjVqRK1atZJ9vCRJkiRJkiRJkiRJklZT0oMj55xzDoWFhUtCI1EUUadOHY4//nh69erFVlttRZMmTZJ9rCRJkiRJkiRJkiRJkiooqcGRGTNmMGLECBKJBFEUkUgkaN++Pa+++iobbLBBMo+SJEmSJEmSJEmSJElSJWUlc7PRo0dTVFS05HWdOnUMjUiSJEmSJEmSJEmSJGWopAZH/vzzzyXXiUSCXr16GRqRJEmSJEmSJEmSJEnKUEkNjhQUFAAQRREAO+20UzK3lyTVRF27Qq9e8PvvcVciSZIkSZIkSZIkVTtJDY40atSo3OumTZsmc3tJUk0zeTJ8+CH897/QuHHp+n//C5deCmPGxFaaJEmSJEmSJEmSVB3kJHOzDTfcsNzrWbNmJXN7SVJN06IFvPsufP89lA0nPvEEPPcc1KkDnTuHtYUL4aWXYKed4B//iKdeSZIkSZIkSZIkqYpJanBk2223JTs7m+LiYgB+/PHHZG4vSappatcOQZClR58dfDDUrQs9epSuffYZHH44tGwJU6ZAIhHW//oLmjWDrKQ22ZIkSZIkSZIkSZKqhaQ+RWvatCk9evQgiiKiKOKVV15J5vaSJAX/+hc8+ihsu23p2rx5sNVWsPPOpaERgH32gebNYfTo9NcpSZIkSZIkSZIkZbikf/z6oosuAiCRSPD999/zwgsvJPsISZKWtcceMGYMPP106drChTB+PPz9N2ywQen600/DjjvCXXelv05JkiRJkiRJkiQpgyQ9ONKtWzdOPfVUoigC4PTTT+fnn39O9jGSpDRbuDDuClZT2ZE0derA9Onw+eew3nql62+/DR98ABMmlK5FEZx5JjzyCCxYkL56JUmSJEmSJEmSpBglPTgCcOutt7L33nsTRRF//fUXO++8M6NGjUrFUZKkNKldO31nLVqUxM1q1YLOncuvXXABPPQQ9O5duvbDDzBkCJxySvnwySefhOBJYWESi5IkSZIkSZIkSZIyQ0qCI7Vq1eKll17ihBNOIIoi/vjjD3bffXd69uzJs88+y5QpU1JxrCQphRKJ9J1Vq1aKD1h/fTj22PKBkrp14bzz4IQTyqdkBg6EbbaBe+4pXVu4EObMSXGRkiRJkiRJkiRJUurlpGrjWrVqcd9997HPPvtwyimnMH36dIYPH87w4cMBqFevHk2aNKHWGj4dTCQSTCg7YkCSVG2kM6SyxPrrw3XXLbvepAnk5cGOO5aujRwJ//wnHHAAPP982kqUJEmSJEmSJEmSki1lwRGAzz77jHvvvZcZM2aQSCSIomjJ9+bNm8e8efPWeO9ELE8VJakGa948dOVYsCC159StG87KFE8+CcXF5de+/BKKiiA3t/z6nntCq1YwaBCst176apQkSZIkSZIkSZLWUCIqm+ZIogEDBnDNNdcQRdGSwEiywh5RFJFIJCgqKkrKfpmsoKCAvLw88vPzyV36AaUkpdOYMdCsGfMnzWDvvWF2Cia1PPoIbLZLc2jdOvmbJ9vvv8PixbDBBuH1tGmw1lrheubM0KkEYNgwGDcO9tkHttginlolSZIkSZIkSZJUo1Qka5CSjiNnn302t95663IDIynKqUiSUmn4cNh7bzjqKOo9+CDdz83hiiuWbcSxpnJyQq5is6OTs19aLN1RJDcXXn8dvv++NDQC8Nhj8MQTsHBhaXBk8WJ44w3o2hWaNk1fzZIkSZIkSZIkSdJSkh4cGTZsGLfccguJRGJJYKQkLFKnTh3at29PmzZtaNSoEbVq1Ur28ZKkVJgwAbKywhiZnBz69oXBg0MWIhmKisJ0lyqtbl3Ya6/wVdYee4TxPrvvXrr2xRfwz39Cs2bw119QErDMzw8BFMexSZIkSZIkSZIkKU2SHhy55JJLllyXBEY233xzBg4cyH777UfdunWTfaQkKdVOOw222gq23BKA5s3h5JPhzjtD6KMycnLg0ENh880rX2ZGOu648FXWrFnQvj1svHH5kEjPnjBxYuhQsssuaSxSkiRJkiRJkiRJNVUiSuLsmPHjx9OhQwcSiQRRFJFIJDj44IN58sknyclJyVScaq8ic4ckKemKi0OnkeX49Vdo167y42qysuCHH2DDDSu3T5W0aBHUrl163bQpzJ0bOrxssEFYf+kluOMOOPxwOOGE+GqVJEmSJEmSJElSlVGRrMHynwauoU8++aTc67XWWouhQ4caGpGkquiRR8KYlWnTlvvt9deHww4LHUPWVHY2HH98DQ2NQGlopOR62jR45x1o27Z0/a234M03Ydy40rUogosugueeC2NwJEmSJEmSJEmSpDWU1ETHlClTllwnEgkOO+wwGjZsmMwjJEnpMHcunHsu/PVXCJCce+5yb/vPf+Cpp9b8mEQCLr10zd9f7dSvD926lV/r2xc22SSMCirx888weHAIm+Tnl65/+WVY69Ch/AgcSZIkSZIkSZIkaQWS2nGksLAQgJLpN506dUrm9pKkdGnQAEaPhn794OyzV3jbVltB9+6hc0hFZWeHTMR661WizpqgfXs47TTYfvvStays8Devd2+oW7d0fcAA2HRTuP320rXFi2HhwvTVK0mSJEmSJEmSpColqcGRJk2alHvdqFGjZG4vSUqnTTaB224LIYWVuPBCKCqq+Pa1aoX3ag20bRvCIUOHll+vVQvq1SsfMnnnHcjLg3/9K701SpIkSZIkSZIkqUpIanCkffv2QBhTAzB9+vRkbi9JSrUHHoDx4yv0lt13hy22WGW+pJysLNh/f2jRooL1aeVeeAFmzYLOnUvXPvkkdBxZui3MwQfDqafC77+ntURJkiRJkiRJkiRllqQGR7bbbjvqlmmZP2bMmGRuL0lKpbfegpNOgi5d4LffVvttiQRcfDEUF6/+UVEEzzwTprDccgvk51e8XK1A7drlQyIXXAA//BDG2JSYORP++1+4557yo27eeit0mfnhh/TVK0mSJEmSJEmSpFglNThSr149DjnkEKIoIooiXnnlFRYtWpTMIyRJqbLpprDTTnDoodC6dYXeesghsN56IUSyKllZsMMOYXrKTz/BWWfBOuvA6afDt9+uYe1asUQCNt4YOnQoXatXLwRHBg0q3/blkUfgjDPg0UdL14qKYORImDs3fTVLkiRJkiRJkiQpbRJRFEXJ3HD8+PF06tRpSWDkyiuv5KKLLkrmEWk3b948fvrpJ37//XcmT57M7NmzmT9/PvXq1SMvL48WLVqw5ZZb0qZNm6SfXVBQQF5eHvn5+eTm5iZ9f0kqZ/Hi0DqkTp0Kv/WOO6B//9BNZGWaNIGJE0OA5LHHQoOLb74p/f4ll8AVV1T4eCXDPffAiy/CeedB9+5hbexY2GoraNYMpk0rnUm0YEH5biWSJEmSJEmSJEnKGBXJGiQ9OAJw55130q9fPxKJBNnZ2Tz33HPsv//+yT4mJYqKivj88895//33+eCDD/jyyy+ZMGECxasxg6F58+b06tWL448/nm233TYp9RgckZRyEyZAu3aV2uK338LXfvutfOxMIgE33ABnn126FkUwalQIkLz0Erz+OuyxR/jejBnhPU2bVqo8VcYbb4QRRpttBsOGla7vsgv88Qc88ADsvHN89UmSJEmSJEmSJGkZsQdHAK6++moGDBgAQHZ2NhdeeCEXXngh9erVS8VxSfP999+zySabVHqfgw8+mFtvvZV11123UvsYHJGUUg8/DCeeCDfdFNqFrIEogr32CtNM9t0XXnklNC1ZWiIBLVvCL7+ESSnL8/vvsO66pSNvzj8/BEqOPDKU17HjGpWoZJg7Fxo0CNeFhWHW0Lx58P330L59WB82LHQtOeQQOPro+GqVJEmSJEmSJEmq4SqSNchJ9uG//fYbAEcddRQNGjTgggsuYOHChQwaNIg77riDww8/nJ133pkNN9yQJk2aUKtWrTU+q3Xr1skqO+leeOEFRo0axRtvvME222wTdzmStHyjRoUQwIwZa7zFgw/Cm2+GqSUXXRQaVCxcuOx9UQSXX77i0AjAeuuVf/3ZZzB/Ptx/f/jaeecQIDnwQMhJ+r/BtFIloREIf/MnT4aPPoKNNy5df/PN0DZm7bXLB0euvhq23BJ2332NxiBJkiRJkiRJkiQpdZLecSQrK4tEyUfFyyg5ZnnfWxOJRILCwsKk7FXW0h1HEokEm2yyCZtvvjkbbrghrVu3plGjRtSuXZs5c+YwefJkvvjiC9544w3mzJmzzH65ubl88skntC/5NHYF2XFEUkpFEbzwAhx0EGRlVfjtkyaFCSYFBWEEzTnnwBlnwJ13QlFR6X2JRAiF/PQTVCQvGEXw3nuh68gLL5Tuue66cN554SxlkHHjYPhw6NIljLKBMMOoTRvIzg5zjEoCKN9/H1JErVuXtpiRJEmSJEmSJElSUsTacQRKQyIlEonEksBIiibjJE0ikaB9+/b07NmTvfbaix122IG8vLxVvm/+/PkMGTKEyy67jAULFixZLygo4IQTTuDdd99NWmhGkpImkQhjRdZAFMHJJ4fQyPbbw7//HdbPPhvuuGPZe6+6qmKhkZLyunULX5Mmwd13w733husJE9aobKVSx47LzhNavBiOPx7mzCnfteSii+C//4UhQ0rHJJUkg7Kz01OvJEmSJEmSJEmS0tdxJJmiKCKRSFBU9uPsGeLdd9+lR48eLFq0qNz6qFGj2KXk09cVYMcRSUk3eHAYTXPNNZWa9/LQQyEPUKcOjB0LHTqUfu9f/4LnngtTcLKyYMMN4dtvk5MHWLAAnnkGdtwR2rULa++8A+efH/IHvXpB7dqVP0cptt9+Ya7R6NHQtWtYGz0a9t8/zCJ6+OFYy5MkSZIkSZIkSarKMq7jSE3SrVs3zjrrLK699tpy688+++waBUckKakmTIABA6C4OLTxOOCANdpm6tTSDiNXXFE+NALwn//AU0+F6+JiuPrq5DWRqFsXjjmm/Nqdd8JHH4Wvc86BU0+FU06BVq2Sc6ZS4JVXYO7ckDwq8cEHoYVNmc5dQPgfvEWL0M5mnXXSW6ekzPPbbzB9emrPaN48jNKSJEmSJEmSpBog6R1HHk7jJ4SPPfbYtJ1VEV9//TVbbLFFubXddtuNkSNHVngvO45ISroXXoB334Wbb17jLYqLw9iY558PTSOW17hk991h5Ejo1Am++CKMnUmVKVPCCJu774Y//wxrtWrBoYeGLiTbbZfa85UkRUXw1Vfhf6xOncJafj40bRr+oZs8Gf7xj7D+3nvwww/QvTu0bRtfzZLS67ffoH37ZQNmyVa3bvgzxvCIJEmSJEmSpCqqIlmDpAdHBPPnz6d+/frl1jp06MB3331X4b0MjkjKZFG04kDGqFHQrx/cdBPsuWd66lm0KORibrstNK+AMCbnhx/CyBxVQXPnwosvwjffhNY1JU46Ce6/P8wouuaasFZcDJ9+Cltt5bwiqboaMwa23jo9Z33+OXTunJ6zJEmSJEmSJCnJYh9VU9MtWM4nIGv7AEtSnIYOhV69oFGjSm0zfXr4EHbDhuH1yrp47LorfP11pY6rsNq14YgjwteYMSFAsu22paGRBQvguuugTx9Yd9301qY11KABHHnksutbbBHGLe26a+nat9/C9tuHERNTp5b+D19UlLxZScngmA1JkiRJkiRJkpRBDI6kwKeffrrMWrt27WKoRJKARx4JSYkbbgifnq5bd422iSI48UT48kt44gnYYYck15lknTuHvExZTz8Nl14KV1wBBx0Uxth06+YYmyrpjDPCV1m//w7NmoUxN2VbzPTsGYIkt98e/gePk2M2JEmSJEmSJElShrFxfwpcf/31y6ztma45DZK0tA03hH/8Aw49dI1DIwBPPQUvvQSTJ4cmEFXReuvBLruEBhTPPReut9oqTDyZNy/u6lRpPXvCX3/Bs8+WrhUWhrlF48ZBkyal6yNHQu/eIU2UTtOnpz40AuGMVHc1kSRJkiRJkiRJ1YLBkSRavHgxffv2ZcSIEeXWW7RowdFHHx1TVZJqvK5dw0PzgQPXeIupU0N3DoABA6BjxyTVlmbdu8OoUaFrykknQb16pdfrrQczZsRdoSotkSgfEMnJgZ9+CkmhTTctXR8+HJ58Et58s/z7hwyB0aNh8eL01CtJkiRJkiRJkhQzR9Ukwa+//sqrr77KkCFDGD9+fLnvJRIJ7rvvPhpU1Y/nS6qaioth5kxo3jy8btasUtv17RtCFZ06wYUXJqG+mHXsCPfeC9dcAw8+CHfcAe3alf/b9O23sMkmjrGpFlq1gkMOKb/WqxfUrw/bb1+69scfcOaZYczN339DrVph/ZdfoGFDaNEifTVLkiRJkiRJkiSlicGR1dS1a1fmlZljEEURc+fOZdq0acyePXu576lduzZ33303BxxwQLrKlKTg2mvh1lvhmWdg550rtdWzz8Lzz4fGDQ89VPosvTpo2hTOPRfOOqv8VI8pU2DLLWHjjaFfPzjqqJAbUDWyzTbhq6x58+Cww2D2bMjNLV2/4ILwe+m228I/EBDCWYmEySJJkiRJkiRJklTlGRxZTePGjWPu3LmrfX/37t258cYb2XLLLSt0zsKFC1m4cOGS1wUFBRV6vySxaBE8/XSYLzN+fKWCI3/9BaefHq4vvDCEKaqj7GxYa63S12PGQO3a8M03cNppITfQp0/ovNKuXXx1KsU23DD83lna33+HX7fYonTto4/gwAPD1733pqM6SZIkSZIkSZKklFit4Mgjjzyy3PVjjjlmte9NheWdH7eOHTty++23061btzV6/+DBg7n88suTXJWkGqV2bXj/fXjqKTjhhEptFUWw004wYQIMGJCk+qqAffaByZNDh5Xbb4effoKbb4Zbbgnfu/VWAyQ1yvDhYfRT2bYz778fklV//VX+3tNPDzOPTjsN/vGP9NYpSZIkSZIkSZK0BhJRFEWruikrK4vEclqxFxUVrfa9qbC881OlYcOGq91xJDs7m4MPPpiLL76YTp06Veic5XUcWW+99cjPzye3bNt8SUqTKIJZs6BJk7griUdxMbzxRphSMmwY1K0LkyaFbACEvz9OK6mBFi6Ezz8PM5y23TaszZ0LeXlQVAQTJ0Lr1mH9009D+miXXcIcpK23Tk+Nn38OnTun5ywp1aIo/IH85Zf+HpIkSZIkSZKk1VBQUEBeXt5qZQ2yKrJxFEVLvipybyq+0m3OnDnlzl+8eDF//fUXY8eO5b777mPPPfdcEpgpKiri2WefZZtttmHQoEEVOqdOnTrk5uaW+5Kk1XLeefDkk0nZavHi0utEouaGRgCysqBnT3jtNfjxRxg6tDQ0AuF7/frB99/HV6NiUKcOdO1aGhqB8GD7rrugf//S0AiEf2h694Ybbkh/naoelv7Z9++/Q7ebsiHqv/+G776D338vf+9HH8GoUTBnTunar7/Cc8/Be++Vv/fxx0ObpalTS9e+/houvxwefrj8vYMGhc46P/xQuvbpp3DYYWG2WVmnnRbGpn3wQenahx/CppvCAQeUv/fgg6F5c3jxxdK1Dz4Ifxh36IAkSZIkSZIkKfkqFBxJJBKr3U2k5N5UfGWCnJwcmjdvTqdOnTjxxBN54403GDNmTLkOI4WFhQwYMICzzz47xkol1Qivvx4eSh95JHz7baW3O+64sNWMGZUvrTrZcEM44ojS119+GbqR3HEHbLIJ7LUXvPJK+We5qkEaNoSTToIhQ8qvt2sXOiTsvHM8dVUXRUWQnx8CEmVNmQLjx5dfnz8/hA0+/LD8vWPGwAsvhPtLzJkD990H995b/t5hw+DKK2H06NK1uXPh3/8OabHi4tL1xx4Lfzg8/njp2sKF0KMH7LYbzJtXun7nndCxI1x9dfnz1l0XWraEadNK1667LgQmTjyx/L2tW4d7J04sXXv00RDEOO+88vcecECo4ZdfStdGjoRDD4Vrry1/78CBIfhU9t6vv4bLLoOlx1E+/TTcfXdowVRiyhR49tmwf1ljx8K778L06aVr8+eHoMuECeXvLSgI//KZP790LTs7/OofrpIkSZIkSZKUEqsdHKnJ3UZW15Zbbsl7773HdtttV2795ptv5tlnn42pKkk1wh57hE94DxwYHhxWwv/+B088AU89tezzPJXXsSO8+Sbsv3/ozDJ8OPzzn7DxxnDTTcs+31YNdc458NlncOCB8dUwciS89FL5fyh//hkefDC00ynrgQdCqKFsKOHrr+Hss+GWW8rfe+mlIWX2xRela59/HlJUp55a/t6TT4Yttwy/UUp8+imstx7stFP5ew84AGrVKh9WGDcOGjeGLbYof2+/ftC+ffmOS7/9BjvuCPvsU/7eW2+FQw4Jfy9K5OeH2vr1K3/vyy+HP1NHjSpdW7Qo7HHHHeVDDF9+GYIUY8eWrmVlwVtvhfcvWlS6Pm0afPVV+cBFyfpffy3b8imKlg1MlAQpyt5bvz40bQoNGpS/t3378O+FnJzStbXXDkGmzTYrf2/PniFQ0rhx6dpGG4WOIfvvX/7eU08NgZL11y9d22KLMNdr6fDKVVeFQMk225SubbUVvP32sp1M7rsvBCD33bd0rXPn8PdnzBgkSZIkSZIkScmXs+pb4JeynzpM4r3VUcOGDXn66afZZJNNmF/mk5LnnXceBx10EDk5q/W3XJIqJjt72U+vr4GZM+GUU8L1ueeWn8KhZSUSoaFAjx7hA/p33gn33x+ex59zTngefuihcVcpASecEMaTfPQRlARcP/44rO++e/mAxc03wzffwA47QJs2YW3ChLC+/fah40aJ11+HTz4J3Ta22iqszZoVwiFLBzx++ikELGbOLF0rKgoBitq1y99bXAyFheGrRElYouwahE4vjRuXD0bUqxc6vSw98m/jjUOgZO21S9fq1y8NqpS1006hvs6dy+970UWltZQ44IDwG77svTk5oRNJTk54X4mjj4Zu3UKHkbI++yzs27Jl6dqpp4b769cvf+/06eHesp34Tjxx2c4kAO+8s+xaz57ha2m3377s2tZbh6+lnX76smvrr79sAAfCP2NLa9IEdt112fW2bZddq1ULWrRYdl2SJEmSJEmSlBSJKJNbeFRhp5xyCvcu1fL8lVdeYd+yn55cDQUFBeTl5ZGfn0/u0g8/JNVsxcVh5MIhh5R/eFgJxx4bPuDfvn344HzduknZtkaZNy9Mq3j++dCwoORZ9FNPhWfj++9f/vm2apgxY5b/ED4VPv+8NMhwyCHw559wzz2lgY533w2jUDp1Ch0hSgwcCH/8ETqMlHQw+u670BmiTZvQfaLE44+HThD77x+CGhDGlbz5Zuh+Ufbnnk8+Cd09ttgCWrUKa3Pnwg8/hGDFJpuU3lvSeaNx49LQRHFxWMvO9jdRTRbX7yFJkiRJkiRJqmIqkjWoUHCke/fuS6433HDDZYIRKvXiiy9y0EEHlVs799xzuf766yu0j8ERSSs0eHD45Pu//hUe3lYyPPLqq7DffmGb998PzQaUHIWF4UP0kyZB69bhufuJJ0Lz5nFXprTzobdUOf4ekiRJkiRJkqTVUpGsQVZFNh41ahSjR49m9OjRfPbZZ5Uqsrpbv+y89//3888/p78QSdVXs2ahhUX37pUOjcyaBSefHK7POsvQSLItWBCmTTRvDr/9BhdeGKZa9OkDX3wRd3WSJEmSJEmSJEmqySoUHCnhdJtVq7uc+Q6zZ8+OoRJJ1dbJJ4fxESeeWOmtSnJtG20EV15Z6e20lIYN4eqr4fffYejQ8AH2BQtKr8tOCZEkSZIkSZIkSZLSaY2CI1q1adOmLbPW3JkEkipr0aLwVWKDDZKybefO8M038OKLUL9+UrbUctStC8cdB599FsYBHXEE5OTA3nuX3jN5MiznXyGSJEmSJEmSJElSShgcSZGPPvpombVWrVrFUImkauWss2CXXWDSpKRv3bgxbLpp0rfVciQS0LUrPPkk/PEHbLNN6fcuuyyMsTnmGPj009hKlCRJkiRJkiRJUg1hcCQFoijiqaeeWmZ9hx12iKEaSdXGH3/AE0/ARx/BV18lZcvzzoOHHgInkMWnRYvS6yiCCRNCU5lHH4Vtt4Xtt4fHHy/faEaSJEmSJEmSJElKFoMjKXDffffxxRdflFurU6cOPXv2jKkiSdXCP/4Bn38O994LSfjzZMQIuOEGOP54GDu28uWp8hIJGDkSPvkEjj4aateGjz+Go46C1q3h1lvjrlCSJEmSJEmSJEnVjcGRMr744guuu+465s2bt8Z7PPvss/Tr12+Z9T59+tCwYcPKlCdJsMEGcNJJld5m9mw48cRw3bcvbLVVpbdUEnXpAo88Ar//DldeGTJDU6fC33+X3hNFdoqRJEmSJEmSJElS5RkcKSM/P5/zzz+ftm3bct555/HZZ5+t9nu//vprevfuzWGHHcbixYvLfW+ttdbi6quvTna5kmqC4mI480wYNy6p255/PkycCOuvD9dck9StlUQtW8KAAfDrr/DMM3DqqaXfe/ll2GYbGDoUFiyIrURJkiRJkiRJkiRVcTlxF5CJpk2bxg033MANN9zAWmutRefOndlyyy1Ze+21ady4MfXr12fOnDn8/ffffP3113z88cd8/fXXy90rLy+PF198kcaNG6f3L0JS9XDHHTBkCDz6aEgP5OZWesu334a77grXDzwANkPKfLVqwaGHll+75x4YMwb69IHzzguNaE47LYy0kaRqq3lzqFs39Ym5unXDWZIkSZIkSZJUAxgcWYWpU6cybNgwhg0bVuH3rrvuurzwwgt06dIlBZVJqhF694ZXX4VDDklKaGTuXDjhhHB9yinQvXult1RMHnkE7r8f7rwTfvstdI657jo48EDo3x922QUSibirlKQka90afvgBpk9P7r6//hrCmpdcEv5927y5STxJkiRJkiRJNYbBkTLq1q1LdnY2RUVFldqnVq1a9O3blyuvvJKGfpRfUmU0awavvZa0BMAbb4RnY61bh5CBqq5mzcLIoXPOCWNrbrstdJN54YXwv3EFpq1JUtXSunVyQx1RFFKVY8fCxhuXtuWSJEmSJEmSpBrC4EgZ22+/PdOmTWP48OGMGDGCjz76iO+++47i4uJVvrdevXp07tyZww8/nN69e9OsWbM0VCypWlq4MDz133HH8DorK2lbH3wwvPsuFBYmpYGJMkBODhx0UPj6+mu4/fby3Uby8+Hqq0OHmQ02iLdW4ZgNKRMlEuEPz0GD4IIL4q5GkiRJkiRJktIuEUVRtLo3Z2VlkUgkiKKIhg0bss0226SytpVKJBK89dZbKT9n7ty5/Pjjj/zyyy9MmTKFOXPmsGDBAho0aEBubi6NGzemQ4cObLLJJmRnZyf9/IKCAvLy8sjPzyfXp7xSzdC3b/i08003wb//HXc1quJuvTX8Y5RIwH77hTE2PXo4xiZWv/2W/DEbS3PMhiRJkiRJkiRJNVpFsgZr3HFk7ty5jB49ek3fXilRFJFI0xOvBg0asOWWW7Llllum5TxJNVxxceg4EkWw0UZJ2/buu2H33ZO6paqITp1gzz1h+PAw0ubll6FDB+jXD445Bho1irvCGijZYzYkJd/06XbtkSRJkiRJklRjrHHHkbiUnJ9IJCgqKoqtjnSx44hUQ40ZA507J2Wr99+Hbt3C5Irvv/d5dU31ww9hEsNDD8GcOWGtaVOYOBEaNoy1NEnKHFEU5nsNGgQjR8L228ddkSRJkiRJkiStkYpkDbLW9JBEIhHLlyRVS4sXl3+dpNDI/PnQp094Dnb44YZGarL27eG222DyZBgyBDbeGLp3Lx8a+eST0PRGkmqsRALGjw//An3qqbirkSRJkiRJkqS0qHIdR0rYcURStVFcDAcfDK1awa23Qp06Sdv6vPPghhtg7bXhm2+gSZOkba0qrrgYCgqgcePw+qefQphkgw2gb184/vjS70lSjTJjBrz5ZkhcGlyXJEmSJEmSVEVVJGuwxsGRDTfckPvuu6/SxVbGLrvsEuv56WBwRKoBSmbJ1KoVWj506pSUbT/+GLp2DQGB//0P/vnPpGyrauqll+DYYyE/P7xu0ACOOQb69YNNN423NkmSJEmSJEmSJFVMWoIjW265JWPGjKl0sVo5gyNSDfHGGzB1anhSnwQLFoRpN999B0cdBY8+mpRtVc3NnQuPPRZG2nzzTen67rvD/ffD+uvHVpokxWPRInjwQTjxRMjJibsaSZIkSZIkSVptFckaZKWpJknSyuy1V9JCIwB33RVCI2utFabfSKujQQM45RT46it46y048EDIyoIxY6Bly9L7iotjK1GS0ieKQnLutNP8l6kkSZIkSZKkas2PzUlSHBYtgoED4fzzoUmTpG/fty/Mnh2m3jRtmvTtVc0lEtC9e/iaODF0H6lfP3wvimDbbUNHm379oGPHeGuVpJRJJOC44+CHH6BNm7irkSRJkiRJkqSUcVRNhnNUjVRNnXUW3HJLePr+6aehrYNUBbz3HnTrVvp6552hf//QncQpDpKqnSiCWbNSEvKUJEmSJEmSpFRyVI0kZbpjjoF27eCKK5IaGnn77dDMREqVHXeEd9+Fww6D7Gx45x049FBo2xauvhqmT4+7QklKokTC0IgkSZIkSZKkas/giCTFYaut4NtvYd99k7blmDGwxx7QpQvk5ydtW6mcRAJ22gmefjqMsRkwAFq0gEmT4OKLYezYuCuUpBT54APo2hUmT467EkmSJEmSJElKKoMjkpQu+fnhSXuJ2rWTtvWiRXD88VBUBO3bQ15e0raWVmiddeDKK+H33+GRR+Bf/4Lddy/9/j33wJNP2gVHUjUQRXDuufDhhyExJ0mSJEmSJEnViMERSUqHKILjjoPOneGtt5K+/eDBMG4cNG8Ot9+e9O2llapTB44+Gp54InQkAZg3Dy68EHr3hjZt4PLLYcqUeOuUpDWWSMC998IJJ8CNN8ZdjSRJkiRJkiQllcERSUqH/PzQ2n7OHMjNTerWX34JV10Vrm+/HVq2TOr20hopKoIzz4RWrUJg5LLLoHVrOPJI+OijkKWSpCpl883h/vuhadO4K5EkSZIkSZKkpDI4Iknp0LgxvPsuvPkmdOmStG0XLw4jagoL4eCD4bDDkra1VCmNGsGll4bpTE88ATvsEP55Lbm+/vq4K5SkSho/Pu4KJEmSJEmSJCkp1ig4kijpQy9JWrmybRXq1IGdd07q9tdfD198ET78fOedpWNCpExRuzb861/wwQfw2Wdw7LFQty4ceGDpPRMmwKRJsZUoSRUTRXDGGdChA7z2WtzVSJIkSZIkSVKlVTg4EkURkf3lJWnVFi2C7t1DW/sUOeww6NYNbrsN1lorZcdISbH11vDQQzB1Kmy8cen6BRfA+uvDoYeGxjz+mCEpoyUSkJMT/rD64IO4q5EkSZIkSZKkSktEFUiBTJw4ccl17dq1WXvttVNSlEoVFBSQl5dHfn4+ubm5cZcjqSLuvRdOOSWMqfnhB2jZMiXHFBeHZ1h2G1FVVFQEe+0Fb71VutapE/TvD717Q7168dUmSSs0dy58+insumvclUiSJEmSJEnSclUka1Ch4IjSz+CIVIUVF8O118IWW8B++yV16ylToFWrpG4pxWrcOLj9dnjsMZg/P6w1bQoDB8KZZ8ZbmyRJkiRJkiRJUlVTkaxBhUfVSJJWU1YWXHhh0kMj334LG2wQHqYvXpzUraXYdOwYmvRMmgTXXx9G18ycWf6eoiLH2EjKQPn5IeW2YEHclUiSJEmSJEnSGjE4IknJlJ8PN98cnnCnQFER9OkTOjL89BPk5KTkGCk2TZvCueeGf75fegmOPbb0e48/Hhr43H13mBIhSbGLIthzT7jySrj88rirkSRJkiRJkqQ1YnBEkpIliuC44+Dss+Hkk1NyxM03w8cfQ15e6M6QSKTkGCl22dmw//7QuHHp2gMPwDffwGmnwTrrhN9qEybEVqIkhX8RX3ghbLgh7LVX3NVIkiRJkiRJ0hoxOCJJyZJIQK9e0KQJnHpq0rf//nsYMCBc33RTeHAu1ST/+x/cckt4PlvS3GejjcI0qOHD465OUo114IEh1bbrrnFXIkmSJEmSJElrJBFFURR3EVqxgoIC8vLyyM/PJzc3N+5yJK2OggJI8u/XoiLo1g0+/DB8oHnYMLuNqOYqLoY33oDbbgu/FwB23x1GjIi3LkkCwr+0s7PjrkKSJEmSJElSDVeRrIEdRySpsqZNg/nzS1+nIOQ1ZEgIjTRq5IgaKSsLevaE116D8ePhzDPh3HNLv//nn3DGGfDDD/HVKKmGeukl2Hjj8IeTJEmSJEmSJFURBkckqTIWLYIDDoAddoCff07ZMS1bQl4e3HADtG6dsmOkKmejjcL4mr33Ll27557QjaRDh9Ch55VXQpcSSUqpKIK77w4/DwwaFHc1kiRJkiRJkrTaDI5IUmVMmBC+Jk5M6TFHHhk+vHzSSSk9RqoWuneHf/4zdOYZPjxcb7QR3HQTzJoVd3WSqq1EIgRHBgwICTZJkiRJkiRJqiISURRFcRehFavI3CFJMZk8GX76CXbZJelbFxVBdnbSt5VqhJ9/hjvvhAceKA2MNG8OkyZBnTqxliZJkiRJkiRJkpRSFcka2HFEkiprnXVSEhqZMAE22SSM2ZBUcRtsEMY7TZoUPvy/+eZw4IHlQyNvvQWFhbGVKKm6e+edMMJGkiRJkiRJkjKYwRFJqqiCAthjD/jkk5QdUVwMJ5wAP/4IN97oMyepMho0gJNPhnHj4JZbStc/+wx69IB27eDaa2HGjNhKlFTdRFGYM7fLLvDEE3FXI0mSJEmSJEkrZXBEkipq4EAYMSI8EEpRq4K774bRo6F+/TBmI5FIyTFSjZJIhBBJiV9/hWbN4Lff4IILYN11Q2Driy9iK1FSdZFIwGabQU4O/PFH3NVIkiRJkiRJ0kolosjPsWeyiswdkpQmBQVwyilw1lmw7bZJ3/7XX8NIjblzYcgQ6N8/6UdI+n/z58PTT8Ntt8GYMaXrO+4ITz0VwiSStEYWL4bx40OARJIkSZIkSZLSrCJZA4MjGc7giFSzRFGYgvPWW9CtG4waBVn2hpJSLorgww9DgOS552CtteCXX6BWrfD9xYtLryVJkiRJkiRJkjJdRbIGPo6UpNUxaRK8/HLKj7nvvhAaqVcvjKgxNCKlRyIBXbvCk0/CxInwxBOlQZHCQthkEzj6aPjkk8qfNXkyfPddGJEzfTrMmwfFxZXfV1IG++OPMAtr1qy4K5EkSZIkSZKkZeTEXYAkZbxFi+DQQ+Gjj+DOO+G001J21BdfhF8HDYKNNkrZMZJW4h//CF8lRo6ECRPC12OPhQlV/fuHPxbq1KnY3gsWwNZbw9Spy36vbt3wVa9e+GrYEBo0gEaNwq/165f+WvK1otetW0ObNpX7+yApSaIIDjwQPv00JNLuvjvuiiRJkiRJkiSpHEfVZDhH1UgZYPFi+M9/4KGH4LPPoF27lB43ciTssgtkZ6f0GEkV8OmnYYzN00+HLBmEcTYnnwx9+4br1RFF0KkTfP11uF5diUToQJRIhK+SvaIIioqWvb9ly9DRpKLBFkkp8s47cP75obXY5pvHXY0kSZIkSZKkGqAiWQODIxnO4IiUQaZMgVat4q5CUoymTYN774W77gqTJyDkybbeevX3ePppOOKI1NQHIWCy3Xbw/vulIROpOpk8GQoKynfcqVu3Cox3iyJ/U0qSJEmSJElKG4Mj1YjBESlGM2ZA06Ypf8gzaRJccAFcfz2svXZKj5KUJIsXw3//C6NHwx13lK5fe23oPnLEEeFB9vIUFsIGG4Tf+6n6KWz0aNh559TsLcVpwQJYf/1qMO5p9uxQmCRJkiRJkiSliMGRasTgiBST/HzYdlvo0gXuuSc8SUqBKIL99oPXXoO994Zhw1JyjKQ0mDkT1l0X5s+H5s3hpJPgtNNgvfWWvfeOO6B//+QHR3JyYNdd4c03k7uvlCmq/LinKAo/V1x4IbzxRvhZQ5IkSZIkSZJSoCJZg0xv6CxJ8XjnHZgwIfw6f37KjnnkkRAaqVMHbropZcdISoOcHLj00tCpYPp0GDwY2raFXr1CB5CyD7mPPx5SkQctLISrr07+vlKmSCTg4osrHroqCYgUFoaOQYsXh+vlhUaysqBdO6hdOzk1l5NIwHvvwaxZcPfdKThAkiRJkiRJkirOjiMZzo4jUozeeSf0uu/SJSXb//EHbLZZeHY0eHAYVyOp6isshJdfhttug7ffLl0fMiR0GSlx+eVwxRVQXJycc3NyYJ994KWXkrOflKmq/Lin6dPhmWfglFMgOztFh0iSJEmSJEmq6RxVU40YHJGqpyiCAw4ID5e32QY+/DA89JVUvXz9Ndx+Ozz9NHz3HbRqFda/+goWLYIdd4SFC5NzViIB48bB5psnZz8pkznuSZIkSZIkSZJWzlE1krQmJk+Gww+HqVNTftQTT4TQSK1aMHSooRGputp88zCN4s8/S0MjAGedFZoZ/eMfYSxGZeXkwBFHGBpRzVFtxj0VF8OTTy5/Zo4kSZIkSZIkpYnBEUkqccIJoXV8nz4pPSaK4JZbwvXAgT7olWqCunVLrxcuDNMpogh++SU5o2qKi8PYG6mmqF8/BLCSEbwqkZMD+++fsgl1y4oi+Oc/oXfvMNtKkiRJkiRJkmJicESSStx8M+ywAwwZktJjEgl4++3wiebzz0/pUZIyUJ068MYbYXRNv34hRFIZ2dmh+8KGGyanPqmq6Ns3dO5KlqIiGDQoefutUiIRkioNG4YvSZIkSZIkSYpJIoqSPRlcyVSRuUOSkiCKwoMcSUqTd9+FnXde8/fn5MDPP8N66yWvJqmqOOMMuPPOyk96ycmBQw8No+TSqrgYpkwJc6skSZIkSZIkKYkqkjUwOJLhDI5IKfbdd6HPffv2KT9q2jR44QU4+eTkttaXVPXtvjuMHl3xh99ZWdC/fxh/9Z//wI03hg4k2dnhQXjZX0ePhg4dwvtuvz18LX1vyfW998Kmm4Z7n38ehg5d9r6S1xdcULrve++F+1d07+GHl3ZG+e47GDly+bVmZ0PXrqVhmClTYNy45deanQ3rrw9Nm4Z7584Nf96u6N66dZPbpULx+vVXaNeu8iOfsrLghx/s3CNJkiRJkiSp+qhI1iAnTTVJUuYpKIADD4Q//4T//Q923TWlx/XrB88+C19+CXfdldKjJFUxF14YQhQVVatWeC9AYWF4eF5cDIsXL3tv2ajwtGnhIfmKzJtXev3jj/Dqqyu+t0+f0uDI2LEhxLIiW21V+mD+ww/Dn4sr8uyzpcGR0aPhiCNWfO/QoXDcceH67bfhn/9c8b133AGnn1567x57LBtwKbm+7DI47bRw77hxcNhhyw/EZGfDCSeEkUEAEyeGMSrLC8Tk5MC++0KvXuHemTPhyiuXH3LJyYFttoE99wz3zpsHDz20/Huzs2GDDcL9EP55ePvtFQdzmjaFNm3CvVEUal7R34fatcOIpUy0/vrhf5fnngt/zWsiOzv88xN7aOTbb+Gcc+DBB2HttWMuRpIkSZIkSVJNYnBEUs21YAG0agXz58Nmm6X0qOeeCw9Bs7NDxxFJKmv33WGLLeCbb1a/c0JWFpx1Fqy1Vnh9+eWh60hhYehcUlRUel1YCG3blr73hBNCYGJ59xYVhQ4OJfbZB1q2XHa/knvL7tu5c+hAsvQ9JdetW5fe26YNHHLI8s8vKgpnlsjNhU6dlv/XVVQEDRuW3ptIQP365e8tKzu79Lrsmcszf37p9dy5Kw/b7LVX6fWsWSsP27RqVRoc+fvvlYdt+vUrDY7k54dAyor06QMPPBCu580rfd/yHHYYPP10uC4uLv+/49L22w9efrn0dcOGIZy0vFDKzjvDM8+U3rvDDjB79vIDNFtsEcbMlK3/77+Xf2/r1iHIU+Laa2HGjPD9Bg3WPDQC4Z+ZSy9d8/cnRRSFHxDefx/OOw8eeyzmgiRJkiRJkiTVJAZHJNVcLVvCiBEwaRK0aJGyY6ZPL/10+4UXhk/cS1JZiQRcfPHKu2osrX79EBQp0ahR+FodbdqUdptYlY4dw9fq6No1fK2O3XcPX6ujZ8/wtTr23TeEPMoqLi4NkeSU+el3553hjz+WH4gpLCzf9GGzzULnkxUFc0pG+wCsuy7cf//yAzGFhbD99qX35uWtPGxT9u9nnTqlYZvl3bv01LWOHVcctmnWrPS+oiKoV698nWWVDdtAyF2uKGzz99/lX3/3XQi8LM/Se7z+emgCtjydOpUPjjzwQOiGU1nZ2SGMU9LdJjaJRGiHc9llcM01MRcjSZIkSZIkqaZJRFHZxuXKNBWZOyRpNc2bF564pknv3vDkk+Gh4+efZ267f0nxKiwMo0YmTSo/VmZ5srJCh5EBA9JTm2qWKCoftkkkQrCkxOTJ5UMmZQMp9euXH/ny7ruwaNHy723SBLp3L733iSdCd5LldaFp3jx0yilx3XXw11+l9/z6a/muKKurbt3w3pLOPZIkSZIkSZJUXVQka2BwJMMZHJGSbPJk2G670Ab+jDPC07AUevFFOOig8Inmjz6CbbZJ6XGSqrg77oD+/VcdHGnSBCZOXP0OI1J1F0WhK0lFxz2dfz5cfXVqa1tjkyfDOuvEXYUkSZIkSZKkKqoiWYOsNNUkSZnhoYfCg5gHH4SFC1N61KJF4QEwhJyKoRFJq3L88bCqnGgiETqNGBqRSpWMe1rd0AiE7ijnnZe6mirliiugbVsYPjzuSiRJkiRJkiTVAAZHJNUsF10Et98Ozz8f+tOnUO3aoeNIr15w6aUpPUpSNVG/Ppx1VuiEsDyJBLRsCaedlt66pKrgkENgvfVWr5lYSbeRJk1SX9camTEDFi9es/k7kiRJkiRJklRBjqrJcI6qkSSpZpk+HdZdd8VNke6+G045Jb01SVXF6o57ysuD33/P4M49c+bAm2/CgQemfKyeJEmSJEmSpOrJUTWSVNY334SPFS9enJbj/v4bvv46LUdJqoaaN4eTT4bs7PLriQS0bg19+sRTl1QVrM64J4Bjjsng0AhAw4Zw0EGGRiRJkiRJkiSlhcERSdXbokWhd/1118HFF6flyLPPhs6d4d5703KcpGro7LOX7ZgQRXDVVVCrVjw1SVXB6ox7atECrr02vXVVyoIFcOONK25DJEmSJEmSJEmVZHBEUvVWuzYMHgybbw7nnZfy44YNg4cegsJC2GyzlB8nqZpaf3047DDIyQmvs7Jg442hd+9Yy5KqhL59VxywiiK48kqoV6/0dcbbZx8491wYNCjuSiRJkiRJkiRVUwZHJFV/Bx0EY8eGjxinUH4+nHRSuD7zTNhxx5QeJ6ma+89/QggNoLgYrr562fE1kpa1uuOenn8euncPDT0yWt++sNZasNVWcVciSZIkSZIkqZoyOCKpevryS5g9u/R1Gp62nnsuTJ4M7dr5oWBJlbfVVuGhNkCnTnDwwfHWI1Ulqxr3NHs2nH46jBoFF1wQS4mr75BD4McfQxBWkiRJkiRJklLA4Iik6uePP2CvvaBLF/j117QcOXw43H9/uH7wQahfPy3HSqrmLrkkjL267rrQLUHS6lnVuKdGjWDo0HB9661h1FxGa9So9LpKzNeRJEmSJEmSVJUYHJFU/UybFp4U1akDLVum/LjZs0tH1PTvDzvvnPIjJdUQu+4KX38Ne+4ZdyVS1bOqcU/77ANnnBGujzsOpk5Ne4kV9847oR3Rjz/GXYkkSZIkSZKkasTgiKTqZ8stYcwYePHFtLT+qF8/PHjabDMYPDjlx0mSpNWwOuOerr0WttgiZE6POy4ETDLaoEFhHN+AAXFXIkmSJEmSJKkaMTgiqfoo+VgxhE4jbdum5djsbDjnHBg7Fho0SMuRkiRpNaxq3FPduvDkk+HX11+H225Lf40VcvfdcNppcM89cVciSZIkSZIkqRoxOCKpevjmG+jQAUaPTtuRc+fC/Pmlr3Ny0na0JElaDasz7mmzzeDGG8P1xIlpKWvNtW0Ld94JjRvHXYkkSZIkSZKkasTgiKTq4dJLYcKEMCsmitJy5Pnnh6k4H3+cluMkSVKKnHYafPAB3HRT3JVU0Nixafu5R5IkSZIkSVL1ZXBEUvXwyCPw73/Do48uvxd9ko0aBXfcAePHw+zZKT9OkiSlUCIBO+xQ+rpKZDHOOAO22gqeeiruSiRJkiRJkiRVcQZHJFUP9evDzTdDixYpP2ruXDjhhHB98snQo0fKj5QkSWkyaRLsvjv8739xV7IKJT/zfP11vHVIkiRJkiRJqvJy4i5AktbY6NEweTL07p3WYy++GH7+GdZbD66/Pq1HS5KkFLv7bnj7bRg3Lnz94x9xV7QC558f0qtlW6VIkiRJkiRJ0hqw44ikqmnqVDj8cDjySHj88bQd+957MGRIuL7vPsjNTdvRkiQpDS65JEyAmTEDjjkGiovjrmgFatc2NCJJkiRJkiQpKQyOSKqamjeHE0+Ejh3hoIPScuS8edCnD0RRGFWz115pOVaSJKVRnTrwxBNQrx689RbcdFPcFa2Gv/+Gc86BgoK4K5EkSZIkSZJUBRkckVQ1ZWfDVVfBxx9D/fppOXLuXNhgA1hnHbjxxrQcKUmSYtChA9x6a7i+6CL4/PN461mlAw4ICZfzz4+7EkmSJEmSJElVkMERSVXLt9+Glh8l6tZN29EtWsCwYfDRR5CXl7ZjJUlSDE48MTQ1W7wYevcOAdKMdfnlsMkmcNRRcVciSZIkSZIkqQoyOCKp6vj2W9h22/AUJ41Pb8rmVBIJWHfdtB0tSZJikkjAffeFTmM5OTB1atwVrcRuu8FXX8GOO8ZdiSRJkiRJkqQqKCfuAiRptX39dfjY75w5ae00cuGFMH16GE9jpxFJkmqOZs1g+HBo2xbq1Yu7mlXIzi69XrQIateOrxZJkiRJkiRJVYodRyRVHYcdBu+/D08+Wf7hSAp98glcfz088AC8915ajpQkSRlk003Lh0aKi+OrZbU891xIunz2WdyVSJIkSZIkSaoiDI5IynxlZ8Vssw20aJGWYxcuhOOPDw+IjjwS9t03LcdKkqQMVFQE11wDe+0VrjPWc8/BH3+E5KskSZIkSZIkrQaDI5Iy2zvvwM47w++/p/3oK66Ab7+FtdaCW29N+/GSJCmDTJ4MgwbBiBFw7bVxV7MSQ4bAlVfCI4/EXYkkSZIkSZKkKsLgiKTMVVwMp54aZsSk+QnN55+XHnnXXdCsWVqPlyRJGaZ1a7j99nA9cCB8/HG89axQy5YwYADUqRN3JZIkSZIkSZKqCIMjkjJXVha8+iocdRRcd13ajl20KIyoKSqCI46Agw5K29GSJCmDHXMMHH54+Bmhd2+YPTvuilYhiuD110MYV5IkSZIkSZJWwOCIpMzWti08+ijUr5+2I8ePhylToEULuO22tB0rSZIyXCIBd98duo/8/DP07x93Ratw9NHQsyfceWfclUiSJEmSJEnKYAZHJGWeV16BL7+M7fjNN4dvv4UXX4TmzWMrQ5IkZaDGjeHxx0NjtIcfhqeeiruilejaFWrVggUL4q5EkiRJkiRJUgYzOCIps3z3XZgPs/328PnnsZXRvHl41iJJkrS0nXaCAQOgdm0oKIi7mpU49VT45hs499y4K5EkSZIkSZKUwXLiLkCSymnZErp1g0WLoFOntB59yy2w9tpw2GGhFb0kSdKKXHJJyLpusknclaxEVhZstFHcVUiSJEmSJEnKcHYckZRZmjWDV1+F//4XctKXbRs3Ds47LzwAevfdtB0rSZKqqJyc8qGRoqL4alktv/0G//oXTJ0adyWSJEmSJEmSMozBEUmZYdKk0uusLMjNTdvRixfD8cdDYSEceGBoeCJJkrS6Pv0UNt8c3n8/7kpW4phj4Kmn4Kyz4q5EkiRJkiRJUoYxOCIpfu+8A+3awVVXQRSl/fjrroMxY6BJE7jrLsfUSJKkirnzTvj+ezjySJg1K+5qVuDmm2GXXWDgwLgrkSRJkiRJkpRhDI5Iit/rr8OiReGJS5p9/TVcfnm4HjIEWrVKewmSJKmKu/VWaNsWJk6E006LJQe7alttBaNGQYcOcVciSZIkSZIkKcMYHJEUv6uvhmeegXvuSWu7j8LCMKJm8WL45z/Dp4QlSZIqKjcXnngCsrPDNJhHH427otUwc2bcFUiSJEmSJEnKEAZHJGWGQw+FBg3SeuSIEfDZZ9C4Mdx9tyNqJEnSmtt+e7jssnDdty9MmBBrOSt3xx3Qpg289VbclUiSJEmSJEnKAAZHJMXjmWfg5JNhwYLYSth7b3jzTbj/fvjHP2IrQ5IkVRMXXgjdusGcOdC7d+hqlpG++y4U+fDDcVciSZIkSZIkKQPkxF2ApBro77/hpJOgoAC22AL694+tlB49YjtakiRVM9nZ8Nhj0LEjNG0ashlNmsRd1XIMHgxbbRVm9kmSJEmSJEmq8RJRFEVxF6EVKygoIC8vj/z8fHJzc+MuR0qe4cPhgQfg8cchJ70ZthdegK23Dh3aJUmSkm38eNhwQ8iyv6MkSZIkSZKkmFQka+B/ypQUjz33hKefTntoZPx4OPJI2Hxz+P77tB4tSZJqiI03Lh8aydiRNQBFRSHMu3Bh3JVIkiRJkiRJionBEUnp8+KLMHNmbMcXFUGfPrBgAXTtCu3bx1aKJEmqAebMCT979O4NGdvn8aCD4MQTw/gaSZIkSZIkSTWSwRFJ6fHOO9CrV5gRM21aLCXcdhu8/z40agT33QeJRCxlSJKkGmL8eHj0UXjuOXjwwbirWYGjjoLcXGjdOu5KJEmSJEmSJMXE4Iik9MjLgzZtYMcdoUWLtB//009w0UXh+vrrfTYiSZJSr3NnGDQoXJ9xBvzwQ7z1LNehh8KECaE1iiRJkiRJkqQaKRFFGds0WUBBQQF5eXnk5+eTm5sbdzlS5cyaBbVqQYMGaT22uBh22y00PeneHUaMsNuIJElKj+Ji2GMPGDkyNF774AOoXTvuqiRJkiRJkiRVdxXJGthxRFJqzZpVet24cdpDIwCPPBJCIw0awP33GxqRJEnpk5UVfhZp2hQ+/xwuuSTuilZi3DjYZZfQgUSSJEmSJElSjWFwRFLqPPMMtGsHw4bFWsYRR8AFF8ANN0DbtrGWIkmSaqB11oEHHgjX110Hb70Vbz0r9J//hLTtuefGXYkkSZIkSZKkNDI4Iik1ogjuvRdmzoTRo2MtpW5dGDwYTj011jIkSVINduCBcMop0KIFFBXFXc0K3HFHSNzecUfclUiSJEmSJElKo0QURVHcRWjFKjJ3SMo4CxfC3XdD376Qk5P248eOhS22gOzstB8tSZK0jHnzoKAAWrWKuxJJkiRJkiRJ1V1FsgZ2HJGUOnXqwJlnxhIamTgRunWDrl3hr7/SfrwkSdIy6tcvHxpZuDC+WlbLhAmhi5wkSZIkSZKkas3giKTkuu02uO++WB8yRBGceCLMmQO1a0OzZrGVIkmStFzPPAMbbADffht3JStw2WXQvj08+2zclUiSJEmSJElKMYMjkpJn3Dg46yw4+WR4663Yyrj/fhgxAurWhQcfhCz/pJMkSRkkiuCBB+CPP6B3b1iwIO6KliOKoKgI3n477kokSZIkSZIkpVgiiuw9nMkqMndIil1xMVx3HXz3HTz0ECQSaS/ht99g881h9my48UY4++y0lyBJkrRKU6ZAx45hpN6//w033xx3RUtZuDAEgffZJ+5KJEmSJEmSJK2BimQNDI5kOIMjqpKiKJbQSBRBz57wxhuwww7w7ruQnZ32MiRJklbLK6/AP/8ZrocNg733jrceSZIkSZIkSdVHRbIGDnCQVHnDhoVW5iViCI1AaHLyxhtQp04YUWNoRJIkZbL99oN+/cL1scfC1Knx1rNC8+fDVVeFlm6SJEmSJEmSqh2DI5Iq55lnQgvzffaBwsJYS9l2W+jSBa64Ajp0iLUUSZKk1XLddWHM3rRp0KdP6KCWcQ46CC65BC66KO5KJEmSJEmSJKVATtwFSKriogjq14ettoKceP9I2Wwz+OCDWEuQJEmqkHr14IknQgB2gw1g8WKoXTvuqpZy7rnw9dewxx5xVyJJkiRJkiQpBRJRlJGfadP/q8jcISk2P/4IbdvGFhwpKAB/e0iSpKrs999hvfXirmIlFiyAunXjrkKSJEmSJEnSaqpI1sBRNZIqLorCw4MSG20UW2jkzz+hXTu44AJYuDCWEiRJkiqtbGikqCgDf64pGxopKoqvDkmSJEmSJElJZ3BEUsXdcgtstx389FOsZUQRnHoqTJ8OI0ZAdnas5UiSJFXa779D9+5wzjlxV7ICI0eG+YBjx8ZdiSRJkiRJkqQkMTgiqWLmzoUbboBx42D48FhLefJJ+N//oFYtGDo0tqYnkiRJSfPdd/DOO3DHHfDyy3FXsxx33w0//ACXXhp3JZIkSZIkSZKSxOCIpIpp0AA++QQGDYLTToutjKlToX//cH3JJbDFFrGVIkmSlDR77glnnx2u+/QJY/kyypAhocBHH427EkmSJEmSJElJkoiiKIq7CK1YQUEBeXl55Ofnk5ubG3c5UkaIIujVC154AbbcMuRYatWKuypJkqTkWLgQtt8+TIPZYw94/XXIMvIvSZIkSZIkqQIqkjXwPz9KWj2DB8PHH8ddBQDPPhtCIzk5YUSNoRFJklSd1KkDTzwB9erBm2/CLbfEXdFKfPghFBfHXYUkSZIkSZKkSjA4ImnVXn4ZLroIdt4ZJk6MuxoWLoSGDUNJW24ZdzWSJEnJt8kmcPPN4fqCC+CLL+KtZ7nOOAO6doV77om7EkmSJEmSJEmVkBN3AZKqgF12gYMPhg03hDZt4q6Go48OJbVqFXclkiRJqXPyyWFMzU8/Qe3acVezHBttBIkE/P573JVIkiRJkiRJqoREFEVR3EVoxSoyd0hKqSgKbcizs2MtIZGI7XhJkqS0mzUrjK6pVy/uSpajuBjGjoXOneOuRJIkSZIkSdJSKpI1cFSNpOWLIvj449LXiUSsoZEZM2CHHWDEiNhKkCRJSrvGjcuHRmbPjq2UZWVlGRqRJEmSJEmSqgGDI5KW75ZbYPvt4ZJL4q4EgDPOCDmWf/8biorirkaSJCm9iopg0KAwOXDSpLirWY4ZM+D002HatLgrkSRJkiRJklRBBkckLd+ff4ZfW7aMtw7gpZfgiSfCh1qHDo218YkkSVIsiorgv/8NuYxjjsnAIO2//gV33RVSvpIkSZIkSZKqFIMjkpbvuuvg/fehX79Yy5g5E049NVyfey506RJrOZIkSbGoXTsEaRs0gLffhhtuiLuipQweDJ06wZlnxl2JJEmSJEmSpApKRFEUxV2EVqygoIC8vDzy8/PJzc2NuxxVd0VFoa1HIhF3JUsceyw88gh06ABffAF168ZdkSRJUnwefBBOOAFycuCDDzIsVBtFGfVzpCRJkiRJklSTVSRrkJOmmqq833//nW+++YZJkyYxa9YsFi1aRJMmTWjSpAkdOnRgiy22INv5Garq/vOfMKLmvvvCx1lj9uqrITSSSISHJIZGJElSTXf88fD66/Dss9C7dwjWNmwYd1X/r2xoZN48qF8/vlokSZIkSZIkrTaDIyvw/fff88YbbzBy5EjeeecdZs2atdL7GzRowK677sqpp57KPvvsQ1aWU4BUxUyYAEOGQGEhHH009OwZd0W89lr49eyzYYcd4q1FkiQpEyQScM898NFH8NNPcMYZIWCbUZ58Moysefpp2G23uKuRJEmSJEmStAoGR8qYP38+N9xwA8888wxff/11hd47d+5cXn31VV599VU222wzHnroIbbZZpsUVSqlQLt28Pbb8N57GREaAbj9dthjD9hrr7grkSRJyhxNmsBjj4Uf2Tp3zsAJMe+8A3/9FULJBkckSZIkSZKkjJeIoiiKu4hM8euvv9K2bduk7JWTk8PNN99Mv379KrVPReYOSZIkSao5pk+H5s3jrmI5CgrC6MP+/aF27birkSRJkiRJkmqkimQN7DiymjbccEN22WUXNtpoI1q2bEmDBg2YOXMmY8eO5bXXXuP3338vd39hYSH9+/endu3anHzyyTFVLa1CFMHgwdCnD7RqFXc1AOTnw4ABcOmlGfogRJIkKUOU/Vlp9myoVw9yMuH/4eXmwjnnxF2FJEmSJEmSpNVkx5Eylu44summm3LcccfRu3dv1llnnRW+r7CwkKFDh3L22WczZ86cct+rXbs2X331FRtvvPEa1WTHEaXUkCFh/nybNvDdd+FpQ8xOPjl8QHWHHeD99zOs7bokSVIG+vhj6N0bjjsOLrkk7mqWEkXw3//CfvvZfUSSJEmSJElKo4pkDbLSVFOVsttuuzF69Gi++eYbzjvvvJWGRiCMpTnppJN4//33ady4cbnvLVq0iHP8tJ0y1Z57wiabhE+EZkBoZMSIEBqB0AjF0IgkSdKqjR8PP/8Ml18OH34YdzVLOfZYOOQQuPbauCuRJEmSJEmStAIGR8rIy8tj1KhRjBw5kp133rnC7+/YsSP333//MuvDhg1j+vTpyShRSq4OHeDzz6Ffv7grYfZsOOGEcN2vH+yyS7z1SJIkVRVHHRU6jhQVhV/z8+OuqIyePaFOnYwIKUuSJEmSJElaPoMjZTRp0oRdKvm0+pBDDqFjx47l1oqKihg2bFil9pWSZvHi8JHUEvXqZURrj/PPh99+g7ZtQ7cRSZIkrZ5EAu68E9ZfH379Ffr2jbuiMo44IrREOffcuCuRJEmSJEmStAIGR1KgZ8+ey6z9XPZBvRSnCy+ETp3CrPkM8fbbcNdd4fr++6Fhw3jrkSRJqmry8uDxxyErK/z62GNxV/T/Eglo3TruKiRJkiRJkiSthMGRFGi9nP8wOmXKlBgqkZayeHEYTTNnDkRR3NUsceml4ddTT4Xu3eOtRZIkqarq2rX056rTTy/fZC4j/PorHHRQ+FWSJEmSJElSxsiJu4DqaN68ecus1XOmtzJBrVrw5pswfDjss0/c1Szxv//BoEEwcGDclUiSJFVtF10UftTLy8vALm59+8Jrr0FRUfgBUJIkSZIkSVJGMDiSAj/99NMya2uvvXYMlUj/L4pCm3CAnJyMCo0ANG4M118fdxWSJElVX04OvPJKCI6U/PiXMW65JYRGbrwx7kokSZIkSZIkleGomiQrLCzkpZdeWma9S5cuMVQjEUIjRx8NN92UUeNp5s2DJ5/MqJIkSZKqhcaNy4dGZsyIrZTyNtoIXn89/CpJkiRJkiQpYxgcSbL//e9/TJkypdxa06ZN2WmnnWKqSDXesGHw+ONw/vnw3XdxV7PExRdD795w0klxVyJJklQ9zZkDxx0HW20Ff/8ddzXL8eefcVcgSZIkSZIkCYMjSbVgwQIuvPDCZdaPP/54cnKcCqSY9OwJt90WWoNvumnc1QDw/vtw663huleveGuRJEmqrqII3nsPfv8dTj01wzq9DRkC7drB88/HXYkkSZIkSZJU4xkcSaILL7yQ8ePHl1tr0qQJ559//mrvsXDhQgoKCsp9SZWSSEC/ftC3b9yVADB/PvTpEx5cHH887L133BVJkiRVT40awRNPQE4OPPMMPPxw3BWVMW1a+MHQ4IgkSZIkSZIUO4MjSfL8889zyy23LLN+ww030KJFi9XeZ/DgweTl5S35Wm+99ZJYpWqMxYtDl5HFi+OuZBkDB8L48fCPf8BNN8VdjSRJUvW27bZwxRXhul8/+PHHeOtZ4pJLwjjFxx+PuxJJkiRJkiSpxktEUUY1LK6SxowZw84778zcuXPLrR9yyCE899xzFdpr4cKFLFy4cMnrgoIC1ltvPfLz88nNzU1KvaoBzjsPbrgB9tkHXnkldB3JAB99BDvuCMXFoax99427IkmSpOqvqAh69IBRo2CbbcLYwNq1465KkiRJkiRJUioVFBSQl5e3WlkDO45U0s8//8y+++67TGikQ4cODB06tML71alTh9zc3HJfUoXttBPk5YWZMBkSGikuhhNPDL8efbShEUmSpHTJzoZHH4UmTeCzz+DSS+OuaCmFhXD77TBnTtyVSJIkSZIkSTWSwZFKmDx5Mj169GDKlCnl1tddd11ef/11GjVqFFNlqvEOOAB+/hkOOSTuSpbIyoJ77oFddoHlTHWSJElSCq27Ltx/P6y1Vvh5LKMcfjj07w8DBsRdiSRJkiRJklQjGRxZQ9OmTaNHjx788ssv5dbXWmst3nrrLdq0aRNTZaqx5syBgoLS102bxlfLCuy4Y2iRnoGlSZIkVXsHHww//gh77x13JUs55ZTQDmWrreKuRJIkSZIkSaqRDI6sgRkzZtCjRw++//77cuvNmzfnrbfeYuONN46pMtVYURTmwHTpAt98E3c15SxcCD/9FHcVkiRJAijbFHHq1PBjZOz23BN+/RWOPTbuSiRJkiRJkqQayeBIBf3999/ssccefPXVV+XWmzZtyogRI9hss81iqkw12pQp8P77YTzNrFlxV1POlVfCFlvAfffFXYkkSZJKPPMMtG+fQT+j5eaWXmdEmkWSJEmSJEmqOQyOVEB+fj577LEHX3zxRbn1xo0bM3z4cDp16hRTZarx1l4bxowJTwB23DHuapYYMwauuQYWLHA8jSRJUib57TfIz4d//xu++y7uasoYMwa23x7GjYu7EkmSJEmSJKnGMDiymgoKCthzzz35/PPPy63n5ubyxhtvsPXWW8dUmfT/WrSAgw6Ku4olFi2C446DoiI47DA45JC4K5IkSVKJs8+GHj1g/nzo3TuMF8wIgwfDJ5/AeefFXYkkSZIkSZJUYxgcWQ2zZ89mr7324pNPPim33qhRI9544w223XbbmCpTjVZYCIcfDm+/HXcly3X11fDVV9C8Odx+e9zVSJIkqaysLHj4YWjWDMaOhYsuirui/zdkCBx/PDzySNyVSJIkSZIkSTWGwZFVmDNnDnvvvTcfffRRufWGDRsybNgwtt9++5gqU403ZEgYTXPwwVBQEHc15YwdC4MGhes77gjNUCRJkpRZ/vEPePDBcH3TTTB8eLz1AGEE44MPwlprxV2JJEmSJEmSVGMYHFmJuXPnss8++/DBBx+UW2/QoAGvvfYaO+64Y0yVScCpp8Kxx8J990FubtzVLLF4cfiQaGFhyLQcemjcFUmSJGlF9t8fTj89XB9zDPz1V7z1LOObb6C4OO4qJEmSJEmSpGrN4MgKzJs3j/32249333233Hr9+vV59dVX6datW0yVSf+vfn146CHo1SvuSpZx8MHhw6J33gmJRNzVSJIkaWVuuAE22wyOOAIaNYq7mjIuvRQ6doT774+7EkmSJEmSJKlaMziyHAsWLOCAAw5g1KhR5dbr1avHyy+/zC677BJPYdKcOfDf/8ZdxUrVqgWXXAI//WSHcUmSpKqgXj345BO45RaoWzfuaspo0iR0GxkzJu5KJEmSJEmSpGrN4MhSFi1axMEHH8yIESPKrZeERrp37x5TZarxoghOPDG087jssrirWUZhISxaVPq6fv34apEkSVLFlP3ZrbAQ/vwzvlqW6N8fRo6Eu++OuxJJkiRJkiSpWjM4UkZhYSGHHXYYw4YNK7det25dXnzxRXbfffeYKpMIwZGNNw4tPXr0iLuaZVx3HXTp4gdCJUmSqrJJk2C33WDPPWH+/JiLyc4OxUiSJEmSJElKqUQURVHcRWSKxx9/nKOOOmqZ9caNG9OmTZtK7b3NNttw/xrM5i4oKCAvL4/8/Hxyc3MrVYOqid9+g9at466inG++gc6dQ8eRhx+GY46JuyJJkiStiWnTYIstwq/9+8OQIXFX9P/mzoWrr4azzoLmzeOuRpIkSZIkScp4Fcka5KSppiph8eLFy12fNWsWs2bNqtTejRs3rtT7VYPNng0NGkDW/zcIyrDQSGEh9OkTQiP77gtHHx13RZIkSVpTLVuGIHDPnnDbbbDXXuFnvNj961/w8sswcSI89ljc1UiSJEmSJEnViqNqpExWWAj77w8HHQSVDC+lyk03wSefQF4e3HMPJBJxVyRJkqTK2HtvOPPMcH388TBlSrz1ADBgAKy/Phx5ZNyVSJIkSZIkSdWOwREpk33+OXz4IYwcCVOnxl3NMr7/HgYODNc33wzrrBNvPZIkSUqOa66Bjh3hr79CeKS4OOaCtt0Wxo8PrVAkSZIkSZIkJVUiiqIo7iK0YhWZO6Rq6vPP4c8/Yb/94q6knKIi6NYt5Fr22guGDbPbiCRJUnXy7bew9dawYEEICf/733FXVMbixVCrVtxVSJIkSZIkSRmrIlkDO45ImW7rrTMuNAJhck6tWtCoEdx3n6ERSZKk6mbTTcNYwi22gD32iLuaMoYPh/bt4Z134q5EkiRJkiRJqhYMjkiZZs4cOPZY+O23uCtZqWbN4O234aOPYL314q5GkiRJqXDqqfDpp7DZZnFXUsZzz8Evv8BVV8VdiSRJkiRJklQt5MRdgKSlnHMOPPIIjB0LX3wBWZmb78rKCp9ElSRJUvWUSECdOqWvf/kF2raNrx4ArrsOWrSACy+MuRBJkiRJkiSpesjcJ9JSTXXBBbDddnDnnRkZGrntNujfPzRGkSRJUs0xaBBstBG89FLMhTRuHIpp2DDmQiRJkiRJkqTqIfOeSks1Xdu28OGHsOOOcVeyjAkT4Pzz4fbb4dln465GkiRJ6ZSfD0VF0KcPTJ4cdzVlvP02LF4cdxWSJEmSJElSlWVwRMoEU6fCl1+Wvk4k4qtlBYqL4YQTYP582G03OPbYuCuSJElSOl11FXTuDDNnhp8Fi4vjrgg480zo3h1uuCHuSiRJkiRJkqQqy+CIFLfCQjjiCNh+e/jvf+OuZoXuugtGj4b69eH++zNyio4kSZJSqHZteOKJ8PPgW2/BjTfGXRGwzTbhB9PZs+OuRJIkSZIkSaqyfPQrxW3+/PBf33NyYJNN4q5muX75JYyoAbj2Wthgg3jrkSRJUjzat4chQ8L1RRfBZ5/FWw9HHQVffQVXXx1zIZIkSZIkSVLVlYiiKIq7CK1YQUEBeXl55Ofnk5ubG3c5SpXiYvjuO9hss7grWUYUQY8eMHIk7LxzGCFvtxFJkqSaK4rg0EPh+edho41g7NiQg5YkSZIkSZKUOSqSNfDxrxSXhQtLr7OyMjI0AvDTTzBmDNSrBw88YGhEkiSppksk4N57Q2jk3/8OPydmhL/+guOPh4kT465EkiRJkiRJqlJy4i5AqpHmzIGuXcNHNS++OKPTGBttBN9+C59/DhtuGHc1kiRJygRNm8I330CtWnFXUsZJJ8FLL4UAySuvxF2NJEmSJEmSVGVk7tNqqTp79tkwi/3OO2HmzLirWaW114b99ou7CkmSJGWSsqGRggL488/4agHg2mthu+3g8stjLkSSJEmSJEmqWuw4IsXh+ONDj+927aB587irWa6nnw6z6v/5z7grkSRJUib74gs45BBYbz0YORKys2MqpH17+PDD8HO2JEmSJEmSpNVmxxEpLscdB926xV3Fck2aBCefDPvvb5dvSZIkrVxubpgO8847cM01MRdTNjSSnx9fHZIkSZIkSVIVYnBESpepU+G882DBgrgrWakoCqGRggLYfnvo2TPuiiRJkpTJ2rWDO+4I15deCh9/HG89ADz2GGywAbz4YtyVSJIkSZIkSRnP4IiUDlEERx4JN9wAJ5wQdzUr9cgjMGwY1KkDDz4YY6txSZIkVRlHHw3/+hcUFUHv3iGEHKtvv4WZM+H++2MuRJIkSZIkScp8BkekdEgk4PzzoW1buOSSuKtZoT/+gH//O1xffjlsskms5UiSJKmKSCTgrrtg/fXh55+hf/+YCxo4MLRBseOIJEmSJEmStEqJKIqiuIvQihUUFJCXl0d+fj65ublxl6PKWrwYatWKu4rliiLYf3945RXo0gU++ABycuKuSpIkSVXJ++/DzjtDcTE8/TQcdljcFUmSJEmSJEk1U0WyBnYckVLpl19gxozS1xkaGoHwH/lfeSWU+OCDhkYkSZJUcTvuGJp9/POfsNtucVfz/6IIHn8c5s6NuxJJkiRJkiQpI/loWEqVuXNDC4/Zs0MiY/PN465opXbaCV5+GSZOzPhSJUmSlMEGDICsrDC+JiP06QMPPQRnnw033hh3NZIkSZIkSVLGseOIlCpTpsD8+bBwITRrFnc1q2W//aBv37irkCRJUlWWnV0+NPL11/HVAoR5OfXqwTrrxFyIJEmSJEmSlJkMjkip0q4dfPYZvP46rL123NWs0OjR8McfcVchSZKk6qawEI4+Gjp1CmMRY9OzZxghefbZMRYhSZIkSZIkZS6DI1KyFReXXjduHP5LeYaaNg0OOQQ22wzGjo27GkmSJFUnOTlhZE1xMRx5JMyaFWMxa60V4+GSJEmSJElSZjM4IiXT1KkhKPLqq3FXslr69oUZM6B1a9h007irkSRJUnVz++2wwQYwcSKcdhpEUcwF/fQT7L13BszPkSRJkiRJkjKHwREpmQYPDv8R+j//Cb25M9izz8Jzz4UZ9A89BLVrx12RJEmSqptGjeCJJ8LPnE89BY8+GnNBF/0fe/cd31S9/3H8nTQdFNoyCijQAgKyN7gH4saBW9ziXqjgQNyi4ryOq6L3ure/K9ct7oGKqCxFUBBkb8pogdKZ/P74kHsyWiBNk3S8no/HefTkm5NzvmlykpOcdz7fm6XPPpOuvjrBHQEAAAAAAABqDoIjQHV64AFp5EhLZHg8ie5Npdats2ojkjRmjNS3b2L7AwAAgLpr772lsWNt/sorrehHwjz6qHTiidJzzyWwEwAAAAAAAEDN4vL5El4sGDtQUFCgrKws5efnKzMzM9HdQR1xxhn2i8/u3aXp06XU1ET3CAAAAHVZebl06KHSpEkWJPnxR8nNzxgAAAAAAACAmIkka8BXdUC0/vpLevbZGjBg+6756CMLjfiHqCE0AgAAgFhLSrJharp1s+ojNSY0smRJrTmOBwAAAAAAAGKl5o6lAdQG27ZJJ58szZ4tbdok3XBDonu0U4ccYkO6N2okDRiQ6N4AAACgvsjJkX7/vQaFRh5/XLrpJunJJ6ULL0x0bwAAAAAAAICEqSlf2QG1U1qadM45UuvW0tlnJ7o3u6RhQ/uO/J57Et0TAAAA1DeBoZFFi6QNGxLXF5WVSUVF0uefJ7ATAAAAAAAAQOK5fD7q8tZkkYw7hJ1YulTKy4vNurdtkxo0kLKzpdzc2GwjSgsXSu3a1aBfeAIAAKDe+uADy18fdpg0YYLkciWgE2Vl0ocfSieckKAOAAAAAAAAALETSdaAoWpQPyxdKnXubL8ojKW0NGnevBoXHtm4UTrgAKljR+n//k/affdE9wgAAAD1WevWlr1+5x3p+eeliy5KQCc8HunEExOwYQAAAAAAAKBmofYA6oe8vNiHRiTbRqyqmkRh5Ehp1SppzRqpceNE9wYAAAD1Xf/+ztCJ11xj2euEKi2VHn5YWr8+wR0BAAAAAAAA4o/gCFDHTZwovfyyVd9+8UUbUQcAAABItOuvlwYPlgoLpTPOkIqLE9iZc8+VbrhBGjUqgZ0AAAAAAAAAEoPgCFCH5edLl1xi8yNHSvvtl9j+AAAAAH5ut/TKK1KzZtLMmdKttyawM9dcIzVvLh1+eAI7AQAAAAAAACQGwRGgDrvuOmnFCqljR+nuuxPdGwAAACBY69bS88/b/MMPS99/n6CO7LOPtHixdPbZCeoAAAAAAAAAkDieRHcAQGx8/rl9Ce9ySS+8IKWnJ7pHAAAAQLihQ6XLL7fj1b32SmBHAg+YvV4riQIAAAAAAADUAwRHgDqqRQupVy9p0CDpwAMT3RsAAACgck89ZYHnGuGXX6SLL5bGj5f23z/RvQEAAAAAAABijuAIUEf16SNNnSqVlye6JwAAAMCOBYZGysqkmTOlgQMT1Jl//1uaNUsaM0b67rsEdQIAAAAAAACIH4IjQB1TUiKlpNi8/y8AAABQG2zaJB1zjDRjhjR9utStWwI68dBDUmqqdNddCdg4AAAAAAAAEH8M2gzUIZs3Sz17SmPHSqWlie4NAAAAEJnMTJuKiqQzzrC/cdekiY2dk52dgI0DAAAAAAAA8UdwBKhDbrpJ+usv6cUXpeLiRPcGAAAAiIzbLb30ktS8uY0Wc9NNie6RrPxJWVmiewEAAAAAAADEDMERoI749ltp/Hibf/55qVGjhHYHAAAAqJKWLS08IkmPPy598kkCO3PHHdKAAdIjjySwEwAAAAAAAEBsERwB6oCtW6ULLrD5Sy+VBg9ObH8AAACAaAwZIl19tc2ff760Zk2COrLHHpLPJy1cmKAOAAAAAAAAALFHcASoA8aMkRYtknJypAcfTHRvAAAAgOg98IDUs6e0dq10xRUJ6sS550o//SQ980yCOgAAAAAAAADEHsERoJb77jvpiSds/rnnpMzMxPYHAAAAqA5padIbb0j77ivde2+COuFySXvvnaCNAwAAAAAAAPFBcASo5RYtsi/VL7xQOuKIRPcGAAAAqD49ekiTJ0tduiS6J5I2b5ZGjZKWLUt0TwAAAAAAAIBq5Ul0BwBE57zz7FeYLVsmuicAAABA9XO5nPmff7bha9LTE9CRCy+U3n5b+usv6aOPEtABAAAAAAAAIDaoOALUAXvuKWVlJboXAAAAQOw89pi0337SDTckqAN33WWlT669NkEdAAAAAAAAAGKD4AhQC23bJh1/vJXtBgAAAOqDbt0kr1caP1764IMEdKBrV2nOHOmwwxKwcQAAAAAAACB2CI4AtdAdd0gffigNGyYVFye6NwAAAEDsHXGENGqUzV9wgbRyZQI64Q74CL1tWwI6AAAAAAAAAFQ/giNALfPzz9I//mHz48dLqamJ7Q8AAAAQL+PGSX36SOvXS+edZxVIEmLiRBsv8sMPE9QBAAAAAAAAoPoQHAFqkaIiafhw+4L87LOl445LdI8AAACA+ElNld58U2rQQPryS+mRRxLUkW+/lZYvlx5+OEEdAAAAAAAAAKoPwRGgFhk7VvrzT6llS+nxxxPdGwAAACD+unSRHnvM5m++WZo/PwGduPNO6Z57pE8+ScDGAQAAAAAAgOrlSXQHAOyaadOkBx+0+WeekZo2TWx/AAAAgES5+GLp+++lAw+UOnZMQAfS06VbbknAhgEAAAAAAIDqR3AEqCVefVUqL5eGDZNOOCHRvQEAAAASx+Wy4+Ma45NPpIMPtkAJAAAAAAAAUMswVA3qh+xsKS0t9ttJS7NtxcBjj0kvvyw98URMVg8AAADUWvn50k8/JWjj114rDRliw9cAAAAAAAAAtRAVR1A/5OZK8+ZJeXmx3U52tm0rBlwu6dxzY7JqAAAAoNb6+2/p0EOlggJp1iypTZs4d+DQQ6Unn5SSk+O8YQAAAAAAAKB6EBxB/ZGbG7NQR6yUlEj33iuNHCk1bpzo3gAAAAA1T26u1KKFtGSJdM450pdfSklJcezAccdJ8+dL7dvHcaMAAAAAAABA9WGoGqAGu+8+aexYadAgyedLdG8AAACAmic5WXrjDalhQ+nbb6UHH0xAJwiNAAAAAAAAoBYjOALUUL/9Jt1zj83fdJMNVQMAAAAgXMeONlqMJN1+u/TLLwnqyOrV0hlnSH/8kaAOAAAAAAAAAJEjOALUQKWl0vDhUlmZdMIJ0umnJ7pHAAAAQM123nl23FxWJp15prR5cwI6MWqU9NZb0mWXUTIQAAAAAAAAtQbBEaAGevBBaeZMqUkT6emnqTYCAAAA7IzLJT3zjJSbK/39t1UeibsHHrBxJv/5Tw7iAQAAAAAAUGt4Et0BAMFmz5buusvm//lPabfdEtsfAAAAoLZo3Fh6/XXpscekW29NQAdycqRvvknAhgEAAAAAAICqIzgC1DCjR9tQNccdJ511VqJ7AwAAANQuBxxgU42wbp2UnU31EQAAAAAAANRoDFUD1DAvvyxddJGV2eb7ZQAAAKDqfD7po4+ksrIEbPyVV6ROnewvAAAAAAAAUIMRHAFqmOxs6dlnpVatEt0TAAAAoHa7/HKr5DduXAI2vnq1lJ8vvfmmJVgAAAAAAACAGorgCFADlJdLEyfyfTIAAABQnQ480P6OHSv9+GOcNz5qlPTii9LHH1NKEAAAAAAAADUawRGgBnj0UemYY6QLLkh0TwAAAIC646yzbCovt7/5+XHcuMcjnX++lJQUx40CAAAAAAAAkSM4AiTYvHnSrbfa/AEHJLYvAAAAQF3z1FNS+/bS4sU2dE1Cqvx5vdILL0gbNyZg4wAAAAAAAMCOERwBEqi83KqMFBdLRxxBxREAAACgumVlSa+/boU/3nxTeu21BHTissukCy+Urr8+ARsHAAAAAAAAdozgCJBATzxhY61nZEjPPsvQ5wAAAEAs7LuvdMcdNn/VVdKmTXHuwHnnSY0aSb16JajkCQAAAAAAAFA5T6I7ANRXCxZIN99s8w89JOXmJrY/AAAAQF12883SnDnSxRdLjRvHeeP77y8tW5aADQMAAAAAAAA7R3AESACfT7roImnbNmnwYOmSSxLdIwAAAKBuS0qS3norgR0IDI34fJQbBAAAAAAAQI3BUDVAArhc0m23ST16SM8/z3fGAAAAQLwtXCj98ksCNjxvnnTIIdJPPyVg4wAAAAAAAEA4giNAghx6qDRrltSuXaJ7AgAAANQvkydLffpIJ58sbdwY540/+KA0aZJ07bVWeQQAAAAAAABIMIIjQBx5vdKKFc5lKo0AAAAA8de7t7TbbtLy5TZsZFzzGw8+KJ15pvR//8cHAgAAAAAAANQIBEeAOPrXv6TOnW14GgAAAACJ0aiR9PrrkscjTZggvfhiHDferJltvG3bOG4UAAAAAAAAqBzBESBOFi+WbrxR2rrVJgAAAACJM3CgdM89Nn/11dJffyWoI/PnS2VlCdo4AAAAAAAAQHAEiAufT7r4YmnLFumAA6Srrkp0jwAAAADccIM0eLAFu888UyopiXMHHntM6tFDevzxOG8YAAAAAAAAcBAcAeLgueekL7+U0tKkF16Q3Ox5AAAAQMK53dIrr0hNm0rTp0vjx8e5AxkZllb5+WdLmwMAAAAAAAAJ4El0B4C6bulS6brrbP7ee6VOnRLbHwAAAACO1q0t6D1linTFFXHe+AUXSG3aSEccIblccd44AAAAAAAAYFw+Hz9rqskKCgqUlZWl/Px8ZWZmJro7iJDPJx19tPTZZ9K++0rffy8lJSW6VwAAAAAAAAAAAACAuiySrAEDZgAxVF4u9esnNWxoQ9QQGgEAAABqttJS6bXXEjByTEmJdM890ooVcd4wAAAAAAAA6juCI0AMeTzSuHHS4sVSly6J7g0AAACAHfF6pcMPl845R/r3v+O88Ysvlm67Tbr88gSkVgAAAAAAAFCfERwBYsDnk8rKnMvZ2YnrCwAAAIBd43ZLxx9v8yNHSn/+GceN33CD1Lq1dNZZcdwoAAAAAAAAQHAEiIlXX5X23VeaPTvRPQEAAAAQiWuvlY44Qtq2TTrjDKm4OE4b7tFDWrhQOv10yeWK00YBAAAAAAAAgiNAtVu1SrrmGmnaNOnDDxPdGwAAAACRcLull16yqoG//SaNGRPHjaekOPOBJQwBAAAAAACAGCI4AlQjn0+67DJp0yapf3+rNg0AAACgdtl9d+nFF23+0Uelzz6LcwemTJF69ZImTozzhgEAAAAAAFAfERwBqtGbb0offCAlJ9sXzR5PonsEAAAAoCqOPVa68kqbv/LKOBcAmTBB+vNP6c47LZ0OAAAAAAAAxBCntYFqsnq1NGKEzd9+u9SzZ2L7AwAAACA6Dz1k1QRvuy3OofCxY23MnDFjJJcrjhsGAAAAAABAfeTy+fj5Uk1WUFCgrKws5efnKzMzM9HdQSV8PumUU6R33pH69pV+/tmqjgAAAAAAAAAAAAAAEG+RZA0YqgaoBlu2SMuX268QX3yR0AgAAABQF33/vTR7dgI2PGWKVFSUgA0DAAAAAACgPiA4AlSDjAxp8mRp0iSpd+9E9wYAAABAdXvjDWnQIGnYMGnbtjhu+M47pf32s+FrAAAAAAAAgBggOAJUE4/Hvs8FAAAAUPccdpjUvLk0Z450441x3HDfvvZ340YbIxMAAAAAAACoZgRHgCi88440ejRVowEAAIC6rkUL6aWXbP7JJ6WPPorThocOlX77TXr6acnlitNGAQAAAAAAUJ8QHAGqKC9Puvxy6cEHpfHjE90bAAAAALF21FHStdfa/PDh0qpVcdpwr15x2hAAAAAAAADqI4IjqDdWrJD+/FNautRCH4WFktdb9fVdc420dq3Uvbt05ZXV108AAAAANdf990u9e9tnivPPj+4zRcTy8+3Dx7x5cdwoAAAAAAAA6jpPojsAxENRkdS/v7RmTfh1aWk2NWhgU6NGUsOGUkaG/U1Pd/76p4ULpTfesErR554rffuttefmSm3bxv3uAQAAAIiT1FT7LNC/v/T559IHH0gnnBCnjV9zjfTyy9Lvv0uTJjF0DQAAAAAAAKoFwRHUC6mpNib52rWSzxd8XVGRTZs2hd/O5ZLcbvvr/07W55PKypz50aOd5Vu0sIomqakxuRsAAAAAaoBu3aQnn7T5oUPjuOG77pJmzZLGjiU0AgAAAAAAgGpDcAT1gssl3XKLNGxYZLfz+aTy8l1b1u2WOnSQUlIi7x8AAACA2uXCCxOw0bZtpenTCY0AAAAAAACgWrkT3QEgXk4+WcrJid13rF6vjXfOd7gAAABA/bJxo/TCC3HaWOAHjs2bw0sqAgAAAAAAABEiOIJ6w+MJHlamutd92GHSQQfFZv0AAAAAaqYtW6R+/awCybvvxnHDH3wgde4svf56HDcKAAAAAACAuojgCOqV4cOlzMzqX29ZmTRuXPWvFwAAAEDN1qiRdNppNn/RRdKKFXHa8Jw50qpV0vjxVB0BAAAAAABAVAiOoF5JT5dGjpTc1fjM93ik44+XBg6svnUCAAAAqD3uvlvq31/asEE65xypvDwOG73+eumRR6SvvmK8TAAAAAAAAESF4AjqnSuvlJKTq2995eXSvfdW3/oAAAAA1C4pKdIbb1hQ/ZtvpIcfjsNGk5MtFd+gQRw2BgAAAAAAgLqM4Ajqnexs6ZJLpKSk6Nfl8UjDhkk9ekS/LgAAAAC11557Sk88YfO33ipNmxbnDrz3nrRpU5w3CgAAAAAAgLqA4AjqpVGjqmcYcK9XGjs2+vUAAAAAqP2GD5dOPVUqK5NuvDGOG77uOunEE+O8UQAAAAAAANQVBEdQL7VrJ512mlUMqaqkJPtiuGPHausWAAAAgFrM5ZL+9S/pssukCRPiuOGhQ23omt12q56EPAAAAAAAAOoVl8/Ht0o1WUFBgbKyspSfn6/MzMxEd6dOmTlT6tev6rf3eKSFC6WcnOrrEwAAAABUycqVUqtWie4FAAAAAAAAaohIsgZUHEG91bevNHiwVQ6JVFKSdOWVhEYAAAAAVM7nk15+WVqyJA4bIzQCAAAAAACAKopioA6g9hszRvr668hvl5xstwUAAACAyowdK915p3TggdI331QttB6xFSukESOkm26S9torDhsEAKAKli6V8vJiu43sbCk3N7bbAAAAAOoIgiOo1w49VOrZU5ozR/J6d+02brc0cqTUsmVs+wYAAACgdjv7bOnhh6Xvv5fuu0+69dY4bPTOO6V337UyJ9OmSS5XHDYKAEAEli6VOneWiopiu520NGnePMIjAAAAwC5gqBrUay6XdMstux4akaT0dOmGG2LXJwAAAAB1Q4cO0vjxNn/nndKUKXHY6H33SUOG2Bg5hEYAADVRXl7sQyOSbSPWVU0AAACAOoLgCOq9k0+WcnJ27TtVt1saPVpq0iT2/QIAAABQ+519tnTGGVJ5uXTWWVJBQYw3mJ0tffyx1KNHjDcEAAAAAACAuoLgCOo9j8fCILsiK0u65prY9gcAAABA3eFySU8/LbVrJy1aJF15ZZw7sHKlpVYAAAAAAACAShAcASQNHy5lZu54GZfLxiTPyIhPnwAAAADUDVlZ0uuvWwXD11+Xfv01Tht+6SWpSxfpiSfitEEAAAAAAADURgRHAEnp6dLIkfZFbkVcLqlFC+nyy+PbLwAAAAB1w377SY89Jn31ldSnT5w2WlIibd5sQ9f4fHHaKAAAAAAAAGobT6I7ANQUV14p3XefVFwcfp3PJ911l9SgQfz7BQAAAKBuGDEizhu86CIrd3LKKZaGBwAAAAAAACpAxRFgu+xs6ZJLpKSk4HaXS8rNlS64IDH9AgAAAFD3LFggPf98jDfidkunnx7+IQcAAAAAAAAIQHAECDBqVHgFZ59PuuceKTk5MX0CAAAAULcsWWLD1VxyifT993HaqNcrPf20tGpVnDYIAAAAAACA2oLgCBCgXTvptNMkz/ZBnNxuac89pTPPTGi3AAAAANQhbdva6DFer3T22dKmTXHY6FVXSVdcYWN0hqblAQAAAAAAUK8RHAFC3HijVFZm816vNG4clZ0BAAAAVK8nnpA6dJCWLpUuvTQOWY7LLpOaNpUOOyzGGwIAAAAAAEBtQ3AECNG3rzR4sM337i2ddFJi+wMAAACg7snIkN54w6od/uc/0ssvx3iDvXpZSuWKKySXK8YbA+q2FSukP/+0XSovTyostB+eANiJsjJp7Vpp3bpE9wQAAABACE+iOwDURLfdJq1ZIz34IN+pAgAAAIiNvfaSxo6Vbr7ZRpI54ACpY8cYbrBhQ2fe5+PDDlAFRUVS//72nUGotDSbGjSwqVEj2+0yMuxverrz1z9Vdjk314a1AmoUr1favNmepMnJ1rZokfTtt1J2tnTccc6yF14o/fWX9PTTUo8e1vb22zYe9MCBce86AAAAgB0jOAJUYNAgafbsRPcCAAAAQF13443S55/bObcHHpCefTYOG/3jDzuhd9dd0hFHxGGDQN2Rmir1arxU69fkKWyEqaLt06bwpjxJbvf2vJY/s+WzDFd5RdVKmmVryopcpaZW8x0AysuDx2T+4gurAHL00VKTJtb27bfSk09KPXtKd9zhLNuhg7R4sfTLL07446efpAsusPK9gcGRqVOl33+XVq50giONG9tf/xjR8TB1qtSli4VdAAAAAFSK4AgAAAAAAAmSlCS9+qoFRm65JU4bfe45O9F3ww3S4YdTeQSIgGvZUn2ysLOSVBT5jSMYzqZ4Q5pSVs+T2uZGvh3UH6tW2bhJjRtL/fo57TfeaIGNBx6QWre2thdftOHKjjlGmjDBWfbCC6Vly4LDICtXSv/9r7RxY/D2MjPt76ZNTlu7dhY66ds3eNlx46TiYhsH2u+IIyw08ttvVronHi67TDroIKlrV7s8a5Y0f77d11z2LwAAAMCP4Mgu2LBhg6ZNm/a/afr06Vq6dGnYcj5f2G9NAAAAAADYoTZtrPhH3IwdK23ZIt1+O6ERIFJ5eUoqrUJoJEKpviJpfR7Bkbrujz8snDFggP5XXuaHH6R337UqHcOHO8v26iUtXSpNm+aMa/buu9KVV0onnWRBD7+33rIwyDXXOMGR1FQbayk0DLLfftLatVJKitO2115WcaRDh+Blv/nGKnekpTlt++4rTZwYft+OPTa8LbDSSby0ayd16uRcfvNN6f77LVDy9NPW5vNJL78sde9uARgPX5kDAACg/uEouAKzZ8/Wxx9/rOnTp2vatGlatGhRorsEAAAAAKgHSkulBx+081nNmsVoI40aSf/+d4xWDgD1xJYt0po1Fsho08bafD7p4YctnHHTTU6FjpdesrDCMcdI//iHs4599pE2b7YKGP4wyKxZ0iOPWBgkMDiyaZOUnx8c/GjVSurWzQmH+N14o1RSYtf7HXustGiR1LRp8LJvvRV+3zp2dPoTKPS2tcF//xscBNltN6t2stdeTtuqVfa/drvtcfUvP2WKVFBgwZ6YvSkDAAAANQPBkQo899xzevzxxxPdDQAAAABAPXP++dIbb0gzZthIAjEpCLJ0qZSX51xeuNBOOvp/7V4dsrMZAgBAzeXzSVu3WhijVSsLDEjS9OlW8aNrVxtWRZK8XmnwYAtsfPONE5745z9tjLELL7QhwCR70fZXdRo+3AmOFBZK8+ZZRYtAe+xhy5aUOG0DBthQYn36BC/70Uf2Ot22rdN2wgk2hbrqqvC2zEynP/XZNdfYFGjzZhu6rbhYatDAaf/HPyx48vDD0nXXOct+9JE9Pv7hbwAAAIA6gOAIAAAAAAA1xHXXSW+/Lb3zjp2HvPjiat7A0qVS5842XEEspaXZSVLCIwBipbRUKitzTvSXldlJ/k2bLMzhrxrx2mvSK69YxY2rr7a28nIpI8Pm162zsJskffqpdOutdnt/cMTttkDJli3S+vVOcKRxY6vg5A+d+F14oQVT0tOdtuOPt9CIvzKJ36+/ht+vvfYKrobh16vXLvxTUCWdO0uffx7enptr1/Xt67TNnCmdeaZdt2SJ0/7VV/Zc7NMn+LEHAAAAagn3zheBX0pKivr166dLLrlEjRs3TnR3AAAAAAB1TL9+0rhxNn/ttdLcudW8gby82IdGJNtGYFUTAAjl8wVfnjdPeu89G6rFr7BQOvdcC16UlTntN98spaRIt90WvI5hw2ysr02bnLYlS6Qvvgher8djoQ+Px4Yi8evVSzrtNGngwOD1vv669Nln0u67O22XX27VJ0KH/nrsMenxx4OHj2nTRjr4YKlDh0r+GaiRHnnE3ogHD3baysttiKH99w9e9rrrrO2LL5y2FSusOsmKFfHpLwAAABAFKo5UwuPxqFu3bhowYMD/pt69eyslJUWS9Nlnn2lT4IdQAAAAAACqwahRdn7yyy/tR81TplTvKDIAUO1KSmyMrYICp1KHZGNuffaZdNRR0sknW9umTVLHjlJ+vrRtm1MZ5NlnbWiQ666zoUEkC4e8+qpzO39lkIYN7e/Gjc62PB7bTmqqDS/jd9xxUk5O+LAia9ZYhYjAMcGOO86mUMcfH94Wk7HEUOMdcoi9MQfy+aT27a16Te/eTvtnn1kFmsGDrSKJ3yefWLCoa1cpOTk+/QYAAAB2guBIBUaPHq377rtPDQLHtAQAAAAAIA7cbunll+2H7zNnSrfc4pxDBYCYWLNGWrVKat7cqZSRn28vPoWFFujwu/12G0tr5EjphhusraBA2ndfmy8tdcIgP/1ky2ZlOcGRRo1syBf/Npo1s/lOnaySQ2ClDo/Hqj40amRDYPmNGGEVPzIzg+/HJ5+E37devSoe5oXhRFBdXC7p3XfD2z0eqUcPacAAp83rtao2W7ZIs2fbEEaS9Ndf0sqVNtQNla4BAACQAAxVU4Hdd9+d0AgAAAAAIGFatZJeeMHm//1vO6cLABUqL7fQx/z5we2ffirdc480ebLTtnKljYnVo0fwsrfcIvXtK730ktNWWmq3f+SR4GFitm2z7a1d67Q1biy1a2frKCx02o86Sho7VhoyxGnzeKQ//rDhO5o0cdovvdQqOYwcGdy3kSOliy+28IhfZqbUtKkTUAFqonPPlX7/Xbr/fqdt0ybbB1u2lDp3dtpfesmqmYweHbyODz+UFi0KH9oJAAAAqGZ8ugIAAAAAoAY6/nj7kf9xx9n5JQD1zLvvSr/8Il12mdN2773SRx9JV18tnXGGtS1cKO25pwUrNm92lp0wQXr+eQt/7L+/taWkWCkjycIg/uDFbrtJu+8ePGxG48bSlVfa38Blr7rKxtEKrQyyaFH4fTjsMJtChQ4bA9RlgcMaNW0qTZpkQZDA9vR0C1/16eO0rV5tBwNut+3b/io5v/1mwa4ePYIr8QAAAABRIDgCAAAAAEANNWpUonsA1ENlZTaEis8nZWc77QsXWqWMeLnnHguDDfrwtAAA8DRJREFUBAZHFi2y4V+OO85pa9LETiynpFj1kaQkaz/4YDsx3bt38LITJ1oYJPCk9T332BTI45GefDK8X23b2gSg6gL3P0m69VabAiuL5OVZdZLy8uChle69V3r7benBB53hogoLrbpQ795Sixax7z8AAADqHIIjAAAAAADUAt9+Ky1dapXvgRrL57OTnG63TZK0dau0bp2UmmpVLfymTbNf0ffvb0OPSNLixdIPP0jNm0tHHuks+9xzNjzKOefYr/Il+9X9+PF2ecwYZ9lrr7WAx913S3vvbW0//ihddJHUqZP0/vvOskOGSN98I732mnTyydb288/SAQfYsn/95Sx71VXSJ59E/z/aRbMaH6j8xu307kifWrR02cgWPS/Vfu8eGzzUTLNmVn3AHTIi9Tnn2BQoKUk6+ujYdx7Ykexsq5RRVBTb7aSlBYe/aoPAQEmPHtL06eHD1DRqZPt9YHWSGTOkI46Q2rSRli1z2n/5RcrKkjp2dEJlAAAAQAUIjgAAAAAAUMP9+KM0eLCdd+/XL/icMeown89+RV5SElwhYu1am5o2lVq1srbycumLLyxAcPTRzrAi06ZJU6dK3bpZBQq/226Tiovtb0aGtX34ofTmm9JBBwVXuTjqKKvAMWGCMzzJSy/ZbY89Vnr6aWfZVq1seIVZs6SePa3trbcstHHccdIHHzjLnn66VfGYMkXaZx9r++knCzscckhwcOSf/5R+/13abz8nOLJsmfTvf0t77RUcHPn5Z1vPlVc6bcXF0p9/hocrSkvt5HVxsdPmH66ltPR/TVu3SoVJLdW8ZUtpzRrFw/mbHtPMTf2kx5y25s0Hau3agf+7fMIJ0h9/uNSypUstWtiwVv6/u+9u1wM1Tm6uNG+eVdSIpexs21ZtF1qd5IUX7P0hMFCyebOF3UKHgbr0UunXX6V33pFOPNHa1q61196ePaWGDWPadQAAANQeBEcAAAAAAKjh9t3Xzt1/8ol0xhmWA0hLS3SvaqHSUmn9ejvZFlj5Yv58O4G5xx52xl2SNm2yIIbH45xsk6SPPrJqFoceapUyJKumcc89tuw//uEs+89/2jrOO0865RRrW7vWHkyfT5o501n2xhstBHHjjdLNNzt9aNrU5ktKnEDDQw9JDz8sXX+9zUuS1+tUkti40YIm/v7edZd0+eXBwZEHHrD/x9VXO8GRefMsOJKcHBwc+eUXW+eWLU7btm3S8uV2fwL5AysBoQulpUkNGjjX+XXqZNf575dkwZTDDw/+Jb1k1UD22y/4cevSRRo71n5hH+i226y//fo5bX37WmURf2UTv5dftr42b/6/pq1dB+jXSWWaNjNJ08+1H/zPnSt5vS+q4NsZyhjUX/Fwz93Snw3sX7xmjf1t1Ch4mQUL7Ok7f3747Vu0CA6OHHWUNGdOcLgkMGRyxhnOsj5f+LlqoFrl5taNUEeiuFzBO+nRR9tUXu60+Xz2+t6gQfBr6sSJ0vDh0qBB9rroN2WKPSatWvECAAAAUA8RHAEAAAAAoIZzuaQXX5R69ZJmz5ZGj5YefzzRvdqJKVMsiOEPMCxaZCeoWrSwKhV+zzwjrVghnX++1KGDtf32m93B3FzpzjudZa++2ipZ3HuvtP/+znbOPde29dlnzrJHH22hjddek4YNs7bp0y2Fs8ce0t9/O8uOGmUBi+eeky680NqWLZNOO836Gxgcef11q6Dx+ONOcGTzZguJNGwYHByZNcvWu+++wf8bf2Ak8Ox8SYlV9di61VkuJcWZDwyOZGVZ0KFBA+d6j8fCESkpwb9C795dOukkqXfv4D5cc439Dfy1+SGHSI8+atVJAr38sq3TX91EsiDHXnvZcAmBZsyw4RACAxpnnWVTqE8/DW878EDp88/D2++4I7ytY0cLiYQaMiS8rXFjO0kaYktmK6WlOZmW22+X7r3XLa83fBW7727FVDLCr4qJIUOkIf12vMx770krVwaHS9assSk0ZLJsmWV9li8PX0/LlsHBkUMPtQIvlYVMhg93li0rC88EAUiQwOFoXC7pu++c4cP8iopsRw4Mk3i9VuVp82bb+f2lzZYssbbOnYNDfgAAAKhz+FgHAAAAAEAt0LKljQ4yZIhlFI48suLz4zXGVVfZSSl/wGPaNAtlHHRQcHDkX/+yMvoHHOAER1autKRM//7BwZEZM6TJk4OHCikttbILgSfLJAs6lJcHV75ITq74V9StWlmYJD3dacvMtL6GBiMOPtjGDOrc2Wlr2lS65ZbgIIdklUb23VcaMMBpa9zYAhOhJ+Buukm64org7aWnW5WPlJTgM/O33mpTIJfL/j+hTj3VplD+SiWB+vd3wjCBjjsuvK1FC5tCBVTuqGk2b7an2vTpzjR3rlXw8d/tVq3s/GmrVs6/wz/tvrukCv7FidSxo0274tNPpVWrKg6ZhI5WsXq1FeHJy7MqJYFatgwOjhx2mP0vKwqZtGoVXLxm61Z7WlPMAIij0PfHyy6zKfD9ccMGKSdHWrw4+P3t2WctrHnJJfZ+7Td5soVLsrJi2nUAAADED8GRGqa4uFjFAePqFhQUJLA3AAAAAICa5OijrVDE44/bidtZs5yRVWqcTp0sYOHXurV0zDHOr5j9Tj/dQiOBw4106SLdf39whQvJqk5s3GiVLvx697YTWKHlFV55xUohNGnitPXrpwpLSQSeDPNr21aaNCm83X/CLVDjxjZUTagDD7QpUEqKpX5C7babTYFcrvAz+ojYhx9KN9wg/fVXcDEWv9mzneDIsGHS0KHBI+LUFTk5Nu2KSZMsPFJRyCQwXyVZ25YtNgUW8pHs/xi4uwwZIv34o5M7CgyZtG4tXXuts+ymTfb0p8hB3bRihVRQYI9xerpNaWnBhTEQY4E7V3a2pcQCq1tJdjkjw0qe+a1ZY+/bbrcl8vwvCvPn223btiUdBgAAUAu5fL6KPjJjZ9q1a6clS5YEtVXHv/LOO+/UXXfdFdaen5+vzNBxeAEAAAAA9U5RkbT33hYaeeAB6cYbI7jxjBkVV5SIhenTLagBxFhBgY3+E1hJ5O67nUIrX34pHX64zbdp41QQ6dfP/obmdXaIfShMQUFwuCQwZNKgQfDoTV27WpWXirRqZWECv4MOkr7/3gr6hIZM2rSxIbv81q61c9eh+THUTEVFUrt2wcWj/NLSbGrQwKZGjSxckpHhhEwCwyY7upybaxkGRMnrtSCmf/i0X3+VTjjBwqHz5jnLDRsm/d//SQ8/LF13nbVt22Y7fbduwWFSAAAAxEVBQYGysrJ2KWtAxZEaZsyYMRo1atT/LhcUFChnV38OAgAAAACo89LSpDfflH76KXi4CKA+mT/fCtBMn26VREJNneoER/beW5o40TIYNbZCTy2WmWlTp047X/bXXy3kERgu8c+npQUvm5dnfzdssCkwcNK6dXBw5KSTrPBQenrFIZM77nCWXb7cttW0KdUtEiU11R6ftWvDqwAVFdm0aVP47Vwue8xcLqeghc/njEwWqkULaelS8gpRc7ud0Ihkw9AtXmyhkED+aiU9ezptM2ZYdZLcXCnwR5hz51qVk+zsWPYcAAAAESA4UsOkpqYqlU8zAAAAAIAd6NbNJqAuy8+3c47+KiKDB0sXX2zXJSdbgMovJ8epJNK/vzRwoHNdRoYN84TES03d9SFzZs+2wEhF1UxCvzrzj/RcWGjnsxcvdq5r3To4ODJsmIVMkpKk5s2DgyY5OdJ99znLLlxoz7UWLQgfVCeXS7rlFnssIlFZQKQibrfUoUNw3gHVrEGD4MvvvGPhkcBhatats5RW6DB1Z59tL+wffCAdd5y1bdxoibEOHUh1AQAAJADBEQAAAAAAarENG6R77rEpPT3RvQGqbutWafx4JyiyYEHw9SUlTnCkbVsbqqlXLwuKNG8e//4ittxupyBB9+47Xva33+z5U1HIJDQ4UFxsf8vLpdWrbfJr0yY4OHLOOdKPP9p8VpYFTPwhk9xc6ZFHnGXnzrUwSsuWFlYKPHeOcCefbEGd5cvDq45UB69Xuv9+Hoe4C93hTjhBGjrUdlA/n8/KykjBO/cHH0jnny8dcYT02WdO+59/2os+BzkAAAAxRXAEAAAAAIBayuezSgq//GLnYMaPT3SPgJ3buNGpJJKZKV12mbWnpEi33eac2JfsXKG/isiBBzrtLpd0443x7TdqLpdLatTIpg4ddrzs1KkWQlq3Ljxk4qngm1KPRyorswo4+fnO0Eg5OcHBkQsukKZMsfm0tOBKJm3bSk895Sw7a5b1uWVLqVkzC5zUNx6PDTc0YkRs1j1okHTQQdW/blSBfwcNvDx7tpUKyshw2tevt52nSxenzeeT9t3Xlp0zR+ra1drXrLF00G67kQ4CAACoJi6fLxaZ7rqvXbt2WhI4LqOkWPwrCwoKlJWVpfz8fGVmZlb7+gEAAAAAtdsXX9iPcyXpvffsh72VmjHDzsDHw/TpUr9+8dkWarRvvrGT9dOm2dNi4ULnul69rFqE3003WWWH/v3t6ZOdHf/+7hD7UL3j9UqbNjkBE3/IJClJuvxyZ7nBg+15vmVL+Dpyc6XArxH33Vf66Seb91dWCQyZPP+8s+zUqXbu3H996OggtVlhodSqlQVyqtsvvwQPWYVaoqzMnhj+78HXrpV69rSdcPNmp6LJbbdZqbWrr5Yef9y5/dy5UseOFafAAAAA6qFIsgYcQQEAAAAAUIsdfrh0/fXSww9LF15oJ8patUp0r1AfbdhguYrVq6Wzz3baL7vMqdLg17695S/23ju4/f77Y99PIBJut9S0qU3+YgcV+fpr+1tYGF7JxO0OXrZxYwuLrF9vwRR/IEWy4EigESOkn392LmdkOCGSdu2k1193rps82Ybg8V/fuHHNLsaQni6NHCmNHWv/h+rg8UhDhhAaqbU8Hic0ItkTec0a21kCh8HJy7Mdq2NHp23tWttJ09Pten/KauVKq3jCjzIBAAB2iOAIAAAAAAC13L332knLGTOkc8+VPv88/EQlUJ3Wr3eGm/FPixbZdY0aSWee6TwHjztOWrrUGXKmXz87CQ/URenpFuho167yZT75xP6Wldn57cCQSWjQo2VLqU0bu6601IoubN4sLVhg58MDjRpllTb8UlLsvHuLFhbWmjDBue6bb2x9LVvalJ2dmCINV14p3Xdf8BBV0Sgvt/dE1DHNmgVffvpp6R//CE4cLV5sb0C77x5cmue666S33pKefNKecJKNV7V6tY05VZPTVTuzdKm9iMRSdraVTQIAAHUewREAAAAAAGq5lBTpjTfshPxXX0mPPGJVSIDqsH69DSczeLDTdu650sSJ4ct26GDPw82bbcgZyarh1BnZ2VJamlRUFNvtpKXVwHF6UN08Hmm33WyqzPvv21+fz4Z0CQyZhI6a3battHGjXVdQYOfGly+3aePG4GVHj7ZhcPxcLjs336KFtMce0ocfOtd9+qmtq0ULp5pJw4bR3Xe/7Gzpkkuk8eMt9BENj0c69VSpR4/q6RtquPT04Mt77WU7ybp1we1r1tjfPfZw2qZPl/bbT+rWTZozx2lfvtye4IHVTWqqpUulzp3j8340bx7hEdRNhK8AIAjBEQAAAAAA6oDOnaXHH5cuvlh65hkb3iA1NdG9Qm2TlxdcRWT6dGnJErtu5Ur7IbckDRhgw8/4q4j07y/17Ss1aZK4vsdFbq6dQOMkA+LM5bKhZxo3ttf7ivznP858UZEzBM6aNeFDwey5py2zZo09nb1e+5uXF34e+rbbpGnTgtsaNrTz6x06SF984bR/+KG0bVtwyKRJkx1XwRo1SnrqqZ39B3bO67Vhb1CPud32xAv09deWgAwMmixZYkmj0LGhTjzRkpIffigdeaS1bdliyamaViqrop01FoqKbFu8J6GuIXwFAGEIjgAAAAAAUEdceKGd3zjvPEIj2Ll166wqiP+H1bffLt19d8XLduokrVrlBEfuvFO66664dLPmyc3ly3/UeGlpO36qvvaaM19ebufV/SGTsrLgZXv1suDKmjU2FRdLW7fa8FShgZCxY8NDJh6P1Ly51LGj9N13Tvt//2vradFCOvxw6csvq151JClJOv982wYQJnSom2HDLCQSWIrH65VWrLAxnDp0cNrffdfKbJ10kj1p/VatspAKYwMCtRPhKwAIQ3AEAAAAAIA6wuWSrr020b1ATbR2bXglkWXLpO+/lw44wJbxn3Dt1MkqiAwY4FQS8Q874+dyxbf/AGInKcnCGy1aVDzMy/PPO/M+nw1F5Q+ZlJYGL7vXXlbYwT+kzsaNFkRZtSp8eJtx46QZM6rnPrhc0h13VM+6UE+kpgaPE+V2W3Bk6VIpJ8dpX7zY/rZu7bT5fDbMTVmZPYk7dbL2TZssjRk6jA4AAEAtQHAEAAAAAIA6yOezk31Nm9qPZCXZ8BdpafEpyZydHdttoFJer/MD6I8+ki6/XFq+vOJl5893giMnnywNHRoeEgEAP5dLysy0qaLqHqFDzpSUWHWjNWtsPtBBB9lbhT9ksmpV1fqUlCRdeWXwuX6gSlyu8OFrbrtNuvpqK7Xjt2aNjcnk9QYv/+ij0j33SKNHWzLKb906K7sDAABQgxEcAQAAAACgDnrjDenii6XGjaWBA7efUMvNtTG28/Jiu/HsbMoxx8nq1eGVRO65x4ZskCw4tHy5nQvbc0+rIOKf+va1k79+odUAACBaKSlWqCGwWIPfo48GX/78c+nIIyPfhtcrjRnjXJ4yRWrXzhlaC4haaKJyt91sbMDFi53x3iTp77/tCRlYySQvz8r57L67tHChhWslq06SkWHJJwAAgBqA4AgAAAAAAHXQaadJjz8uTZ0qnX229PXX289N5OYS6qjl/v5bGjVKmjZNWrky/Prp053gSN++0qRJ9jcjI67dBICIHH641LOnNGeOnXvfVZ07Sy1b2rzPJx19tJSfb+fu+/WzqX9/+5uTw1BbqCYeT3jZnVdflR56yIbB8Zs3z5506elOaESyMjnvvis9+aR0wQXWVlZmlUx4wwYAAAlAcAQAAAAAgDooOdmqjvTpI333nfTAA9LNNye6V9hVK1cGVxEZNEi67jq7rlEj6YMPbN7lkrp0Ca4k0qePs54GDWw4CACo6Vwu6ZZbpGHDdv02jRpJ33/vXF6/3qqbbN5sFZkmTrTJ7+STpQkTnMsLF1p1Ev/wXkBUXK7wUjf7729PyNCk57x5FhIJrE4yfbq0zz7SfvtJkyc77fn5ViKM1BMAAIghgiOVGDJkiFZW9LOd7Sq6rk/gNzMVmDhxolq1ahVt1wAAAAAA2CUdO0pPPWXVJ26/XTr0UGnvvRPdK1Rk2zbp/vudoMjq1cHXl5U5wZGWLaVnnpG6d7eQSKNGce8uAMTEySdbVZDly616yI643dLo0TY6ml92tlUs2bpVmjXLXk9nzLBpzhypUydn2XXrpA4d7Hx8375OVZJ+/WxoL0YQQbVp2DD4ySdJP/9sJcQCzxfMnWt/QyuOHHGEtGCBpZ4OOcTaiotj118AAFAvERypxB9//KElS5ZEdJvffvtth9eXlJRE0yUAAAAAACJ27rnSJ59I//d/0plnSjNn2kkyxJ/PF1xJpFEj6YYb7LrUVOnRR+1HyZKdEO3a1akiss8+weu69NL49h0A4sHjsTDIiBE7XzYrS7rmmoqva9hQ2ndfm/yKimzyW7DAXnsLCmxIr0mTnOvS06W77pKuv94ul5fb8DnJyZHfJ6BCSUmWUAp03nnSkCFWYcTP65X+/NMOEFq3dtq/+io+/QQAAPUGwREAAAAAAOowl8uqU0yZIi1aJH35pXTSSYnuVf3x8cf2o2J/WGTNGue6jh2d4IjbLY0ZY2GS/v2l3r3txCcA1DfDh9uQNYHnzkO5XNKtt4YXZtiRtDSb/Pbd187F//GHU5Vkxgzp11+lwkKpSRNn2alTbciwXr2cqiT9+kk9egSvE4ha8+Y2+bnd0tq19kTt0MFpX7gw/n0DAAB1GqM3AgAAAABQxzVuLL31lvTNN4RGYsHnk5Ytk959Vxo/Pvi6W26R7r5bmjjRQiNut51oPO886dprg4diGDPGfmW/336ERgDUX+np0siR9npZEZdLatFCuvzy6LeVnGxBveHDpSeekCZPtgokf/whnXCCs9yvv9rIIFOnSv/6l1V9GjjQgit9+kiffx59X4BKpaVZUilw/KQrr4zf9ktKbAypnBynNJokPfKI1K6ddMcdwct36iTtsYcFXvz+9S9rHzMmeNkBA6QuXaSlS52211+38fj8JX/8Bg+29Na8eU7b++/bWFOh5YdOOMHW/fvvTtsXX9iYjVdcEbzsOefYwdfUqU7b5MnSgQeGl3i74gpLkU2e7LTNnGnjQV50UfCyo0fbMEPffOO0zZ0rHX20dMEFwcuOHSsde2zwi8mSJdLQoXbQGOgf/5BOPNHSyX6rV0unnGL3JdAzz0inny69957TtmmTlSE8++zgZV95xW4/YYLTVlRkY16ef749D/wmTJAuvNBKGvp5vdIll9i0ZYvTPnGivWC/8Ubw9q69VrrqKmnjRqftm2/ssXz11eBlb71VGjUqOIE9ZYolsF95JXjZ++6TbrrJxjzzmznTDspfekkAgMpRcaQSixcvTnQXAAAAAACoNoHl+hGd5cvt3IK/isj06dK6dXZdSoqdN0hJscsnnWTnM/xDzvTubSdFAQCVu/JKO/dXXBx+nc9nw8g0aBCbbScl2VBhgS65RDrssODKJNOnSxs2SL/9ZkPe+L35pnTPPcGVSfr0saF1gGrjcsVvWz6fcxI+MPG6caOFGzZsCF5+4UILEXi9wcsuWBB84l+yEMiWLVJpqdO2YYOlt3r2DF72jz/s9oEvDHl5luxq0yZ42d9/t35s3eq0rV8v/fJLeDr311+l2bMtNRbYhx9+CO6XZDv/zz/bugKX/fprSwYHmjbN2gNDIps2SZ9+asGaQFOnWhDkxBOdtoIC6YMPpJYtw5d97z0L0vht3Sr9979Wui502f/8xw5G/YqK7IXK7ZZeey142ddeszDQKadYW2mp9PLLNv/MM8H37YUXLJ1++unW5vNJzz5r8/fd5/Rl+nS7rc9ngRW/Z56xx3L0aKfE04wZ0j//aaGWwBDM00/b//mSS5z/x2+/SQ8/bAfb557rLDt+vD1fTz3VeV7Mni2NGycdeaSFYAAAFSI4AgAAAABAPfPXX/Yj0SeflDx8M1Apn89+ADtzpv3g03+O5tpr7bv5QB6P/Ti2f387/9G0qbXffntcuwwAdUJ2tp0fHD9eKi932l0uK3oQ+mP9WHO7bXixjh2l006zNn+1qRkz7LXfb+pUO7/9xx/B52Q7drQQybhxwSOOADVecrKd/JeCQxeXXiodf7yVAArkr8bhPxiSLAhw4IHhy376qe3krVo5bSeeaCGM0GX/8x+retG+vdN25JG2jsDhfSTp+edtzKnOnZ22Aw+UPvxQatYseNnHH7dKKr16OW0DBtjBXuCYVZJ0770WYBgwwGnr3t2CGKHpsDFj7MVqn32ctg4dLIgRGvC45hoLQOy/v9PWurUFMULHw7roIumQQ6xKil92tvTUU+EH9meeacm1wAR5Rob06KMKc8IJFhrZe2+nLTVVeuABmw9c91FH2f3day+nzeWy1JwUnOw7+GBL+/XrF7y9W26RysqkzEynbe+9rb137+Blr73WHs/A51Tv3lZxJDSwc/HFNtZZ4POnSxf7H3fpEn6/42XGDOn+++25c+ONTvvGjfY/CKwoBAAJ4vL5AiOiqGkKCgqUlZWl/Px8ZQa+gQIAAAAAUAULF9r31+vW2Xetd95p30dXNiRAfeEPiUyb5lQRmTHDfsgqSX//7fw49OGHrYq6v4pI//52riH0e30AQNUtXmznWAOLFkjOaAo11Zo19l4SWJ0kcBSO5cvtfLBkw+N8801wdZLddktMv1HLhCaWYmn69PCT/kBtF+996I8/7M1r8GDpq6+c6/r1swo5n3xipa0kq87z8cdSt27S4YfHp48A6qxIsgb8rggAAAAAgHqiqMh+nOgfVuWhh2ySLPSQlmY/EGzQwH4I2bCh/SixYUMbXsX/1z9Vdjk3V2rbNnH3c2d8Pjsh2bKlM2zMnXfa8PKhPB77IeOGDU5w5PrrbQIAxE67dlbdY8IE+1G6v+pH4EgHNVHLltIxx9jkl5dn1atmzw4urPDFF1YA4d13nbbdd7dzmf362Y/SQ0fVAADUQgMGWKWX0KGHVq2yN7nAqjlTpliVlUMPDQ6OHHecVSh54gln+KF16+yDTdu24VV6ACBCBEcAAAAAAKgnUlPt+8S1a4OHqJcsVFJUZEOvh3K57ISdy+UM1+Lz2RQ4hIBfixb26+rU1Gq/CxHz+aRFi5wqIv5KIhs2SJ99Jh1xhC3Xo4eFRHr2DK4k0rMnlUQAIFFuvFF66y2b93ptmJfaWM0/O9vO/YX+cPzmm6VBg5zKJHPn2jnEjz6Svv46eLizhx6y9y5/ZZI99nDekwEANVyXLhUPlbN8ubR6dXDoo1Ur6dRTw4fs+eknSyIGvhF++ql07rkWMvnyS6f95pvtg9oVVziJfn8Ks76XmgRQKYIjAAAAAADUEy6XDRs+bFhkt6ssIFIRt9uGFkhJibx/0fL57PvQ5GS7PHGidPbZ9sO8UMnJ0rJlzuXjj5e2bKkZYRcAgOnb16r6f/21nT876aRE96h67bOPTX5btkizZlnIMT8/+Nzgiy9Kf/7pXM7KckIkAwdKp58ev34DAKpJUpIzfpnfoYfaFOrDD+0DTIcOTlt5ud2+XbvgZZ991kImZ53ltL35pnTRRVbO69VXnfa33rIyjAcfbG8uAOotgiMAAAAAANQjJ58s5eTYj9tCq45UB69Xuv/+2P8K2ueTFi4MryRyzz32wzrJyv1v3GghltBKIj16BIdECIwAQM10223SmjXSgw/W/QobjRrZkHL77Rd+3ciR0rRp9l43a5YFS775xqYePYKDIw8/bFVO+vWTunWziloAgFouNG0oSeefb1PgBzufT7rpJguZBI4fumyZVFIS/qZw1VXS+vX25tKzp7W9/74NrXP00dLo0c6yc+faG0yzZnX/TRmohzhkBAAAAACgHvF47Lu/ESNis+5Bg6SDDqr+dfstWmQ/lJsxo+JhdWbMcOZ79LBASY8eiamAAgCI3qBB0uzZie5F4l18sU2Snff74w9niJvddnOWKyuzsE1RkV1OS5N69XKqk+yzj3NeEABQRwSGOFwu6brrwpe5/nqrQBK4bHm5fXhbtkxq08ZpnzNHmjRJat8+eB0HHBAeMpk82Uo97ruvdOyx1XefAMQdwREAAAAAAOqZ4cNtyJr8/Opdb1mZNG5cdOvweqW//7bAx7Rp9vegg6S77rLrmza1IQskC4P07h1cSaR7d2ddycl2kgwAgLokJUXq08emCy4Ivq6wULr8cnv/nDlT2rxZ+uUXmyTphBOkd9+1eZ/PRjPo1cum9PQ43gkAQHylpARXIJFsqJx33glf9tRTbfibnBynLbBaSWD7pEn2IfD884ODI7m5ll787DMngPLXX9L8+VKXLsFD7gCoEQiOAAAAAABQz6SnW8n7sWMtqFEdPB5pyBBp4MDIb1tSIt18szPcTEFB8PWBfczKsuG5O3e2kAiVRAAAcGRmSo88YvP+MKa/MsmMGdLBBzvLLlsmXXqpzbvdUteuTmWSfv0smJKZGfe7AABItE6dbAqUkiKtXi0VFwd/CBswQLryyuBx1goL7U1Gkpo0cdrfflu69Vb7JcMLLzjtJ54oNW4sPfCA1KKFteXnW8IxK4thcYA4ITgCAAAAAEA9dOWV0n332fd+1aG8XLr33sqv93rtx2XTp9uUni7dfbddl5wsvfqqtHatXU5LC64kstdewesaNqx6+gwAQF3mdjvn/k4/Pfz6rVulo4+29+W1a21kgjlz7D1ZslENHnrI5rdskX7+Werb16p/AQDqqdTU4MtHHGFToLQ0acECaflyC374NWlibyRduzpthYXSe+/Z/KOPOu1PPGFjr116qfTMM077ffdJzZvbh8JGjarlLgEwBEcAAAAAAKiHsrOlSy6Rxo+30Ec0PB6rZtyjR3D7hAnSjz8Gl8v3a93aCY64XNIdd9j3iwMG2PeIycnR9QkAAOxY167SxIn2g+5Vq4Irk8yYETzc2y+/SIcdZvPt2tl1/fs71Un8PxAHAEButw1FEzoczRVX2BTI5ZJeeUVauTI4ZLJ+vf1t2dJpKyy0UpWSfQD1e+QR6fnnbfy2665z2r/8UmrVyspVJiVFf78QbulSKS8vttvIzrahjxBzBEcAAAAAAKinRo2Snnoq+vV4vXby6L77pDFjnPZHHpGmTHEup6VZ2Xt/JRGv175TlMK/PwQAAPHhctl5tVatpGOPddp9Pmd+82Zpjz2khQulxYtteucd5/oXX5TOP9/mN260aiatWzO6AABgJxo0kM45J7z90UetpGVZmdNWXGwVSNauDR5Lbd486Y8/gsc83bpVOvxwm9+0yQmlvPWW9NVX0nHHSccf7yy/ZQsVTCK1dKmFcoqKYrudtDR7jAmPxBzBEQAAAAAA6ql27aTTTrPKIIHfx0XK67Vy9m63NGKE833baac5IZH+/e2XzR6+iQAAoFYIDH0MHWrTxo3Sr78GVyaZN0/q3t1Z9u237bxe8+bhlUnatSNMUi2ys+1EWjxO1mVnx3YbAFCZ9PTgy02aBA9b43fLLVaBJDBYsGmTlcQMDI1I0rffSs89Z2lJf3Bk61YpI8OWW7FCatjQ2r//3obc2Wuv4Dc6mLy82L8PSbaNvDyCI3HA1zUAAAAAANRjN95oP7qKRlqac2Jo2zYnOHLttVF3DwAA1CBNmkiHHGKT35Ytdizgt2qVjQiwbp302Wc2Bd7+yy+dYXC2brUfm/srkGEX5eZaYofhAYCqIXxVt+Tmhr9WtW4t/f57+LKnnGKhkcA3shUr7K/X64RGJOm116R//9vGVfUHR7ZulfbdV8rJsdJbqanWvnixVFJi7Q0aVNtdA+KJ4AgAAAAAAPVY377S4MHSpElSeXlkt3W7pTPPlF56iSGjAQCor0Ir+99xhwVTf/89uDLJ779bxZJ27Zxl77pLevppZyg7f2WSLl2oUrZTFZ0oBbBrCF/VX4cdZlOgPfe0YW7Wrg1u795dOvJIqVcvp23ZMntDW7zYCY1INm6rP2Ry553WVlgoXXedhUlGj3Y+NAeO2QrUIBx6AQAAAABQz40ZI339deS3S0mRHn6Y0AgAAAjWoIFV9t9rL6etpMTO0zZt6rT9/rtVLPnhB5sCb9+7t/TJJ1Ljxtbm8zHMDYBqRPgKgTIybAp09dU2BWrTxt6cNm8OX0fDhhYS8Vu2zIbWyciQbr7Zab/8cqtWcvfd0mWXWVtRkY0h26aNdPDBvOEhIQiOAAAAAABQzx16qNSzpzRnjv34aVe43dLIkVLLlrHtGwAAqBtSUux4I9CHH1qYZMYMafp0+ztzpoVJ/vpLyspylj3zTGvzD4/Xr5+tjxEBAABx06iRdNRR4e3/+peFRHy+4GVvu00qKwtedtkyq3aTnOy0LV4snXOOlJkp5ec77ePGST//LF16qTRkiLWVlto6WrcOrnoCRIngCAAAAAAA9ZzLJd1yizRs2K7fJj1duuGG2PUJAADUfR6PjQTQvbudL5MsxLpggbR8efAPrqdMkZYssXDJc89ZW1KS1K2btN9+dr4OAICEcbmC37hat5bGjg1f7o03pKVLpd13d9rKy20M2bS04GW//1769FPp+OOdtgUL7M2vcWMbA87vzTdtvUOGhCc1gV1AcAQAAAAAAOjkk62q7vLlwT+SqojbbUM0N2kSn74BAID6w+2W9tzTpkDffGOhEf80fbq0bp0NdxNadeTEE63NX5mkb19nyBsAABKqcePwN6Xu3aWvvgpfdswYC40ceKDTtn69BUxatw5e9pVXLGTSvLkTHJk7VzrkEFv/l186y06dKhUXWwAlcAw51GsERwAAAAAAgDweC4OMGLHzZbOypGuuiX2fAAAA/Nq3t+nkk+2yzyetXGkhksAfeG/bZkPglJfbj6/99tjDQiRHHilddFF8+x4LK1ZIBQVSw4ZWCS493c4jut2J7hkAoNocdJBNgQ44QCostHHdAg0ZEhwakawCyerVUnZ28LK3324hk+efly64wNoWLZKuv17q0kW6915n2U2bbNgdD7GCuo5HGAAAAAAASJKGD7chawKHVA7lckm33iplZMSvXwAAAKFcLvuxdegPrpOSpI8+Cq5OsmiRtHChTcnJTnDE67Wh+nr0sFBJv342ckBgEKUmKiqyaipr1oRfl5ZmU4MGNjVqZOGSjAwnZBIYNtnR5dxcqW3b+N8/AMBOuFzhH8or+hXI/vtbia7i4uD23XazRGW7dk7b/PnSO+9YdZLA4MiwYdIXX0ivviqdeaa1rVolvfZatdwV1BwERwAAAAAAgCQ7QTBypA3D7PWGX+9ySS1aSJdfHv++AQAA7IqUFOmoo2zy27BB+vVXC5F07eq0//WX9PbbNvm1bOmESIYMkfbbL25d32WpqXZMtnZt+BCDRUU2bdoUfjuXyyqSuFxOOMbns6m8PHz5Fi3sx+qpqdV+FwAA8dCwob2hhXrxxfC2zp2lJ54IH/9t9Wr7gqB5c6ft99+lRx+t3r4i4Vw+385GLkYiFRQUKCsrS/n5+crMzEx0dwAAAAAAdVxentSmTfgPkvyeeUa69NL49gkAACAW1qyR3nrLqUzyxx/B4dnbbrNArWQhjX/8wwmVdOiQ2GFh/u//7EfgseJ2S3vvLU2eXPMrsAAAYsjrtTfBrCwnVDJ1qpUi/fzz+PRh+vSKAzDYqUiyBgRHajiCIwAAAACAeLv6amn8+OBfnrpcUk6OtGCBlXgHAACoawoL7UfU/iDJWWdJgwbZdR9/LB17rLNsRobUt68TJBk8OHzYnFgqK7NRBpYvD686Ul0mTZIOOig26wYA1HIzZti4afFAcKTKIskaJDAPCwAAAAAAaqJRo8JPQPh80j33EBoBAAB1V3q6Vdm4/HLp2Wed0IgktWpl7XvvLaWlSZs3S999Jz32mHTuudJXXznLzp8vvfCCDY9TUhKbvno80ujRsVv3YYcRGgEAoD7xJLoDAAAAAACgZmnXTjrtNGnCBPs1q9stdewonXlmonsGAACQGH37WkU2yY6P5s61H1tPn25/Bwxwlp04Ubr2WptPSZF69rQfZfurk/TqJaWmRt+n4cOlW26R8vOjX1egsjJp3LjqXScAAKjZCI4AAAAAAIAwN94ovfWWzXu9dvIgKSmxfQIAAKgJPB6pRw+bzj03/PrddrOha2bMkDZtsnDJ9OnO9ZMnS/vtZ/N//CFt3Cj17i01ahRZP9LTpZEjpbFj7XitOng80pAh0sCB1bM+AABQO7h8vliNfofqEMm4QwAAAAAAVKdDD5W+/tpOZMycKblcie4RAABA7eHzSYsXO1VJZsyw4Wv+/ltq2NCWGTFCevJJO87q0sWpStKvn9Snj9S48Y63kZcntWkjFRdXT59dLmnWLAvFAABQqRkzrJxWPEyfbm+MiFgkWQMqjgAAAAAAgArddpu0Zo304IOERgAAACLlcknt29t0yikVL9OwodSqlbRypfTnnza9/rpz/bp1Una2zf/9t5SV5VyWbP6SS2wYnfLy6Prr8UinnkpoBACA+oiKIzUcFUcAAAAAAAAAAKjbVq+2Cm/+yiQzZkilpdLy5c4yRx8tffqplJsbXJmkeXNp332jH67G7ZbmzZM6doxuPQCAeoCKI7UCFUcAAAAAAAAAAABqid12s2DI0Uc7bYWFwcts3mx/ly616b33nOsaNZKKiqSysqptPylJOv98QiMAANRXBEcAAAAAAAAAAABqmPT04Ms//CAVFEi//hpcmeTPP6U997T5qnK5pDvuiKq7AACgFiM4AgAAAAAAAAAAUAtkZkoHHWSTX2GhlJcnDR8uTZoklZdHtk6XS9prL7ttbq5NrVtLycnV23cAAFBzuRPdAQAAAAAAAAAAAFRNerqFPcaMiTw0Ikk+n/Tjj9I550gHHyy1by+lplp45IorgpedOFGaPl1at85uBwAA6gYqjgAAAAAAAAAAANRyhx4q9ewpzZkjeb27dhu3W9p3X6ljR2nZMmnpUvtbXCytXClt2eIsW1IiHXusExhJS5Nyciy0kpNjoZPzz3eWLywMH24HAADUTARHAAAAAAAAAAAAajmXS7rlFmnYsF2/TXq69OGHUpMmTpvPZxVFli4NDn7k50sDB1r76tVSUZE0f75NklU78QdHSkqkRo1svf5giX8YnJwcqUcPC7kAAICageAIAAAAAAAAAABAHXDyyRbMWL5850PJuN3S6NHBoRHJAigtWtgUqHlz6eefbb64WFqxwqlQsnSphUH8Vq607W/YYNOvvwav65xzpFdesfmSEquWEli9JDBk0qSJ9QkAUINkZ1vpqaKi2G4nLc22hZgjOAIAAAAAAAAAAFAHeDwWBhkxYufLZmVJ11xTte2kpkp77GFTRdq1kzZtckIlgQGTpUulPn2cZVeskH74ofJtXXCB9PzzNl9SIt1/f3CwJCfHzisCAOIoN1eaN0/Ky4vtdrKzbVuIOYIjAAAAAAAAAAAAdcTw4TZkTX5+5cu4XNKtt0oZGbHrR1aWTYGVSCrSrJn0f/9Xcchk3Tppt92cZVeskO64I3wdLVpYgOScc5wwTFmZNH26nW9s2dIqrAAAqpE/xYc6geAIAAAAAAAAAABAHZGeLo0cKY0dK3m94df7h6K5/PL4960imZnSaadVfN22bVJpqXM5KUm68MLgkElhobR2rU1HHuksu2yZtM8+Np+cLLVpEzwUzqGHSoMH2/U+H8PhAADqN4IjAAAAAAAAAAAAdciVV0r33ScVF4df5/NJd90lNWgQ/35FqkGD4H7m5krPPedc9vmkjRudEEng0Dn5+RYSWbnSwieLFtkUyB8cWbzYhs8JDJYEznfpYlVLAACoqwiOAAAAAAAAAAAA1CHZ2dIll0jjx0vl5U67y2VhiAsuSFzfqpPLJTVtalOfPsHX9eljYZKyMmnVKidc4h8K58ADnWWXLpUKCqTZs20KdfPN0r332vyKFVbRpaKQSfPmVC4BANROBEcAAAAAAAAAAADqmFGjpKeeCm7z+aR77rGhW+oLj8dCHTk50v77V7zMPvtIf/wRPASOf37ZMqlDB2fZv/+W3n674vWkpdn/97rr7PL69dK77zrBkpwcqVGj6r1/AABUB4IjAAAAAAAAAAAAdUy7dtJpp0kTJljVDbdb6thROvPMRPes5klNlbp2tWln2rWTHnssOGSydKm0erVUVCRlZDjLzpkjXXxx8O2bNnUqlVx8sXTccda+bZuUlyftvruFXRBbK1ZYlZmGDaX0dJvS0mw/AYD6iLceAAAAAAAAAACAOujGG6W33rJ5r1caN05KSkpsn2q73FzpmmvC20tKLIyQleW0paZKRx/thEwKCqQNG2z67Tfp2GOdZX/5RRo0yB6fVq2Ch8DJzZUGD961YAt2rqhI6t9fWrMm/Lq0NJsaNLCpUSMLl2RkOCGTwLDJji7n5kpt28b//gFAVRAcAQAAAAAAAAAAqIP69rXAwddfS717SyedlOge1V0pKVL79sFte+8tTZzoXM7PDx4C5+CDnevWr7chhEpL7bply6TJk53rn3nGCY5MnixddFFwsCR0PjU1dve1tktNlVq0kNauteGbAhUV2bRpU/jtXC6rSOJy2STZ7X0+qbw8fPkWLeyx5rEAUBsQHAEAAAAAAAAAAKijbrvNKis8+KBzshuJkZVlU48e4deddJIFFtasCR4Cxx806dnTWXbhQmnuXJsq8q9/SZdcYvOzZ0vPPhseLtltt/o7LIvLJd1yizRsWGS3qywgUhG3W+rQwQJFAFAbuHy+0CwdapKCggJlZWUpPz9fmZmZie4OAAAAAAAAAAAAEigvT5o1Kzxc4p8mTLAhciTp1Velc88NX0dystSmjfTYY9Lxx1vbihU2hI4/YBI47E5dU1Ym7bGHtHx5eNWR6jJpknTQQbFZNwDsikiyBlQcAQAAAAAAAAAAAGqJ7Gwbgqgi/qFT/Lp1k0aPDg6ZrFhhQ+IsWmQBEr+vvw4OmWRmBg9/c+mlNvyRJBUXW+WO2lpRw+Ox/8uIEbFZ96BBhEYA1C4ERwAAAAAAAAAAAIA6wOUKHpKof3+bApWVSatWWYikWzenPS1N6tPHAiYbNkgFBdKcOTZJ0tChzrL/+Y903nk25E1guMQ/7b+/1KJFzO5mtRg+3Iasyc+v3vWWlUnjxlXvOgEg1giOAAAAAAAAAAAAAPWEx2Nhj5yc4PZTT7VJkrZudYbA8f/t0cNZdtkyq2yyapVNv/wSvK6JE53hcj74QHr88eCAiX8+J0dq1Ch293VH0tOlkSOlsWMlr7d61unxSEOGSAMHVs/6ACBeXD5frEbuQnWIZNwhAAAAAAAAAAAAINZ8PikvL3gInMC/L70kde5sy44bZ5U9KvPZZ9IRR9j8L79I33wTHC5p1coCGbGQlye1aWND71QHl0uaNSs4ZAMAiRJJ1oCKIwAAAAAAAAAAAAB2mcslNW9uU+hQOKFOOcUCIIHBEv98fr7UurWz7JdfhodM3G5bJidHGj9e6t3b2pcvt+BHTo7UtGnwED27KjtbuuQSW295eeS3D+TxWMUWQiMAaiMqjtRwVBwBAAAAAAAAAABAXZSfLzVs6FQUef996b//dYIly5ZJpaXO8nPmSN262fy990q33mrz6enhQ+BcdJETSvH5Kg+WLF4sdegQ/XA1brc0b57UsWN06wGA6kLFEQAAAAAAAAAAAAA1WlZW8OWhQ23y83qlNWucSiXt2zvXuVxSixbS2rVSYaE0d65Nfqec4gRHxo2THn/cCZYETjk50sknS+++K5WVVe1+JCVJ559PaARA7UXFkRqOiiMAAAAAAAAAAABAxYqKbNiawCFwli6VHnlEysiwZS69VPr3vytfx9tv2zAzVeXxSAsXWggFAGqKSLIGBEdqOIIjAAAAAAAAAAAAQNXl59uQNIHBksD533+XTjxRmjRJKi+PbN1ut3T55dKTT8ak6wBQZQRH6hCCIwAAAAAAAAAAAEBsffmldPjhVb9927Y2VE2nTs50+OFSWlr19REAIkFwpA4hOAIAAAAAAAAAAADEls8n9e4tzZkjeb27dhuXS0pOlkpKKr4+P1/yn9576inpzz+DwyXt29vtASAWIskaeOLUJwAAAAAAAAAAAACokVwu6ZZbpGHDdv02DRtKS5ZIpaXSggXS/PnOtH69ExqRpPffl774Ivj2SUlSu3YWInnvPSk11dr9tyVUAiBeCI4AAAAAAAAAAAAAqPdOPlnKyZGWL7cKJDvidkujR0tNm9rlli2l/fevfPlLLpH693eCJQsWSIWF0t9/S5s2OaERSTr7bBs6xx8q6dQpuFLJHntY0AUAqgtD1dRwDFUDAAAAAAAAAAAAxMdTT0kjRuw8ONKkiVUbycio2nZ8PmnlSguQbNwonXCCc12PHjZkTkUaN5Y2bHCCI88+axVP/KGSnByrZAIAkWQNCI7UcARHAAAAAAAAAAAAgPgoLJRatZLy8ytfxuWSHn5YGjUqNn3wei1UElidxD/ftKn03XfOsp07S3/95VxOSbGKJJ06SX37Snfd5Vzn81GpBKhPCI7UIQRHAAAAAAAAAAAAgPi56y5p7FgLcIRyuaQWLaRFi6QGDeLft9Dwx5gxVp1kwQIb9qakxLmuXz9p+nTncv/+UnFx8LA3/qlVKxt+B0DdQXCkDiE4AgAAAAAAAAAAAMRPXp7Upo2FLCryzDPSpZfGt0+7orxcWrbMqU7SqJF07rnOdenpwcGSQHvtJf38s3P57bel5s2dUAmVSoDaJ5KsgSdOfQIAAAAAAAAAAACAGi87W7rkEmn8eAtc+LlcUk6OdMEFievbjiQlSe3a2XT44cHXud3S3LlOqCRwWrRIys11lvV6pfPOk7Zts8vp6ValxF+pZJ99pBNOiNOdAhAXVByp4ag4AgAAAAAAAAAAAMTX4sVShw7hw9W88op0zjkJ6VLMlJVJW7ZIjRvb5YIC6fTTLVSyeHFweEaSTjxReucdm/f5pP33twotoUPgtGhBpRIgkag4AgAAAAAAAAAAAABV1K6ddNpp0oQJFqxwuy0YceaZie5Z9fN4nNCIJGVmSp98YvOlpRYeCaxQ0q+fs+zq1dKUKRWvNyNDuugi6ZFH7LLPZ8t27GjD4BAqAWoOgiMAAAAAAAAAAAAAEOLGG6W33rJ5r1caN86Gg6lPkpOdCiIVycqSPvwwfPibpUulzZstcOO3bp1VJ5EsnBJYnaRjR2ngQKlr19jfJwDhGKqmhmOoGgAAAAAAAAAAACAxDj1U+vprqXdvaeZMqmTsqqIiadEiKT1datvW2ubMkYYMkZYts+ojoa69Vnr0UZvfsEEaMSI8XNK0adzuAlDrMVQNAAAAAAAAAAAAAETpttukNWukBx8kNBKJtLTw6iHdu0tLllio5O+/rTLJggVOlZL+/Z1l582T3ngjfL1Nm1qI5IorpHPPtbbSUmnr1uDhdgBEhuAIAAAAAAAAAAAAAFRg0CBp9uxE96JuSUuzEEn37pUv07q1dP/9weGSlSutEsnPP0tnnuksO3OmtPfeUna2VSUJrFLSqZPUubPUqFHs7xdQmxEcAQAAAAAAAAAAAADUGLm50ujRwW1btzohkj59nPalS+1vXp5NP/0UfLtHHpFGjrT5RYuskkng8DcZGTG7G0CtQXAEAAAAAAAAAAAAAFCjNWwo9e5tU6BTTpEKCpzhbwKnBQssIOL388/SrbcG33633ZxKJZddJu21l7X7fAxPtCMrVtj/vWFDKT3dprQ0ye1OdM9QFQRHAAAAAAAAAAAAAAC1VkaGVSEJrETi5/M5823aSOee6wRL8vKk1att+uEH6YQTnGX/+1/p6quDq5MEzqenx/hO1WBFRVL//tKaNeHXpaXZ1KCBTY0aWbgkI8MJmQSGTXZ0OTdXats2/vevPiI4AgAAAAAAAAAAAACokwKrhhxwgE1+mzY5w9/Mny/16+dcN3++tGqVTd99F77ejz6SjjnG5v/6S5ozx0IlHTpYYKIuS02VWrSQ1q4NDuZIFiopKrL/bSiXyyqSuFzO4+Lz2VReHr58ixY2FFFqarXfBYQgOAIAAAAAAAAAAAAAqHcaN5YGDLAp1JVXSoce6gx5EzgEzsaNwZUw3ntPGj3a5l0uq2wSWJ3kzDOlVq3icY/iw+WSbrlFGjYssttVFhCpiNttIZyUlMj7h8i5fL7QDBBqkoKCAmVlZSk/P1+ZmZmJ7g4AAAAAAAAAAAAA1Gvr10tZWZJne5mGZ5+V/v1vC5Xk54cv/+uvUu/eNv/CC9IbbzjBEn+4ZI89aldljbIy6/Py5eFVR6rLpEnSQQfFZt31QSRZAyqOAAAAAAAAAAAAAACwi5o1C7588cU2+XxSXp5TmcRfqaRjR2fZX36RvvrKpkBut5SbK33xhbP84sVSSYnUrl3Nq7zh8ViVlREjYrPuQYMIjcQTFUdqOCqOAAAAAAAAAAAAAEDdMHu2NG1aeLhkyxa7Pj9f8p8WvvJKafx4KSnJhsYJrFLSqZN0yCFSWlri7kthoQ3BU1GVlWj98os0cGD1r7c+oeIIAAAAAAAAAAAAAAA1TI8eNgXy+aQ1a6SFC53QiCSVl0vp6RbQWLjQps8+c67fsMEJjvzrX9KcOcHBkrZtneF0YiE9XRo5Uho7VvJ6q2edHo80ZAihkXij4kgNR8URAAAAAAAAAAAAAKiffD5p1SqnQol/WrdO+v57Z7mjj5Y+/TT4th6P1L69hUj++18nZLJpk5SRYZVMopWXJ7VpIxUXR78uSXK5pFmzwsM1iFwkWQN3nPoE1C7rJks/nG5/AVQN+xEQPfYjIDrsQ0D02I+A6LAPAdFjPwKix34ERId9CAnmctlwMAcfLF10kfTAA9I77wSHRiTpggukG26QTjhB6t7dQiJlZRYy+fFHKTXVWfass6xaSNeu0vHHS6NGSU8/LX35pbRkiYVVdlV2tnTJJTsOoey352S9NeJ07bfnjvcjj0caNozQSCJQcaSGo+JInG1dJs28UVr6lixX5ZVyh0l9H5Qa5iS6d0DtwH4ERI/9CIgO+xAQPfYjIDrsQ0D02I+A6LEfAdFhH0It5/VKK1ZYcGTjRunkk53revSwYW0qkpEh5edbYEWSXnhBKi2VOna0yiVt2kjukPIUixdLHTqED1fTpukyPXjGjTpjv7dU7nUrye3Vmz8O041vPqjlG8L3I7dbmjfPtoXoRZI1IDhSwxEciZOyQunPh6Q590m+cslX5lzn8kiuJKn7zVLX6yVPeuL6CdRk7EdA9NiPgOiwDwHRYz8CosM+BESP/QiIHvsREB32IdQD5eXSsmUWKlmwIHgInCZNpClTnGW7dZP+/NO5nJZmIZFOnaTevaU777T2M86QJkywKicNUgp1w7EPaczx9ynJXa7kJGc/Ki33qNybpHHv36yHP75e20psP0pKks4/X3ruudjf//qC4EgdQnAkxnw+ael/pOkjpaI1krw7WNgtpbWU+j8q5Z7mxOyA+o79CIge+xEQHfYhIHrsR0B02IeA6LEfAdFjPwKiwz4ESLJdIfApfdNN0uzZFipZuNCCIX59+kgzZ9r8zJlSv34+nbbPf/To2SPVMmuNktyV70flXrfW5LfUyNce1X9+Ok0ej0sLF0o5FPSpNgRH6hCCIzG0Ybo0bYSUN0WSS9Ku7Arbl8veVxrwpNS0X2z7CNR07EdA9NiPgOiwDwHRYz8CosM+BESP/QiIHvsREB32IWCXlJVJS5Y4lUoaNpSGD7frvHnT9dOTI7TfnlNU7nUpyb3z/ci/3I/z99WPxU/q+nHsR9WJ4EgdQnAkBratkX67WVr4ouRyW5mxSLk8drs9hku9x0kNWlZ/P4GajP0IiB77ERAd9iEgeuxHQHTYh4DosR8B0WM/AqLDPgREb/t+5Fv4onw+t9yuyPej0nKPPEnlcrEfVSuCI3UIwZFq5PNJfz4s/X6n5C2u2pt/KFeS5E6Vet0ldbmOUmSo+9iPgOixHwHRYR8Cosd+BESHfQiIHvsRED32IyA67ENA9NiPajyCI3UIwZFq5C2V3kqJ3fqHlUju5NitH6gJ2I+A6LEfAdFhHwKix34ERId9CIge+xEQPfYjIDrsQ0D02I9qvEiyBu449QkAAAAAAAAAAAAAAAA1DMERAAAAAAAAAAAAAACAeorgCAAAAAAAAAAAAAAAQD3lSXQHAAAAAAAAAAAAACBiPp8z73IFtPkqXNy5nTdmXZIkecv1v9/vu9wBffNa/1wua5d2rb8VclV8n2O9XqmK/7/Q9fqbXQHrrUp/Ffv1AvUAwRGguny2r9S4u7Tvy07bpKHStpXSPi9KjXtY26JXpXmPR7butN2kQR85l6ecJ22aLfV/TGpxoLUt/1D6/Y7I1utOlY6c4lyedrW07nup551Sm6HWtvYHadpVka1Xko74UfKk2/ys26Xl70udr5E6XGBtm+ZIP55R8W139AZ+yCdSehubn/uo9PcL0h7nSV2vt7bCldI3R1Ry4x2sd783pSa9bP7vF6W5D0uth0p9xllbeZH0Sd/Kb1+ZgU9LLQfZ/LL3pN/GSM0PlPb+t7PMJ32lssLI1tt7nJR7ss2vmST9crGU1UM66B1nmS8PkQqXR7bebjdIHS+x+U2/S9+dKDVoJR3+XWTrqaoPOkV2IJZzktTvHzZfXiR91MXmj5kjeRra/IzrpaVvR9aPloOC9+WPutpjdPj3UsNca5szTpr/dGTrbdxLGvSxc/nz/aTCZdJBH0hNtz+/5j8jzb47svU2aC0d9Ytz+dtjpY0z7T7sdpi1LfmPNP2ayNablCYNXeRc/vEcafWXUr9HpXbDrG31V9KPZ1Wygh3sc8cvdB6jaddIS9+Sut8qdR5hbRt/lb6ubF/egaOmSg3b2vzvY6W/npA6XSH1usvati6TPq3CvnzIZ1LT/jY/70l7vW17ujRwvLWVbZPea71r66rqh5RdNSHb+tV+++Oy6gvph1OlJn2kw751lvu4p7R1SWTr7nWX1GWkzW+YIX05SGqYY/uc35eDpA3TIlvvnlc7r7dbl0ofd7Pn38l5zjLfnyKt/KSCG+/g/9nuLGnvZ22+bJv032Y2f9JaKbmRzf98ibT41cj6u9sR0sHvO5cnNJPKtkrHzpUatbO2326R/nw4svU26Rf8vvzhntLWxdJhP0jZe1nbn49Iv46ObL0Nc6Xj/3Yuf76ftH6qdNB7UutjrG3hK9LPwyNbrztNOn2rc3nS8dLKj6W9n5f2ON/aVn4ifTsksvVK0qmbncfop+HSwpekPvdL3SK871XxVoqkSt6LKnuPOvxHKXtvm/c/Ru3PtmNAyZ5/E7J2sNFK1nvgu1Lr7f+/Ra/Z+33o8++/ze35F8l6Bz4t7XGuza/6XPr+ZKlJ3+D3+x29RlT2f+h5l9TlWpvfMFP66hApPUc65ndnma8OkzZM34X1BbTteaXUa6zN+1/H3WnSiQHHOZPPlFZ/Ufk6KtpW7mnSgCdsvmyb9EF7mz/+b+c9avq10pL/i6y/LQ+R9nvNufzhnnYcccSPOzmO2Ml6G/eSBn3oXP7iQDuOOPBd5zhiwb+lOfdVsJ6Q9cX6vejDLpInLfj94eeLpDXfSH0ekHJPsbY130o/XRD5+o/53XmMZt4gLZ1grw+dLrO2jbOk746PfL2HfW/va5L9H+c/I3W8WOpxq7UVLrfX0Egd9H7Asd6/pDn3SDmnSP0ftbbyIumDjpGvd9+XnGO9pW/b8zX0+fdBJ6m8steISvR9JOBY72s71mvcSxr8mbPMp3tJhUsjW2/3W6XO2z9bbvxV+uZIqUEb6eiA14RvjrJjjEh0ukLqdafNb10mfdrPjiNOWOYsM/lMafXnka0393Rp4FM2X7ZNem/759ChS6Sk1MjWFanf75L+ejKy24Qe603sZa/jg7+Smg2wtnn/lH67NbL1hh3rHWKv4wf8R2p1lLUtel2aemlk663oWG/Vp/Ye1f4ca1v1uX0mjdRJa5zjiF8ute9het0tdb3O2jZMl744IPL1HvNn8LHe3Efse44+91vb1iX2mh+pw753jvXmPir9epPU7mxpn+etbafHEZU48N2QY70Lpd2PDP5+6e3GUtmWyNa793MBx3qfSpOOtc9KR/7sLPNBB2nLogpv7ojxe5H/mK7rdVLfh6xt6xLpgz0qP46NRLtz7HVYssfo7UybP2VjwGeNi6SFL1d480qFPUZN7HX82HlSo+3HKr/eLM39R2TrDf2s8VEXacti6bDvAp5/j9n3VpFIz5GO+8u5/MVB9nnwgAkBx7Gv23FsJJIaSKesdy5X9hrx/UmRrVeSTlwd8BpxubT4NTvWDP2sG6khs5zXiFl3SPMek/YcIfW+x9q2LpMm9oh8vUGv40/Y96xth0l7RfidVFW811Yqr+g7yx3svwOess9C0vbvI07Z/h41yVnm4x5V+D4i9DE6yJ5/x/7pLPPlIPusG4nO1wR/H/FRF3uPOmWDs8x3J0mrKvo+YgfanWWvl9L21/EmNn9yXsBrxMXSolcqWUEl/+Pdjgz+TFDha8SYHXwfUcl6w17HO9r3EYdPDvis+w879o5Ew1xp6GLn8mf7SOt/kQ7+QGp9rLUtfFn66fzI1puUJp2+zbk86bjt30e8IHXY/t3Gqk+r9n1EdfpPA2f++IUhj9GDUpfrpH7bH6vCpdL77SLfxhE/OY/R3O2PUftzne+2y4uk/6RHvt6DP3Qeo0Wv2GO0+1F2fsbv7cwdfB9RiYoeo6b9paMCvkv8YA97/kUi8DujDdOlzwZK6bnSCQGvNZ9vf/5FIvAx2rrEHqPQ59+3x0Z+HBH4GJVtcx6jir4Pi0ToY/SfRvYYBT7/Zo62518kQh+j99vbY3TET1LTfpGtCzUawRGgumycHv5d76ZZ9uIZ+OZZtCb8y/KdSc8NvlwwV9o4QyrNd9pKNtiJ4kgkpQVf3rLQvsArDjgwLtssbfotsvVKwWnTwmX2vyhe57SVb7NgQqS8pc78ttVS/mz7+7/tlkr5c8JvtzPlAW/0Jeul/D+kpgMC1uuz/3ukAr+AKc23dTRsF7zM5vmRH2CVFjjz5YW2juTM4GW2Lo78AKtkY8B6i6Utfwf/z2OtMMIPjcUBXzT6fM6HzsCTISXrI/9Su2htSL+W2WPkKw9Yb37kwZy0lsGXt62ydXhLnLayLRY4i4Qr5O28eJ2to7zIaSvfJhWtVkRCXyNKNto6AvcXb4m9rkUq8DEqK7D/eeCXEd6y4NeMXV5vwGtP2VZ7jgTtX16peH3YzXbKWxYwX2SvuaH7beD+k0hlBcHPKV+Zvf6EfiFctsVe4yMRtF6v3b40ZL3l2yJ/TQtcr3zh+5tkz+cKv7Da1fUq+Ln7v82VBu8rVVmvt9imwC9gvGXhy+2ML+T11lu6/TU48Isdrz2mkfCGLO8r376OwPX6qvBLkZDlfV7nVzO1XiX3YZfu2/bHKPT/WaX304B1+MrtuVrR87qi5/aOBO5fvnJ7PQjdv6r0GlEcvN7SfKk05ERX2WapdFNk6w0K2G5/HQ99jyotCD4u2BWBx1OS834W+DiX5kf+/hn6PrNtZTUdRzQPvly43I59Ap8TpQWRH//FwtaF4Y/RttX2eaM04HlVvk3aurMTixUIfIyK8+w+B3428pZEfjJCCn59Ldlkx5AlmwKuL7fjwkgFHetttseuJOAzl88nbVsR+XoD37/KCu25Fvr8K1oV+fty0LFese0DJSEB2eJ1kR8DBgZYvGV2/Oeu4Hgz0mPAoGMcrz0nKnyNiPAYMPTYKfAxi7XyouDn9K4I7W/pZrvfga893pLIX9vDjvUKbR2B+4uvLPLnWUXHemVbg49bfOWRH/+F8pbYczqov77Ij//shgHrLdv+vhxynBXp8V/oen3lto7Q470qHUeEHuuVhf/fK2rb6WpD11tewXq9IdtPFF/48ZvPq0qPYyNdd9DFCo7R/3fcHclqQ/+XpeGPv/95EtF6Q9ZRXsFnGF9Z5PtGeXHwZW/x9veRwOPYssiPV0P/v5W9RkT62hPKW2SvnxV91o1YQJ/Li+w1OOj/6Q0//tyl1Qa+jhfbsXS0r427qjS/Cp/DA55rvjK7z6GPU9nWyENrYY/R1vAf4pVvi/J7A9/256ovfJmIvzcI/XxfHL6MryrfG4R+vq/oNaIK3xuEvfZU8NquKlSuCPsMXdXqFwCAeHD5fHXim906q6CgQFlZWcrPz1dmZubOb4DKeUu3/9ogRg58T0ptJrUI+NXK6q/tYLP5flLK9lTxloVSwbzI1p2UZr8c81v3ox24N+0vpbWwtsIVVoUkEi63tPvhzuUNM+xLtqzuUvr2LwaL8iIPpEjWX/f2k9mb5tgXlo06Osn70oLIE+CSlL2f5Nme1N28wJLg6TlSZidrKy+S8qZUfvvKNO3vBC+2LrPARFpLKaurtXnLpXU/VH77yn55m9XdnheStG2NtHmePRca93SWWTd5B19QVLLejE5Sg+0hhOINFnRJbmQJfr8N08M/wO9Mw7bOY1+6xQI/7hTnlw2x3o8Om+w8b3ZFajMpo4PN+7zS+u2p16b9JXeSzW9ZFPmXxMmZUmbAL8U2zLD1N+7p/LqwcPlOviyv4LFLSpeyujiXN822D4iZnZ1fzW5bE3lwxJ3sVDWSpIK/7INyw/ZSyvYTdsUbqnCiw+VU4pHsf1m62ar+pDa1ttLNVTtBldnNeYwKl9tJmbSWzkmxsm32ehmpjE5S0vbn6LY1FhxKaebsL95Se+2IVMN2zmtP8Xo70ZGcJaW3sjaf1wJcu8JbKk3sufPlqmrIHNuP/Y992VarxpSU6vzSXbJfl1X6RUIlrz2pTZ33s/Iie+9xe5wqL1J4GGpXJGc5r5Xesu3PVZfzniHZ4xnpl42ehs5zyud19oH0HKe0ZvH6yL9sTEpz3n8le9+Qzyo0+V/DSjZF/kWYK9l5rkoWLvOVS6nNndee0s3BJ113ab1JwestWmfPw9Smzom1ssLIT1BJUoPdnfmSjfa+k5zpVB0rLw4+6bqr0po7j5H/C1dPQ5ti/V40dJm9rv5PRV90hUhp5rz2lG6xPnsaOPuLz7eD1/YdfBxLaea89pRusZOWYc+/pRWvY0cf81KbSckZNl9WaCeF3SlOVTdpeyChoteInaw38DVi61LbJxrtEbzeir503VF/U5o4z+HyEmnLAkku5zjNv97Qk5s7629KY+c++7zOsXRWd+c9auvSHQQDK1m3J8M5PpEsmO3z2nr/dxyxIuQ4YhceQ0+6lNUtYL2/bT+O6Or8Imnbqu2vSTvqo88e2y8PrLj/1eHQ72yf8P/yTZLy59qJjkZ7OM/hkk2RfzaSLOD9v2O9hfaZJb2N875cttWOjyPVuJfzGG1dZo9RWkunCkl5sQXXI5XZJeRYb4WU0tR5n/N57fGMVKM9Qo71llbw/JuliL+cT88JONYrsGOGpAbOZy7JHs/Qk5A7k7ZbwLFeoT127mQ7Fvbb/HfkJ2ZSm0kNdrP5Sl8jlkb+fh96rFew/Rf1mXva+3Ms34tOWFGF45PQY71Ftq83zHHe70s27uSzUQXHgBUd65UX2//c/7wu3VyF0LfL+dWjZOGy8m1SanbIe9Taim++Iw1zneOIojw7Jktp4uwv5cVVC78HHetttPudnOG893nL7HU4UmktQo718u2zo38/3OFxxA6kNHWOI8oKrc/uVCkt21mmKv1Nzgo41iuy9bqSg9dbtHbnQQxvqfR+7o6XiYb/mM6T7jynvOXOc9X/uiHZa2hFJ3V3JCkt5FhvlbNe//OvZKN9tq1QJa/NoY9R4QpbNm23gOdffuTBhtDPGoUr7bUs6PlXEPmxuyvJ+R5Jsv+Dt8Q+w/ifJ6VbIg/4SiGfByt7jajCvtywbcBrxFrb7yr6rBvxenOdzxFFeXbck9zYeTy9pfaeGqn0NgHfR2yw/2Vypj3XYv3Z6Jg/wn+stDNpLYK/j9i2yp7X/uMpaQefNVT5d6wpTe34XbLX8W0rrG+B732FK6vwfUSm83rrLbP3OZcr+L2vaG3kxyeehs73HD6v85xKbx3wfcSGyIMu7tTgQHnhStlrRMuQ14gIjyPcycHrLVprrxGhn3V3+D1HRRUf3cHrLV5v/+eUxs5rT9m2nbymVfKcCFxvSb499skZznFP+S4EZr2l0ru773iZaJy42nldSM5yPsOUbbXnVFKaczzlLY/8RxaSPYf92yjbHp5ypzqfEX2+qgWgPRnOY19eZI+/O9nZvyV7rYu4v42CH6PSAnvu+vdvyfaNSAOdnnTnfcdbas8Jl9vZvyV7X67stacySQ2c/6W33PlfVvT8i2i9qc75KJ/PeZ9MzXZeB0sLIj+/404O/l8WrZPks33Z//wrreDHQzvj8gT/L4vyJHmd985YvhcNKwn5ng6RiiRrQHCkhiM4Uo1ifSDNixfqA/YjIHrsR0B02IeA6LEfAdFhHwKix34ERI/9CIgO+xAQPfajGi+SrIE7Tn0CAAAAAAAAAAAAAABADUNwBAAAAAAAAAAAAAAAoJ4iOAIAAAAAAAAAAAAAAFBPERwBAAAAAAAAAAAAAACopwiOoP5weaS+D0lJ6ZIrqZrWmSR5Gkp9H7b1A3Ud+xEQPfYjIDrsQ0D02I+A6LAPAdFjPwKix34ERId9CIge+1Gd4vL5fL5EdwKVKygoUFZWlvLz85WZmZno7tQN29ZIs26R/n7BXnx8ZZGvw+WRfOVShwukXvdKDVpWfz+Bmoz9CIge+xEQHfYhIHrsR0B02IeA6LEfAdFjPwKiwz4ERI/9qMaKJGtAcKSGIzgSQxtmSNOukvKmSHJJ2pVdwS3JK2XvJw14UmraN7Z9BGo69iMgeuxHQHTYh4DosR8B0WEfAqLHfgREj/0IiA77EBA99qMah+BIHUJwJMZ8Pmnp29L0a6Wi1drxC5hLarC71O9RKfdUyeWKUyeBGo79CIge+xEQHfYhIHrsR0B02IeA6LEfAdFjPwKiwz4ERI/9qEYhOFKHEByJk7JC6c+HpTnjrAxSYAkll8fKKnW/Rep6veRpkLh+AjUZ+xEQPfYjIDrsQ0D02I+A6LAPAdFjPwKix34ERId9CIge+1GNQHCkDiE4Emdbl0m/jpaWvKn/lUZqe4bU5wGpYU6iewfUDuxHQPTYj4DosA8B0WM/AqLDPgREj/0IiB77ERAd9iEgeuxHCUVwpA4hOJIg6yZL856QOo+Qmu+f6N4AtRP7ERA99iMgOuxDQPTYj4DosA8B0WM/AqLHfgREh30IiB77UUIQHKlDCI4AAAAAAAAAAAAAAIBIRJI1cMepTwAAAAAAAAAAAAAAAKhhCI4AAAAAAAAAAAAAAADUUwRHAAAAAAAAAAAAAAAA6imCIwAAAAAAAAAAAAAAAPUUwREAAAAAAAAAAAAAAIB6iuAIAAAAAAAAAAAAAABAPUVwBAAAAAAAAAAAAAAAoJ4iOAIAAAAAAAAAAAAAAFBPERwBAAAAAAAAAAAAAACopwiOAAAAAAAAAAAAAAAA1FMERwAAAAAAAAAAAAAAAOopgiMAAAAAAAAAAAAAAAD1FMERAAAAAAAAAAAAAACAeorgCAAAAAAAAAAAAAAAQD3lSXQHapt169Zp6tSp+vvvv1VQUKDk5GQ1a9ZM3bp104ABA5ScnJzoLgIAAAAAAAAAAAAAAOwSgiO7aMKECXr88cc1efJk+Xy+CpfJyMjQaaedphtvvFF77rlnnHsIAAAAAAAAAAAAAAAQGYaq2YkVK1Zo0KBBOvXUU/XDDz9UGhqRpM2bN+v5559Xz549dffdd+9wWQAAAAAAAAAAAAAAgEQjOLIDf/31lwYOHKhJkyZFdLuSkhLdfvvtOuuss1ReXh6j3gEAAAAAAAAAAAAAAESHoWoqsX79eh1++OFatWpV2HX9+/fX0KFD1b59e23btk1//fWX3njjDa1cuTJouTfffFMtWrTQY489FqdeAwAAAAAAAAAAAAAA7DqXj/FUKnTyySfrnXfeCWrLyMjQq6++qqFDh4YtX1paqnHjxunOO+8Mu27ixIk6+uijq9SPgoICZWVlKT8/X5mZmVVaBwAAAAAAAAAAAAAAqD8iyRowVE0Fvvjii7DQSEpKir7++usKQyOSlJycrDvuuKPC6iIjRoxQWVlZLLoKAAAAAAAAAAAAAABQZQRHKnD33XeHtd1xxx0aMGDATm97zTXX6PDDDw9q+/vvv/XGG29UW/8AAAAAAAAAAAAAAACqA8GREH/88Ye+//77oLbs7Gxdd911u7yO++67L6zt6aefjrpvAAAAAAAAAAAAAAAA1YngSIg333wzrG348OFKTU3d5XX0799f/fv3D2r76aeftGjRoqj7BwAAAAAAAAAAAAAAUF0IjoT49NNPw9pOOeWUiNdT0W0qWjcAAAAAAAAAAAAAAECiEBwJsHXrVs2YMSOoLT09XX379o14XQceeGBYW+gQOAAAAAAAAAAAAAAAAIlEcCTAr7/+Kq/XG9Q2YMAAJScnR7yugQMHht1u+vTpUfUPAAAAAAAAAAAAAACgOhEcCTB37tywto4dO1ZpXSkpKWrTpk1Q299//62ysrIqrQ8AAAAAAAAAAAAAAKC6ERwJsHjx4rC2tm3bVnl9ubm5QZfLy8u1dOnSKq8PAAAAAAAAAAAAAACgOhEcCbB69eqwtpycnCqvr6LbrlmzpsrrAwAAAAAAAAAAAAAAqE4ERwJs2LAhrK1Ro0ZVXl9Ft12/fn2V1wcAAAAAAAAAAAAAAFCdPInuQE2ydevWsLYGDRpUeX0V3bawsHCHtykuLlZxcfH/Lufn50uSCgoKqtwPAAAAAAAAAAAAAABQf/gzBj6fb6fLEhwJUFpaGtaWlpZW5fVVFBwpKSnZ4W3uu+8+3XXXXWHt0QyZAwAAAAAAAAAAAAAA6p/NmzcrKytrh8sQHNkJl8tVrbfdWZpnzJgxGjVq1P8ue71ebdiwQc2aNYuqL4hMQUGBcnJytGzZMmVmZia6O0CtxH4ERI/9CIgO+xAQPfYjIDrsQ0D02I+A6LEfAdFhHwKix36UGD6fT5s3b1arVq12uizBkQDJyclhbdu2bavy+iq6bUpKyg5vk5qaqtTU1KC2xo0bV7kPiE5mZiYvXkCU2I+A6LEfAdFhHwKix34ERId9CIge+xEQPfYjIDrsQ0D02I/ib2eVRvzcMe5HrZKenh7WVt3BkYYNG1Z5fQAAAAAAAAAAAAAAANWJ4EiAZs2ahbVt2bKlyuur6LYVbQMAAAAAAAAAAAAAACARCI4EaNmyZVjb8uXLq7y+ZcuW7dI2UPOkpqbqjjvuCBs2CMCuYz8Cosd+BESHfQiIHvsREB32ISB67EdA9NiPgOiwDwHRYz+q+Vw+n8+X6E7UFM8//7wuuuiioLYLL7xQzz33XJXW16FDBy1cuPB/l5OSklRUVCSPxxNVPwEAAAAAAAAAAAAAAKoDFUcCdO7cOaxtwYIFVVpXSUlJWMWRDh06EBoBAAAAAAAAAAAAAAA1BsGRAH379pXbHfwvmTZtmsrKyiJe17Rp01RaWhrU1q9fv6j6BwAAAAAAAAAAAAAAUJ0IjgRo2LCh+vbtG9S2detWzZw5M+J1/fDDD2FtBx10UJX7BgAAAAAAAAAAAAAAUN0IjoQ46qijwtr++9//RryeCRMm7NK6AQAAAAAAAAAAAAAAEsXl8/l8ie5ETTJnzhz16NEjqK1FixZatmyZUlJSdmkdM2fODBuWZu+999ZPP/1Ubf0EAAAAAAAAAAAAAACIFhVHQnTv3l0HHHBAUNvatWv16KOP7vI6br755rC2yy+/POq+AQAAAAAAAAAAAAAAVCcqjlTgs88+CxtWJjU1VT/++GNYJZFQTz75pEaMGBHU1r59e82bN0/JycnV3lcAAAAAAAAAAAAAAICqouJIBY488kgNHTo0qK24uFiHHHKIPvzwwwpvU1paqrvvvltXX3112HX//Oc/CY0AAAAAAAAAAAAAAIAah4ojlcjLy1Pfvn21fPnysOsGDBigoUOHqn379tq2bZvmz5+v119/XStWrAhb9qqrrtITTzwRjy4DAAAAAAAAAAAAAABEhODIDvz5558aPHiwVq9eXaXbn3baaXrjjTeUlJRUzT0DAAAAAAAAAAAAAACIHkPV7EDXrl01depUHXjggRHdLjk5WXfeeafefPNNQiMAAAAAAAAAAAAAAKDGouLILvD5fHr77bf1+OOPa8qUKarsX9aoUSOdeuqpGj16tDp37hznXgIAAAAAAAAAAAAAAESG4EiE1q5dq19++UULFy5UQUGBPB6PsrOz1bVrVw0cOFApKSmJ7iIAAAAAAAAAAAAAAMAuITgCVKK4uFhbt25VWVmZ0tPT1bBhQ7lcrkR3C6hV2I+A6LAPAQAAAKhvFi5cqKlTp+qvv/7S4sWLtWzZMm3evDnss1GLFi3Utm1btW/fXr1791a/fv2Unp6e6O4DAOoA3ouA6LAP1U6eRHcASLTff/9dU6dODXoBW758ucrKysKWbdq0adAL2MCBAzVw4EA1bdo0AT0Hag72IyA67ENA9AoKCjRt2rQqfSgdOHAgQ00CYj8CosU+BFTNypUrNXHiRH3yySeaNGmSNm7cWOFygb9/rChQ73a71b17dx155JEaMmSIDjjgACUlJcWs30BNxHsRUDW8FwHRYR+qG6g4gnqnsLBQ77//vj7++GN9/vnnWr9+fdD1u7JLBL6YuVwu9e/fX0OGDNHQoUPVp0+f6u4yUOOwHwHRYR8CqseUKVP08ccf65NPPtFvv/0Wtu/saF8K/XCalZWlww8/XEOGDNExxxyj7OzsmPQZqGnYj4DosA8BVbNlyxa9/fbbeuWVV/T999//b1/Z1X1mV5Zr1qyZzjjjDJ1zzjkaMGBANfUcqHl4LwKqhvciIDrsQ3UPwRHUG99++61efPFFvfvuu9q6daukil+UdmUIgB3drnv37jrvvPN03nnncWCNOof9CIgO+xAQvYULF+rll1/Wq6++qiVLlkiq/IPmjvalHe1DHo9HRx55pM477zwNHTr0/9m77/ioqvz/4++bHkIPvUU6CIZiEAtC6CCIoCj2BoKguC5YQEUEVEAXaYqyIq76VRdFQASiQOgLKE0CKoHQAwQwgQAppN3fH/4yZpIASe6UZPJ6Ph55bO5l7jmfceedM3PPmXvl48OFGuFZyBFgDRkCiu7w4cOaMWOGPv3003w/Ezni1pz5tdemTRuNHj1a9913H99ahUdgLAKKjrEIsIYMeS4WjsCjpaen66uvvtL06dO1Z88eSQX741WYVdj5HWMYhvz9/fXII4/o+eefV/PmzYtSPlAskCPAGjIEOMb69ev13nvvafny5TJNs8AfSHNnqaCPzX5cjRo19Oyzz2rYsGHcEgolHjkCrCFDQNFFR0dr/Pjx+u6775SVlWV7refOQ36fg3x9fVWmTBkFBgbKx8dHKSkpSklJUXJycr59XembrIZhqHbt2nrllVc0ZMgQJsFRIjEWAUXHWARYQ4Y8HwtH4JGysrI0f/58TZo0SbGxsVd8A5375V+xYkXVqVNHNWvWzPcPWEJCgmJjYxUXF6eMjAy7Y/Nr1zAMGYahgQMHauLEiWrSpIkzni7gFOQIsIYMAY6xevVqvfbaa9q2bZsk5fuhNL+PNGXLlr1qjs6cOaOsrCy7Y670QdcwDAUGBurZZ5/Vyy+/rEqVKjn0OQLORo4Aa8gQUHSxsbF6/fXX9X//93/KzMzMk5+c2bnuuuvUrl07tWrVSjfccINCQkJUp06dK05Sp6WlKTY2VidOnNC+ffu0e/du7d69W9u3b9fly5ft+snZl2EYuu666zRx4kQ99NBDTnnegKMxFgFFx1gEWEOGSg8WjsDjLF68WGPGjFFMTMxV/3iFhISoc+fOdn/AypUrV6A+TNNUTEyM7Q/Yxo0b9fPPP+f5I5azf29vbz322GN66623VK1aNYc9X8AZyBFgDRkCrNuxY4defPFFrV+/XtJfr+X8Pij6+/vrlltuyfOhtHz58ldtPzMzUydPnrT7ULpx40YdO3bM9pj8clS+fHm98MILeuGFF+Tv7+/Q5ww4GjkCrCFDQNGlp6fr3Xff1eTJk5WcnGyXn+zXc2BgoHr16qU777xTnTt3VkhIiEP6vnz5sjZv3qzVq1dr0aJFio6OlpR/nm6++WZ98MEHat26tUP6BhyNsQgoOsYiwBoyVAqZgIfYt2+f2aNHD9PLy8s0DMM0DMP08vKybXt7e5sdO3Y0Z82aZR4+fNjh/aekpJgrV640hw0bZlavXj3fGry8vMyKFSuas2bNMjMzMx1eA2AVOQKsIUOAdfHx8eZTTz1lent7271uc+YqJCTEHDVqlLl27VozNTXVof0fOnTI/Pe//2327NnT9PPzs8tRzt/r169vLl261KF9A45CjgBryBBgXZMmTfLNj5eXl9mjRw9zwYIFZlJSkktq2bt3rzl27FizZs2a+ebJx8fH/Pzzz11SC1BQjEWAdYxFgDVkqPRh4Qg8hp+fn90frew/Fg0bNjTffvtt89SpUy6rJSsry1y5cqV5zz332N5Y5/6jOnnyZJfVAxQUOQKsIUOAdZUrV873Q2m5cuXMoUOHmj///LPLajl37pw5d+5cMyws7IonSmfNmuWyeoCCIkeANWQIsC53fipWrGiOGTPGPHLkiNtqysjIMBctWmR27NgxzyL7CRMmuK0uID+MRYB1jEWANWSo9PFy9xVPAEdJT0+3/W6apsLDwxUREaGYmBiNHTtWNWrUcFkthmGoe/fuWrhwoY4fP67XXntNFStWtLuMU1pamsvqAQqKHAHWkCHAunPnzkn66zVsmqYaNGigDz/8UKdOndLcuXN10003uayWihUraujQodq2bZt27typhx9+WN7e3rb6ctYLFCfkCLCGDAGOYZqmqlatqsmTJ+vYsWOaPHmywy5fXhTe3t4aMGCA1q9fr40bN+qOO+6wu5UoUJwwFgGOwVgEWEOGShcWjsCjmKap3r17a8uWLVqzZo169uzp7pJUrVo1TZw4UceOHdM777yj4OBgd5cEXBU5AqwhQ4B1pmmqRYsW+vrrrxUdHa1hw4YpKCjIrTW1bt1an3/+uWJiYjRixAj5+vq6tR7gWsgRYA0ZAqwpW7asxo8fr4MHD+rll19WuXLl3F2Sndtuu03Lli3Tpk2bdOutt7q7HCBfjEWANYxFgDVkqPQxTJbhwEO0b99e77zzjjp16uTuUq7q4sWLmjp1qipVqqTRo0e7uxzADjkCrCFDgHUhISGaOHGiHn30Udu314qjw4cPa9y4cWrWrJlee+01d5cD2CFHgDVkCLDuzJkzqlatmrvLKLCzZ8+qatWq7i4DsGEsAqxjLAKsIUOlDwtHAAAAABQbly9flr+/v7vLKLCSVi9Kh5L2uixp9cLzlbTXZEmrFwBwbSXtb3tJqxcAAOTFwhEAAAAAAAAAAAAAAIBSysvdBQAAAAAAAAAAAAAAAMA9WDgCAAAAAAAAAAAAAABQSrFwBAAAAAAAAAAAAAAAoJRi4QgAAAAAAAAAAAAAAEAp5ePuAgAAAAAAAAAAyCk5OVnJyclKS0uTaZry8/NTUFCQypQp4+7SAAClBGMRYA0ZKllYOAIAAAAAACRJmZmZ+vPPPxUfH5/vyZ3g4GBVqVJF3t7e7i4VKJbIEFB40dHR2rhxo3bs2KHo6GgdOnRIp0+fVlpaWr6P9/PzU/Xq1VW/fn01a9ZMbdu2VceOHdW0aVMXVw4UT4xFQOExFgHWkCHPYJimabq7CAAAAAAA4Fqpqalav3693cmd2NhYZWZmXvU4Ly8v1alTx+7kTqdOnRQQEOCiyoHigQwBRXfkyBF9/PHH+vrrr3X06FG7fyvo6WrDMOy269WrpwcffFBDhgxR/fr1HVYrUJwxFgFFx1gEWEOGPA8LR1BqJCQkKCIiQocOHVJcXJwCAwNVs2ZNtWvXTh06dJCXl5dD+hk6dKhiYmIk/fUHLzIy0iHtAsUBOQKsIUOAdVlZWdqyZUueHIWFhSkkJMRh/bzxxhs6duyYpL9y9MknnzisbcDdNm3apA8//FDff/+9UlJSbPsLe3og5wmegIAA9e/fX08//bRuv/12h9UKFEdkCCi6M2fO6OWXX9aXX36pzMzMfHOTewLhSq50rLe3tx588EFNmTJFNWrUsFwzUBwxFgFFx1gEWEOGPBcLR+DxYmJiNHr0aEVERFxxpXXlypX15JNP6qWXXlJwcLCl/tq0aaOoqCiZpinDMK65uhsoCcgRYA0ZAqw7d+6c3njjDX311VdKSEjI9zGhoaEaOnSohgwZIl9fX0v9kSN4or1792rkyJHasGGDpLwnaAp6YifblY6//fbbNXv2bN1www0WqgWKHzIEWPP999/riSeeUGJiou31f63cFDZnOdstX7685s+frwEDBlioGiheGIsAaxiLAGvIkGdj4Qg82rx58zRy5EjbfRyvxjAMVapUSdOmTdNjjz1W5D6ZZICnIUeANWQIsC4iIkKPPfaY4uPjC5SjRo0aae7cuQoPDy9yn23atNHu3bttbZIjlHSzZs3SSy+9pPT09Gue3ClIzq51nK+vr6ZOnarnn3++aAUDxQwZAqz58MMPNXLkSGVlZUmyz0HuzHh7e6tmzZoqW7asAgMDFRgYKMMwlJKSopSUFF26dEmnTp1SRkaG3XH5tWkYhmbNmqVnnnnGWU8NcBnGIsAaxiLAGjLk+Vg4Ao/1wQcf6Lnnniv0ijfDMDRw4EDNnz9fQUFBhe6XyTp4EnIEWEOGAOsWL16sBx54QGlpaZKunqOcH228vLw0evRoTZ48uUi3gSJH8CRjx47VO++8k+94lDM3Pj4+ql27turWrXvVkzvHjx/XiRMnlJ6ebjv2Sid3XnjhBU2dOtXZTxFwKjIEWPPDDz+of//+tvdV2UzTlL+/v8LDw3X77bfr1ltvVcOGDVW7du1rvn/LysrSyZMndfDgQW3evFmbNm3S2rVrlZqamqcPLy8vLV68WHfeeafTniPgbIxFgDWMRYA1ZKh0YOEIPNKOHTt0yy23KCMj46or3qS8kw/Zf/SaN2+uH3/8UXXq1ClU30wywFOQI8AaMgRYFxMTo9atWys5OTnfnOR0pRyFh4dr0aJFqlChQqH6JkfwFPPmzdPQoUMl/Z2T7PzUqFFDd911l+3kTr169Qq80Mo0TR07dsx2cuf777/XyZMn84x5hmFo7ty5GjJkiIOfGeAaZAiwJjExUU2aNNHZs2ftMlS9enW9+OKLevzxx1W5cmWH9HXu3Dn95z//0b/+9S+dOnXKrr+qVatq//79hX5PCBQHjEWANYxFgDVkqPRg4Qg8jmmaCg0N1W+//ZbnTW5oaKh69+6tevXqKTk5WTExMfr+++8VFxeX76RevXr1FBkZqYYNGxa4fyYZ4AnIEWANGQIco2PHjtq0aVOebAQHB6tbt252OVq3bp0uX76c70nOVq1aaeXKlapSpUqB+yZH8AQnT55Us2bNlJSUZNtnmqZatGihCRMm6K677pK3t7dD+srMzNTSpUv1xhtvaM+ePXYnd8qWLavo6GjVrFnTIX0BrkKGAOsmTJigCRMmyDAM22ece+65R3PnznXYBENu58+f19ChQ7Vw4UJbv4Zh6PXXX9f48eOd0ifgLIxFgHWMRYA1ZKgUMQEPs2zZMtMwDNPLy8v08vIyDcMwK1WqZH733Xf5Pj4jI8P87rvvzKZNm9odl31srVq1zD/++KPA/bdu3dp2rJeXl6OeFuBS5AiwhgwB1q1fvz5Pjvz9/c1p06aZ6enpeR6fkJBgTps2zaxSpUqe4wzDMFu0aGHGxcUVuH9yBE8watQo22s4+39HjRplpqWlOa3PtLQ0c/To0fn2C5Q0ZAiwrm7dunav5f79+5tZWVlO7zcrK8u866677LJUt25dp/cLOBpjEWAdYxFgDRkqPbjiCDzOnXfeqeXLl9tWoJUrV06bNm3SDTfccNXjLl++rDFjxmjmzJl5vqlatWpVRUZGqmXLltfsn2+nwhOQI8AaMgRY98ADD2jBggW2HPn5+Wn58uXq2rXrVY+Lj4/XkCFD9P333+e5jHPjxo21Zs0a1a5d+5r9kyOUdKZpqlq1akpISLC9jocNG6Y5c+a4pP/hw4dr7ty5tgxXqVJFZ86ccUnfgCOQIcC633//XS1btrS9joOCgnT8+HFVrFjRJf2fP39edevWVXJysi3HUVFRatGihUv6B6xiLAKsYywCrCFDpUvBbnYHlBBZWVlat26d3WWL3nvvvWtO1EmSv7+/pk+frm+//VZlypSx7TcMQ2fPnlXnzp3166+/OrF6oHggR4A1ZAhwjJ9++skuRxMmTLjmohFJCg4O1uLFi/Wvf/3Ldm/v7AUkBw4cUKdOnXTs2DGn1g4UB7/++qvi4+Nt25UqVdK0adNc1v97771nd8na+Ph47dy502X9A1aRIcC6qKgo2++GYeiBBx5w2SSDJFWsWFEPPPCAcn5vMmdNQHHHWARYx1gEWEOGShcWjsCj7Nmzx+5+j3Xr1tUTTzxRqDbuuecerV+/XtWrV7ftMwxD8fHx6tq1q3bs2OGweoHiiBwB1pAhwLp9+/bp/Pnztu2qVavq+eefL1Qbo0aN0pIlS2yLsAzDkGEYOnTokDp16qQjR444rmCgGNq7d6/td8Mw9NBDDykwMNBl/QcGBurhhx+2O7mTsyaguCNDgHUnT56U9PfV31q1auXyGnL3mV0TUBIwFgHWMRYB1pCh0oWFI/Ao+/bts/1uGIbuuOMO2zdNC6Nt27batGmTQkJC7No7d+6cunXrpm3btjmkXqA4IkeANWQIsG7Pnj2237Nz5O/vX+h2+vTpo8jISLtvyRmGoaNHj6pTp046dOiQQ+oFiqPTp09L+vvkzvXXX+/yGpo3b55vTUBJQIYA61JSUuy2q1at6vIaqlSpIunvK9Clpqa6vAagqBiLAOsYiwBryFDpwsIReJRz585J+vvNdOvWrYvcVoMGDbRx40Y1adLE1p5hGEpMTFT37t21detWy/UCxRE5AqwhQ4B1uXMUFhZW5LZuuukmrV27Ns8VfI4fP67w8HDFxMRYKxYopi5fvmy3XaFCBZfXkN1n9smd9PR0l9cAFBUZAqwLCgqy2z5+/LjLazhx4oSkv99X5rwlKFDcMRYB1jEWAdaQodKFhSPwKNmTDNlyfru0KGrXrq3169erZcuWdhN2Fy5cUM+ePbV582ZL7QPFETkCrCFDgHW5c2T12wwtW7bUunXrVLNmTds+wzAUGxur8PBw7d+/31L7QHFUtmxZu+2jR4+6vIZjx45J+vvkTu4TTkBxRoYA6+rWrSvp7wnnTZs2ubyGjRs35lsTUBIwFgHWMRYB1pCh0oWFI/Aofn5+dttJSUmW26xWrZrWrVun1q1b203YXbx4Ub169XLLH0nAmcgRYA0ZAqzLfXsnR1yCskmTJtqwYYPdh0vDMHTy5El17tzZ7jZTgCeoX7++pL9P7qxatcrlNaxcudJu+7rrrnN5DUBRkSHAupxXXzRNU8uWLXPpgt3o6Gj98MMPthxLUps2bVzWP2AVYxFgHWMRYA0ZKl1YOAKPUrFiRbvtM2fOOKTdypUra82aNWrbtq3dhN2lS5fUu3dvrV+/3iH9AMUBOQKsIUOAdblzdPbsWYe026BBA61fv14hISG2fYZh6NSpUwoPD9cff/zhkH6A4uDGG2+0/W6aptauXauff/7ZZf1v3bpVa9assTu5k7MmoLgjQ4B1DRs2VOPGjSX99Z4rMzNTAwYMUGJiotP7Pn/+vAYMGKCsrCzbvkaNGqlhw4ZO7xtwFMYiwDrGIsAaMlS6sHAEHqVOnTqS/l6FfeDAAYe1XbFiRa1Zs0bt2rWzm7BLSkpSnz59tG7dOof1BbgTOQKsIUOAddm3lMnO0eHDhx3WdkhIiNavX2/79l52P2fOnFF4eLh+++03h/UFuFPt2rVt3wwyDEOmaeruu+92yf2Ijx07pnvuucdukqFVq1a2MRIoCcgQ4BjDhg2z++zyxx9/6Oabb9aWLVuc1ufWrVt1yy23aN++fbb8GoahYcOGOa1PwBkYiwDHYCwCrCFDpQcLR+BRWrRoYfvdNE2Hf/u6fPnyWr16tdq3b2/3RzI5OVl9+/bV6tWrbX0DJRU5AqwhQ4B1uXO0YcMGh7Zft25drV+/3u4bCoZh6OzZs+rSpYuioqJsfQMl2YgRI+zGilOnTqlt27ZasGCB0/r89ttv1a5dO506dUqSbCd3nnnmGaf1CTgLGQKsGzFihOrVq2fbNgxD0dHR6tixowYMGKCffvrJIe+5TNPUypUrdffdd+v2229XdHS0XZ/16tXTiBEjLPcDuBpjEWAdYxFgDRkqPQyTs6HwMJUrV1ZiYqLtDW1sbKztW6uOcunSJfXs2VNbtmyxrbo2TVOBgYEKCAjQuXPnJP192SagpCFHgDVkCLCuXLlySk5Olmma8vLy0tmzZ1WpUiWH9nHy5El16dJF+/fvt317QZKCg4Pl4+Oj06dPSyJHKLmysrLUunVruyvpZI9NN9xwg4YPH667775bVatWtdTPn3/+qUWLFumjjz7S7t27bX1ka9mypXbt2iUvL767gpKFDAGO8b///U9dunRRRkaGJNlNgktS2bJldcstt+iWW25Ro0aNFBISorp166ps2bK2zzeGYSglJUUpKSm6dOmSYmNjdfToUcXExGjLli3asmWLLl68mKd90zTl6+urNWvW6LbbbnPDswesYSwCHIOxCLCGDJUOLByBx+nfv7+WLl0q6a8/KO+++65GjRrl8H6SkpLUu3dvbdq0yW7CLvfvTDKgJCJHgDVkCLCuV69eWrlypaS/cvThhx9q6NChDu8nLi5OXbp0sV36UiJH8CzZl5C9dOmSbV/uEzyNGze2dHJn//79+bZrmqbKlSunrVu3qnnz5q582oDDkCHAMRYtWqQHHnjANtkg2V/dLecEdVHk15ZpmvLx8dFXX32lgQMHWmofcCfGIsAxGIsAa8iQ52PhCDzOrFmz9Pzzz9tWobVo0UJ79uxxSl/Jycnq06eP1q9fn2dygUkGlGTkCLCGDAHWTZ06VWPHjrW9rtu1a6etW7c6pa8zZ86oS5cu+v3338kRPNLmzZvVp08fXbhwwbYv96mAop7guVI7pmmqfPnyWrZsmTp06FCktoHiggwBjrF582Y98MADOn78eJ7MWD1FnV97derU0VdffUWG4BEYiwDHYCwCrCFDno3risHj9OzZ0277999/1//+9z+n9FWmTBmtWLFCXbt2zbMaGyjJyBFgDRkCrOvRo4ftd9M0tW3bNkVFRTmlr2rVqmndunUKDQ0lR/BIt956q7Zt26Ybb7zR7jWe88c0zSL95G5H+iuzbdu21bZt2zi5A49AhgDHuPXWW/XHH39o7NixKleunC0HUt5MFfZHkq29smXLasyYMfrjjz/IEDwGYxHgGIxFgDVkyLNxxRF4pNDQULv7Pnbp0kWrVq1yWn+XL1/WgAED9OOPP3JZc3gMcgRYQ4YA6xo1aqTDhw/btu+++259++23Tuvv3Llz6tatm3bt2kWO4JFM09S8efM0ZcoUW7YctUgq+9TCddddpzFjxmjIkCHy8uK7KvAsZAhwnMTERP3f//2fFixYoC1btuR5r3WtbOU+pe3t7a2bb75Z999/vx5++GFVqFDB4TUDxQFjEeA4jEWANWTI87BwBB5p0qRJGj9+vG3bMAytW7dOt99+u9P6TE9P17333qulS5fa9cskA0oqcgRYQ4YA68aMGaN33nnHtu3l5aWdO3cqNDTUaX0mJiaqZ8+e+uWXX2z7yBE8TVZWln788Uf997//1cqVK3XmzJl8H1fQy85WrVpVPXr00P33369evXrJ29vb4TUDxQkZAhzrwoUL2rJli3bs2KF9+/bpyJEjiouLU0JCgpKSkpSeni5J8vX1VZkyZRQcHKzq1aurfv36atq0qW688UbdeuutKl++vJufCeA6jEWAYzEWAdaQIc/AwhF4pNTUVJ0+fdpuX4UKFVSxYkWn9puZmakFCxbY/gBK0mOPPebUPgFnIUeANWQIsC4+Pl579+6121e/fn3Vq1fPqf1eunRJs2bNsstRzoVggKeJjo62dHKnWbNmbn4GgHuRIQCAuzEWAQAAq1g4AgAAAAAAAAAAAAAAUEpxgzoAAAAAAAAAAAAAAIBSioUjAAAAAAAAAAAAAAAApRQLRwAAAAAAAAAAAAAAAEopFo4AAAAAAAAAAAAAAACUUj7uLgAAAAAAAAAAAAAASpI+ffrojz/+kCQZhqGDBw+6uSKgZMnMzNShQ4eUkJCgMmXKqGrVqqpevboMw3B3aaUSC0cAAAAAAAAAAABKkTZt2igqKkrSXxPeGRkZbq4IKHlOnjypI0eOSBIT3Sh1Tp06pf379+v06dMKCAhQw4YN1aJFiwIdu27dOs2YMUNr1qxRUlKS3b+VL19e3bp10wMPPKC7777bGaXjClg4AjjIsWPH7LarV68uf39/N1UDlEzkCLCGDAEAAAAoCbKysrRlyxYdOnRIcXFxCgwMVM2aNRUWFqaQkBCH9fPGG2/YPicZhqFPPvnEYW0DnsA0TXeXAJR4hmGQJZQqCxYs0Hvvvaft27fn+bfq1atr5MiRGj16tPz8/PL8e3Jysp5++ml9+eWXkvIfhxITE7Vo0SItWrRIYWFh+uSTT9SyZUvHPxHkYZj8NQMcwsvLy25FadWqVfXyyy9r+PDhCggIcGNlQMlBjgBryBBgnbe3t912ixYtNGHCBA0YMMBNFQGOl5CQoIiIiDyTde3atVOHDh3k5eXlkH6GDh2qmJgYSX+dTI2MjHRIu4C7kSGg6M6dO6c33nhDX331lRISEvJ9TGhoqIYOHaohQ4bI19fXUn/ZV1QwTVOGYSgzM9NSe4AnIR+AdeQIpUlKSoruvfdeRURESLry4kPDMNSiRQtFRESodu3atv3Jycm64447tHHjRtuxV7pST862K1SooB9++EEdOnRw1FPBFbBwBHCQ/E4MGYahGjVqaOzYsRo6dGi+q+sA/I0cAdaQIcC6K+WodevWmjBhgvr27euGqgDHiImJ0ejRoxUREXHFE5qVK1fWk08+qZdeeknBwcGW+uMkKjwNGQKsiYiI0GOPPab4+PhrfjPbMAw1atRIc+fOVXh4eJH7bNOmjXbv3m1rkxwBf2OcAawjRygt0tLS1KtXL61fv77Aiz4aN26s7du3q1y5cpL+Whg/b968PMflfl+Y37+XL19ee/bsUd26dR3yfJA/Fo4ADpL7W96S7P541q5dW6+++qoGDx4sHx/uEgXkhxwB1pAhwLrcOcr5cckwDLVr104TJkxQz5493VEeUGTz5s3TyJEjlZaWVqDJukqVKmnatGl67LHHitwnJ1HhScgQYM3ixYv1wAMPKC0tTdKVJxok+/dfXl5eGj16tCZPnlykq/mQI+DKyAdKiyeffNJpbX///fc6f/68LUfXeu/HbdNQUo0bN05vvfVWgRd9ZGfiySef1Mcff6xffvlFN998c55zbhUqVFBYWJiqVq2q5ORkHTp0SHv37s3TliR169ZNK1eudNpzBAtHAIfJb7IuW85Ju3r16mncuHFOfbMClFTkCLCGDAHWFTRHt9xyiyZOnKguXbq4sjygSD744AM999xz1/xWULacjxs4cKDmz5+voKCgQvfLZAQ8BRkCrImJiVHr1q2VnJxcpG+YGoah8PBwLVq0SBUqVChU3+QIJZ0zP29s27ZNycnJtnx06tTpqo/ntmkoqa72Od8Rcn/h5GqPYyxCSXT48GE1a9ZMGRkZtn2macrf31/h4eFq3ry5/P39dfz4ca1evVpnzpyRYRgyTVM+Pj6Kjo7WSy+9pO+++862v0GDBnrnnXfUv3//PIuDjx8/rokTJ+qTTz7JsxBl06ZNuuWWW1z6/EsTFo4ADnK1bz3kXkHHmwMgf+QIsIYMAdYVJEfZH6G8vLzsPjQDxdGOHTt0yy23KCMj44pX08l2pcm65s2b68cff1SdOnUK1TeTdfAEZAiwrmPHjtq0aVOeDAUHB6tbt26qV6+ekpOTFRMTo3Xr1uny5cv5fn5p1aqVVq5cqSpVqhS4b3KEko4Jb8C67BwVh+lQcoSS6NVXX9XkyZNtOTIMQ3369NFHH32kWrVq2T02PT1d06ZN02uvvaasrCwZhqEXX3xRs2bN0uXLlyVJN910k1asWKFKlSpdtd///Oc/Gjx4sKS/x6FHH31Un376qXOeKFg4AjjLn3/+qbVr12rNmjVau3at9u/fb/s33hwABUOOAGvIEFB4R48etds+e/asLUebNm1SUlKS7d/IEYo70zQVGhqq3377Lc8EXGhoqHr37m03Wff9998rLi4u38nxevXqKTIyUg0bNixw/0zWoaQjQ4B1GzZsUHh4uN0CXD8/P7399tt67rnn8txC89y5c/r00081efJkxcfH51m4e/311ysyMlLVq1cvUP/kCCVdcZjwzjlRSIZQErEAC7AmJCREsbGxttdwjx49tGLFiqu+3j/66CONGDFChmHI399fqampkqRKlSopKipKtWvXLlDfo0aN0owZM2xjUZUqVXTmzBmHPC/kxcIRwEVOnjyptWvXKjIyUuvWrdOhQ4fcXRJQ4pAjwBoyBFiTkZGhX375xZajrVu3Kjk52d1lAVe0fPly3XnnnXaTbhUrVtS8efN0991353l8Zmamvv/+e73yyivav39/nsnvmjVrKjIyUs2aNStQ/0zWoaQjQ4B1DzzwgBYsWGA72e/n56fly5era9euVz0uPj5eQ4YM0ffff59n8Ujjxo21Zs2aAk04kCOUdEx4A9YVhwVY2cgRSppTp06pdu3atgz5+vrq4MGDBbqa4q233qqtW7fatg3D0CuvvKJJkyYVuP9z587ZFutnj0UxMTGqX79+kZ4Pro6FIwAAAABQBGlpafLz83N3GcAV3XnnnVq+fLntBE+5cuW0adMm3XDDDVc97vLlyxozZoxmzpyZZ+K7atWqioyMVMuWLa/ZP5N1KOnIEGBd5cqVlZiYaHsdv/3223r55ZcLfPx7772nl19+WVlZWZL+nuRu0KCB1qxZo3r16l31eHKEko4Jb8C6nDkyDEPt27fX+PHjFRAQYLntIUOG6NChQ7a216xZc81jOnXqZLlfwFVyL6bv06ePli5dWqBj58+fryFDhtjlb+/evWrevHmharjvvvu0cOFCSX+NRd9995369+9fqDZQMD7XfggAAAAAIDcWjaA4y8rK0rp16+xO0Lz33nvXnPCWJH9/f02fPl0dOnTQ448/bruyjmEYOnv2rDp37qxVq1apdevWTn4WgPuQIcC6ffv26fz587aJhqpVq+r5558vVBujRo1S06ZNdf/99ys5OdnW1qFDh9SpUyetXbtW1113nYMrB4qn7AnvWbNmqWrVqpbaMk1Tffr00b59+2zjHFclhadq3LixDhw4YBtDfv75Zz3//POaN2+ebrvtNkttly1b1m6bRSHwNHFxcXbbhclMhw4d7LbLlStX6EUjknTzzTfbFo5If12ZDs7h5e4CAAAAAACAY+3Zs0dJSUm27bp16+qJJ54oVBv33HOP1q9fr+rVq9v2GYah+Ph4de3aVTt27HBYvUBxQ4YA6/bs2WP73TAM3XHHHfL39y90O3369FFkZKQqV65s197Ro0fVqVMnJrvh0Tp27Ghb2CH9NeHdu3dvbd68WSEhIUX+ue666/IshC/IcUBJtHv3bj3//PN2V4KLjo5Wp06d9I9//INb0AJXcf78eUl/X/WtILeoyZb7toJFXfRYo0YNSX/fUi27JjgeC0cAAAAAAPAw+/bts/2ePVnn5VX4UwBt27bVpk2b7CYKDMPQuXPn1K1bN23bts0h9QLFDRkCrDt37pykvycawsLCitzWTTfdpLVr1+ZZiHX8+HGFh4crJibGWrFAMbVu3TrNmDFDgYGBtizFx8fr4Ycf1l133aWTJ0+6uUKg+AsICNB7772ndevWqUGDBrbFWFlZWXr//fd1ww03KDIy0t1lAsXS5cuX7bYLc4un3I8tygJiKe8Vf9PS0orUDq6NhSMAAAAAAHiY3JN1Vm6J0aBBA23cuFFNmjSxtWcYhhITE9W9e3dt3brVcr1AcUOGAOuyc5TN6q01WrZsqXXr1qlmzZq2fYZhKDY2VuHh4dq/f7+l9oHi6rnnntOvv/6q2267zTbhbZqmli1bphYtWmj+/PnuLhEoETp06KCoqCg9++yzkv6+esHhw4fVo0cPDR06VBcuXHBniUCxU6FCBbvtwlztI/djExISilRD7s9m5cuXL1I7uDYWjgAAAAAA4GFyT9blvLx/UdSuXVvr169Xy5Yt7Sa+L1y4oJ49e2rz5s2W2geKGzIEWJf7Kj2pqamW22zSpIk2bNigunXr2vYZhqGTJ0+qc+fOdlcLAjxJo0aNtGHDBv3rX/9SQECAbcI7MTFRTz31lHr06KFjx465uUqg+AsMDNSsWbO0Zs0aXXfddXaLsT755BO1aNFCy5cvd3eZQLFRqVIlSX8vtMp5K8Jr2bt3r9326dOnFR8fX+gacvdZsWLFQreBgmHhCAAAAAAAHib3pVyTkpIst1mtWjWtW7dOrVu3tpv4vnjxonr16qVNmzZZ7gMoLsgQYF3uk/pnz551SLsNGjTQ+vXr89wC6tSpUwoPD9cff/zhkH6A4sYwDI0aNUq7du1S+/bt7Sa8V69erZYtW+qDDz5wd5lAidCpUyft2bNHTz/9tKS/J8VPnDihfv366eGHHy7y1REAT9KsWTPb76ZpasWKFQU+Nr9FWCtXrix0DStXrrRlVJLde0A4lo+7CwDc6fTp04qOjtahQ4dsK92Sk5OVlpYm0zTl5+enoKAgBQcHq3r16qpfv76aNWtmdz9VoLQjR4A1ZAiwzjRNHT9+vFA5qlevnt2HTsDT5J6sO3PmjEParVy5stasWaNu3bpp586dMgxDhmHo0qVL6t27t5YtW6ZOnTo5pC/AncgQYF32LWVy3grAUUJCQrR+/Xp17tzZ1q5hGDpz5ozCw8O1Zs0atWjRwmH9AcVJkyZN9L///U/vvvuu3njjDV2+fFmSdOnSJT333HNasGCB5s+fr0aNGrm5UqB4K1OmjObMmaOBAwdq8ODBOnr0qG0x1tdff61Vq1bp/fff17333uvuUgG3ueGGG+Tn56f09HRJ0sGDB/X111/rgQceuOpxcXFxmjdvni1T2f87bdq0ax6b0w8//KD9+/fb3k96eXmpbdu2RX9CuCoWjqBUuXjxohYvXqyIiAht2LBBcXFxRWqnRo0a6tixo3r16qUBAwZwPy2UKuQIsIYMAY6xYcMGRUREaOPGjdq9e7eSk5MLdXxgYKBatWplyxGTdPA0derUkfT3ZN2BAwcc1nbFihW1Zs0ade/eXdu2bbNNfCclJalPnz5atmyZwsPDHdYf4A5kCLAu58IN0zS1YcMGh7Zft25d2+KRgwcPSvors2fPnlWXLl20atUqW9+ApzEMQy+99JLuvPNOPf7447bxxDRNbdq0Sa1atdIbb7yhF154gQXzwDV06dJFe/bs0ejRo/Xxxx/bMnP27Fndf//9+u9//6s5c+bwJS6USr6+vuratasiIiJs48wzzzyjRo0aqV27dvkec/HiRQ0cOFDnz5+XYRgKCwvTzp07ZZqmdu3apTfeeENvvPHGNfuOi4vT008/bTeOhYaGqkyZMo56esjFMHnnjFIgJiZGU6ZM0ddff227n6rVl372Hyp/f389+OCDevnll9W4cWPLtQLFFTkCrCFDgHWJiYmaPXu2/v3vf+vEiRO2/UXNUs4PnrVq1dKwYcP07LPPcq9UeITY2FjblXVM01Tjxo0VHR3t0D4uXryoHj166Oeff7blyTRNlSlTRkuWLNGLL76o3bt3S/orb5mZmQ7tH3AmMgQ4Rrly5ZScnCzTNOXl5aWzZ8+qUqVKDu3j5MmT6tKli+3bqNnvDYODg+Xj46PTp09LIkfwXFlZWZo6daomTJhg+0Z49re7w8LCNH/+/HyvwNOmTRtFRUXZHks+AGnVqlUaMmSIjh8/bnelhIoVK2r69Ol69NFH7R5PjlAafPfdd7r33nvtPrP4+/vrmWee0f3336/mzZvLz89Px48f148//qipU6cqNjbWlosPP/xQX3zxhf73v/9J+vvWa5MmTVJAQEC+fW7fvl3333+/Dh06ZJfF6dOn67nnnnPZcy9tWDgCj5aRkaFx48Zp+vTpSk9Pt5tUsLrSOndbPj4++uc//6lJkybJ19fXUttAcUKOAGvIEOAYc+fO1SuvvKLz58/nWShS1Czl106FChX09ttv2+5zDJRklStXVmJiou0ES2xsrO22AY5y6dIl9ezZU1u2bLE7iRQYGKiAgACdO3dOEpN1KJnIEGBdr169bPeyz544GDp0qMP7iYuLU5cuXbRv3z67LOX+nRzBk/3222967LHHbLdCy/684+fnp1deeUWvvPKKfHz+vgg9E95A/i5evKjnn39en376aZ5xpGfPnpo7d67q1q0riRyhdMjMzFRYWJiioqJs+3K+z8ot5/m2atWq6ciRI1q4cKEeffRRu0Ug1atX17333qubb75ZVatWVUpKig4fPqwVK1Zo1apVed7LlS1bVseOHeMLX07EwhF4rPj4ePXt21e//PKL7Y9U7j9ijvh2as52sldxL1++XFWqVClS20BxQo4Aa8gQYF1qaqoeeughLVmy5Io5kgqfpau1YRiG+vXrp6+++kqBgYFFqBooHvr376+lS5dK+ut1/e6772rUqFEO7ycpKUm9e/fWpk2bmKyDRyFDgHVTp07V2LFjba/ndu3aaevWrU7p68yZM+rSpYt+//33PPkhRygtMjMz9fbbb+vNN99URkaGpL9zcMMNN2j+/Plq27atJCa8gWuJiIjQ0KFDdeLECbuxpGzZsnrnnXc0bNgwcoRSY+fOnbr11lttV7aSrnwuLmdevvjiCz344IPKzMxU69at9fvvv9sde7XFJ7nfz82ePVsjRoxw5NNCLiwcgUe6ePGibr31Vv3222+S7P/wZL/ky5Qpo7CwMDVs2FD16tVT3bp1VbZsWQUGBiowMFCGYSglJUUpKSm6dOmSjh8/rmPHjungwYPatm2bkpOTr9h2ixYttHnzZpUrV85VTxlwOHIEWEOGAOvS09PVq1cvrVu3Ls83GXJ+jKlXr16RcnT06FFbG7nbNgxDHTt21MqVK7mCD0qsWbNm6fnnn7edtGnRooX27NnjlL6Sk5PVp08frV+/nsk6eAwyBFi3a9cu3XjjjXav5V27dik0NNQp/f3555/q1q2boqKi8n1/R45QWkRFRemxxx7T7t277a4+4uPjo9GjR2vChAlq3749E97ANSQmJuq5557TF198kec9WseOHXX48GEdO3ZMEleIg+dbunSp7r33XtvCxKsxTVMvvPCC3nnnHdu+X3/9VR06dFBKSord4/KT+33cXXfdpcWLF1uoHgXBwhF4pEGDBunbb7/N84clODhYjz/+uAYOHKgbb7zR7tJ8hZGZmamdO3fq22+/1WeffaazZ8/medMwcOBALViwwCHPB3AHcgRYQ4YA65577jm9//77eXLk6+urfv36aeDAgbr99ttVq1atIrV/6tQpbdq0SQsXLtSSJUuUnp6eJ0cjRozQ7NmzHfJ8AFeLjo5W8+bN7SbrNmzYoNtuu80p/aWkpKhfv36KjIxksg4egQwBjtGoUSMdPnzYtn333Xfr22+/dVp/586dU7du3bRr1y6u3INSLSMjQ5MmTdLkyZNtr/3sLDRu3FgXL17UqVOnJDHhDVzLsmXLNGzYMJ06dcruvWE2xhmUFps3b9bTTz+tvXv32vblXKAoyXZVnvxuAx0ZGakBAwbo0qVL17z1dHabDzzwgD777LMin0dHwbFwBB5nzZo16tatm90HQz8/P73++ut64YUX5Ofn59D+0tPTNW3aNE2YMEFpaWm2Pg3D0KpVq9SlSxeH9ge4AjkCrCFDgHU7duzQTTfdZLfPNE0NGTJEkyZNUvXq1R3a39mzZzVu3Dj9+9//tsuul5eXfv75Z914440O7Q9wldDQUNvVrySpS5cuWrVqldP6u3z5sgYMGKAff/yRyTp4BDIEWDdmzBi7b5t6eXlp586dTrvqiPTXN8R79uypX375xbaPHKG02rVrlx577DHt3bvXbnKPcQYonPPnz+uZZ57R119/ne8tpMkRSovMzEytWrVKixcv1r59+3TmzBn5+fmpfv366tKlix599FFVrFjxiscfPHhQw4cP1+rVq6/aT9OmTfX2229rwIABDn4GuBIWjsDj9OnTRxEREbY3weXKlVNkZKTCwsKc2u+OHTvUpUsXXbp0yfYmoVevXlq+fLlT+wWcgRwB1pAhwLr7779f33zzjS1Hvr6++vbbb9WvXz+n9vvDDz9o4MCBysjIsOXo3nvv1X//+1+n9gs4y6RJkzR+/HjbtmEYWrdunW6//Xan9Zmenq57771XS5cuteuXk6goicgQYF18fLzdt1IlqX79+qpXr55T+7106ZJmzZql9PR0276ceQZKk/T0dL3xxht6991384wnTHgDhbNkyRINHz5cp0+ftttPjoDC2bt3r5YvX66oqCjFx8crICBAVatWVePGjdWzZ0+1atXK3SWWOiwcgUe5cOGCqlSposzMTNsb3sWLFzt9giHb0qVL1b9/f7sJjrNnz6p8+fIu6R9wBHIEWEOGAOtSU1NVuXJlXb582ZajuXPnasiQIS7p/+OPP9awYcNsOQoICFBCQoICAgJc0j/gSKmpqXlOaFaoUOGq3/5xhMzMTC1YsMBusu6xxx5zap+AM5AhAIAn2b59ux5//HH9/vvvdvuZ8AYKJyEhQePGjdPJkyft9i9evNhNFQGAdSwcgUdZvXq1evToYTvJ37ZtW23fvt2lNYSFhWnXrl22SY4ff/xR3bt3d2kNgBXkCLCGDAHWrV+/Xp07d7blqHHjxoqOjnZpDU2bNlVMTIwtR2vWrFGnTp1cWgMAAAAAOFpaWppmzpyZZ8J7+vTpbqoIAAAUB17uLgBwpAMHDth+NwxD/fv3d3kN/fv3V871WDExMS6vAbCCHAHWkCHAupyLRAzD0KBBg1xew/3332+XI1cvXAEAAAAAZ/Dz89OLL76o6dOn2/0AAIDSjYUj8CiJiYmSZDvJX79+fZfXkN2nYRh2NQElBTkCrCFDgHXnzp2T9HeOGjZs6PIaGjRoIOnvHCUkJLi8BgAAAAAAAABwBRaOwKNkn9jPdvnyZZfX4I4+AUciR4A1ZAiwLvfdNHPnyhXc0ScAAAAAAAAAuAMLR+BRKlWqJOnvE/05bxfgKtl9Zk94VK5c2eU1AFaQI8AaMgRYV6FCBUl/5+jgwYMur+HQoUOS/s5Rdk0AAAAAAAAA4GlYOAKP0rRpU9vvpmnqyy+/VGZmpsv6z8zM1Jdffmn3DdWcNQElATkCrCFDgHWNGze2/W6apr755huX17BgwQK7HDVq1MjlNQAAAAAAAACAK7BwBB7lpptuUkBAgG37xIkTmjp1qsv6nzJlimJjY23b/v7+at++vcv6BxyBHAHWkCHAuptuukk+Pj627f3792v+/Pku63/+/PmKjo62bXt7e5MjAAAAAAAAAB6LhSPwKIGBgerbt69M05RhGDJNU+PGjdOcOXOc3vecOXP0+uuv2/o1DEN9+/a1mzwESgJyBFhDhgDrypcvr65du9rlaMSIEVq+fLnT+16xYoWGDx9ul6Nu3bqpfPnyTu8b8BTHjh2z+7l8+bK7SwJKFDIEWOft7W33ExoaqsWLF7u7LKDEYCwCrGMsAqwhQ67HwhF4nJdeesl2WfHsE/4jR45U7969tXv3bof3FxUVpT59+mjkyJEyTdO23zAMvfTSSw7vD3AFcgRYQ4YA60aPHm373TAMpaWlqV+/fho+fLjOnj3r8P7+/PNPPfPMM+rXr5/S09OvWAuAa7vuuutUv359209ISIimT5+u1NRUd5cGlAhkCLDONE27n71792rgwIG68cYbtWzZMneXBxR7jEWAdYxFgDVkyPUMM+fsAuAhRowYoY8++sg2aZf9bVFJateunQYOHKgOHTooLCzM7jLoBZGRkaEdO3Zo06ZN+u677/Tzzz/b9ZH9v8OGDXPJt8sBZyFHgDVkCLBu4MCBWrRoUZ4c+fr6qn///rYc1ahRo0jtnz592pajxYsXKy0tLU+OBgwYoIULFzryaQEez8sr73dUDMNQjRo1NHbsWA0dOlR+fn5uqAwoGcgQYJ2Xl5ftPaSkPAvs27VrpwkTJqhnz57uKA8o9hiLAOsYiwBryJDrsXAEHiktLU3du3fXxo0b7SYasmXv8/X1Vd26dRUSEqK6deuqbNmyCgwMVEBAgAzDUEpKilJSUnTp0iXFxsbq6NGjOn78uNLS0mxtZbebs58OHTpo9erVvHlGiUaOAGvIEGDdhQsXdMstt+iPP/7Ik6OcHxzr1aunRo0aFSpHMTExOnr0qK2N/HLUrFkzbd26ldvUAIWU++SOZJ+x2rVr69VXX9XgwYMLvXgSKA3IEGBdfjnKljNPt9xyiyZOnKguXbq4sjyg2GMsAqxjLAKsIUOux8IReKzk5GQNGjRIy5cvv+KKtGxX+sOT27WONU1TvXv31jfffKOgoKAiVA0UL+QIsIYMAdadPXtWvXv31s6dO6+ao4JmqCDHm6ap1q1bKyIiQtWrVy9C1UDpVtCTO/Xq1dO4ceP05JNPurI8oNgjQ4B1+V0tIVvuBcleXl7KyMhwSV1AScFYBFjHWARYQ4Zcj4Uj8HizZ8/WuHHjdOHChWu+2b2Wqx1frlw5TZw4Uf/4xz+KXCtQXJEjwBoyBFiTlpamsWPHavbs2crIyMg3B4X9WHOlNry9vfXss89qypQp8vf3L3LNQGlWkJM70t+3n8rMzHRFWUCJQYYA63JeWU76azHy2rVrtWbNGm3atElJSUm2fyNHQF6MRYB1jEWANWTI9Vg4glIhPj5eM2fO1Lx58xQXF2fbX9hvpmbLGZsaNWpoyJAheu6551SlShXLtQLFFTkCrCFDgHX79u3T22+/rW+//VaXL1+WVPQMZcvOkp+fn+677z6NGTNG119/veVaAfztzz//tJ3cWbt2rfbv32/7N07uANdGhgDHysjI0C+//KK1a9cqMjJSW7duVXJysrvLAoo1xiLAsRiLAGvIkHOwcASlSlZWltatW6cff/xRGzdu1O7du5WamlqoNgICAhQaGqrbb79dvXr1UufOna+6AhvwNOQIsIYMAdadP39eixYtsuXo9OnTRWqnWrVqthzdfffdqlSpkoMrBZCfkydP2k7urFu3TocOHXJ3SUCJQoYAx0pLS5Ofn5+7ywBKFMYiwLEYiwBryJBjsHAEpVpmZqaOHj2qI0eOKC4uTgkJCUpKSlJ6erokydfXV2XKlFFwcLCqV6+u+vXrKyQkRN7e3m6uHCg+yBFgDRkCrDt58qT27dtXqBw1bdpUtWvXdnPlAAAAAAAAAOB+LBwBAAAAAAAAAAAAAAAopbimOQAAAAAAAAAAAAAAQCnFwhEAAAAAAAAAAAAAAIBSioUjAAAAAAAAAAAAAAAApRQLRwAAAAAAAAAAAAAAAEopH3cXAAAoXZYtW6aEhATb9qOPPurGagAAAAAAQHFgmqaOHz+uQ4cO6fTp04qPj1dycrLS0tJkmqb8/PwUFBSk4OBgVa9eXfXr11e9evVkGIa7SwcAeAjGIsAaMlSyGaZpmu4uAgBQerRp00ZRUVG27czMTDdWA5Qsv/76q3766SdFRUUpISFBZcqUUdWqVdWkSRP17NlTLVq0cHeJQLF04MABrV27Vps2bdLJkycVHx+v1NRUBQcHq2rVqmrTpo26du2qm2++Wd7e3u4uF3CL06dPKzo6ulAnd5o1a6bq1au7u3SgWCBDQNFs2LBBERER2rhxo3bv3q3k5ORCHR8YGKhWrVqpY8eO6tWrlzp16uSkSoHij7EIKBrGIsAaMuQ5WDgCOFhcXJzS0tJs2/Xq1XNjNUDx06ZNG+3evVuSZBgGC0dQKmRmZmrlypX6/vvvFR0drdOnTysgIEANGzZU165d9cgjjygoKOiKx//xxx8aPny4Nm7ceNV+WrRooSlTpuiOO+5w9FMASqTVq1frrbfe0oYNG+z2Z38Eyv1thjp16mjs2LEaPHiwfH19XVYn4A4XL17U4sWLFRERoQ0bNiguLq5I7dSoUcN2cmfAgAEqX768gysFiicyBBRdYmKiZs+erX//+986ceKEbX9RT1PnfE9Xq1YtDRs2TM8++6wqVqxotVSgWGMsAoqOsQiwhgx5JhaOoFQ4efKkvv32Wy1btkyHDh1SXFycAgMDVbNmTbVr10533XWX7rjjDodMEOS8moJhGMrIyLDcJuBJsjNimiYLR1AqbNmyRcOGDdNvv/1m25d70rpixYqaPXu2HnzwwTzHL1q0SA8//LAuX75coDfehmHo8ccf18cffywvLy8HPQvA9U6cOKHPPvvMtu3r66sXX3yxQMempaVpxIgR+vTTTyXl/6HVMIwr7r/hhhu0ZMkSXXfddUUrHijGYmJiNGXKFH399ddKTU2VVPQTO9myxzN/f389+OCDevnll9W4cWPLtQLFERkCrJk7d65eeeUVnT9/Pk92inqJ8vzaqVChgt5++209/fTTRa4VKK4YiwBrGIsAa8iQ52LhCDxaenq6Jk+erKlTp17xTXT2H7FatWpp0qRJevzxxy31ydUUgKtj4QhKkyVLluj+++9Xenq63fiT34S1YRh6++239fLLL9v2rV27Vj179rQtQizIG+/sbN1zzz365ptvHPRMANebMWOGRo0aZXvdDxgwQAsXLrzmccnJyerSpYu2bdt2xSuLXE32MZUrV9aPP/6osLCwIlQPFD8ZGRkaN26cpk+fnu+4ZEXutnx8fPTPf/5TkyZN4uo98BhkCLAmNTVVDz30kJYsWXLV92iFPVV9tTYMw1C/fv301VdfKTAwsAhVA8ULYxFgDWMRYA0Z8nwsHIHHSk5O1l133aU1a9Zc8U10fpN24eHh+uyzz1SnTp0i9cukODzBsWPHnNZ27969tW/fPltGjhw5cs03EtzyCSXR9u3bddtttyk9PV3StU/iZGdi2bJl6t27t5KSktS8eXPFxsbajr1aVnKPb4Zh6MMPP9TQoUMd8GwA1+vVq5dWrlwpSXbZuJaBAwdq0aJFtuOyXWusyZ1R0zRVq1Ytbdu2TTVr1ixs+UCxEh8fr759++qXX3654skdR1xONmc7hmEoLCxMy5cvV5UqVYrUNlBckCHAmvT0dPXq1Uvr1q2zfVbJljM79erVU8OGDVWvXj3VrVtXZcuWVWBgoAIDA2UYhlJSUpSSkqJLly7p+PHjOnbsmA4ePKijR4/a2sjvc1HHjh21cuVKJr9RojEWAdYwFgHWkKHSgYUj8EimaapHjx6KjIyUVPAV19lxCA4O1ldffaXu3bsXum8WjsATeHl5Wf6mwtUU5hsR3PIJJVFmZqZuvPFGRUVFFWjiOufCkIYNGyo6OlrTp0/Xiy++aPdvoaGheuSRR3TzzTeratWqSk5O1qFDh7R8+XJ9+eWXtkUq2Y8vV66cjh8/zv2JUeKYpqlKlSrp4sWLMk1TQUFBio+Pl5+f31WP+/zzz/X444/nyZ2Xl5d69OihHj16qE2bNgoODlZAQIDOnz+vI0eOaPPmzfrvf/+ruLi4PAu1unfvrp9++sl5TxZwsosXL+rWW2+13TItv3GpTJkyCgsLK9LJnW3btik5OfmKbbdo0UKbN29WuXLlXPWUAYciQ4B1zz33nN5///08r3FfX1/169dPAwcO1O23365atWoVqf1Tp05p06ZNWrhwoZYsWaL09HS793SGYWjEiBGaPXu2Q54P4GqMRYB1jEWANWSolDABDzR9+nTTMAzTy8vL7scwjHx/8nuMr6+v+emnnxa679atW9va8fLycvyTA1zgSllxxw85Qkm0cOFCu/HFMAzTz8/PHDlypLl161YzMTHRTE1NNQ8cOGDOmDHDrFWrlt1rfuHChWbjxo1t+7y9vc0ZM2aYWVlZV+zz0KFDZqtWrWxtZP/v7NmzXfjMAceIjo62y1DPnj2veUxGRobZqFEjuwwYhmF26tTJPHDgwDWPT09PN2fMmGGWKVPGLrteXl7mhg0bHPG0ALe477778v3MU6VKFfOFF14wt27daqanpxe5/YyMDPOXX34xX3zxRbNatWp5xj8vLy/zvvvuc+AzAlyLDAHWbN++Pd/zc0899ZQZFxfn8P7OnDljDhs2LE+WvL29ze3btzu8P8AVGIsAaxiLAGvIUOnBwhF4nISEBDMoKCjPH7BatWqZ7733nrlv3z4zOTnZ/PPPP82tW7eao0ePNqtXr57vm29vb2/z/fffL1T/LByBJ8hv4ZUjf660cCu/x5EjlES9evWym7yuUKGCuXHjxis+Pj4+3rzppptsx7Rr184uIx999FGB+j1//rzZqFEjuwzdeOONjnpagMssW7bMbox46aWXrnlMREREnoVTDz300FUXXOVn69atZrly5ezaueuuu4r4TAD3ioyMzHOixd/f33zrrbfMy5cvO7y/tLQ0c/LkyWZAQECe93ORkZEO7w9wNjIEWDdo0CC792h+fn7m999/7/R+ly5davr5+dnlaNCgQU7vF3A0xiLAOsYiwBoyVHpwqxp4nGnTptku7W/+/8sX9ezZU99++62CgoLyPSY1NVWTJ0/WlClT7G6JkX381KlT9cILLxSof25VA0/g9f9vVVMchghyhJImPT1d5cqVU3p6um0s+OSTT/T4449f9bjY2Fi1bNlSFy9elGR//8a1a9cWuP81a9aoW7dutgz7+PgoMTFRgYGBVp4W4FIffvihnnnmGUl/jQMfffSRnnrqqase88ILL+i9996zvfabN2+uqKgoeXt7F7r/L774Qo899pitrbJlyyohIUE+Pj5Fej6Au/Tp00cRERG213K5cuUUGRmpsLAwp/a7Y8cOdenSRZcuXbKNZ7169dLy5cud2i/gaGQIsCY1NVWVK1fW5cuXba/luXPnasiQIS7p/+OPP9awYcNsGQ4ICFBCQoICAgJc0j/gCIxFgDWMRYA1ZKh0YeEIPE6rVq20d+9e2/aNN96ozZs3F+hE//bt23Xvvffq6NGjee6dNWnSJL3yyivXbIOFI/AEOReOGIahpk2bqnr16g5pe/v27UpOTrabFL+WwkyaA+62Y8cOtWvXzpah+vXr6+DBgwU69p///Kdmzpxpl79FixbprrvuKlQN2WNhdhvr169Xhw4divJ0ALd45513NGbMGEl/LRz5+uuvdd999131mJtvvlm//PJLoY65muuvv17R0dG2HG3YsEG33XZbkdsDXO3ChQuqUqWKMjMzba/jxYsXq1+/fi7pf+nSperfv79tTPP19dXZs2dVvnx5l/QPWEWGAOvWr1+vzp07217HjRs3VnR0tEtraNq0qWJiYmw5XrNmjTp16uTSGoCiYiwCrGMsAqwhQ6ULX5mDR7lw4YJt0Uj2H5B58+YV+NuhYWFh2rFjhwYMGKCNGzfKMAzbH8Nx48YpPT1d48ePd+ZTAIqV7Nd/XFycXnzxRT3xxBOW28xeXJWNRSHwNPv27bP9bhiG+vTpU+Bj+/Xrp5kzZ9q2vby81KVLl0LX0L17d+3Zs8e2ffToURaOoETJeQU4SQVaiBsXF2d3pZ3CZC8/d911l6ZOnWrbPnr0KAtHUKL88ssvysjIsC2Ib9OmjcsmGaS/xrS2bdtq165dkv7K9c8//6zu3bu7rAbACjIEWJdzUsEwDA0aNMjlNdx///2aNGmSXU1MNKCkYCwCrGMsAqwhQ6WLl7sLABxp27ZttltrGIahDh06KDQ0tFBtVK5cWatXr9Z9991n15Zpmpo4caJee+01h9cNFDfz5s1T+fLlbQuwzp8/ryFDhqhXr146fvy4u8sDirXz589Lkm0MKcw4dMMNN9ht16hRQ+XKlSt0Dc2bN8+3JqCkKFu2rN326dOnr3nMn3/+afu9Ro0aV7xFYUE1adLkiu0DJcGBAwdsvxuGof79+7u8hv79+9vd+jAmJsblNQBFRYYA686dOyfp789GDRs2dHkNDRo0kCTbxHtCQoLLawCKirEIsI6xCLCGDJUuLByBRzlx4oTddlG+pS1Jvr6++vrrrzV06NA8i0cmT56ssWPHWq4VKM6efPJJ7d27V927d7ctHjFNUytXrlSLFi00Z84cd5cIFFuJiYl225UqVSrwsbkfW7FixSLVkH1c9pvpCxcuFKkdwF3q1Kkj6e/XcEFu95TzqiRFWXCVW/bilewaLl26ZLlNwJWyx6PszzP169d3eQ3ZfWbnKPcYCRRnZAiwLvcd0rNfy67kjj4BR2EsAqxjLAKsIUOlCwtH4FFyr3yz8mbaMAx99NFH+uc//5ln8cg777yjF1980XrBQDFWu3Zt/fTTT/roo4/sJs8uXbqkkSNHKjw8vEATeUBp4+/vb7d9+fLlAh+b+7HJyclFqiElJcVu28/Pr0jtAO6S86o5pmlqxYoV1zymatWqtt/Pnj1ruYbsNrLfB1q9ggngarlPrBRmPHIUd/QJOAoZAqyrUKGCpMItBna0Q4cOSfr7PV12TUBJwFgEWMdYBFhDhkoXFo7AoyQlJdltlylTxnKb06ZN05gxY/IsHnnvvfc0atQoy+0Dxd3QoUMVFRWlLl262F19ZMOGDQoNDdW0adPyrDoFSrPcVwnJfTWsqzl58qTd9pkzZ4qUr+x2so8t6pVLAHdp3ry5qlWrZts+cuSI/ve//131mNDQUNtr/s8//9Thw4ct1bB161a77bp161pqD3C17KtYZZ/cyXmpc1fJ7jM7m5UrV3Z5DUBRkSHAusaNG9t+N01T33zzjctrWLBggd3ke6NGjVxeA1BUjEWAdYxFgDVkqHRh4Qg8Su7LkjvqXvRvv/22Xn/99TyLR2bOnKl//OMfDukDKM5CQkK0evVqvf/++7ZvXBuGoZSUFL300ku65ZZb9Pvvv7u5SqB4qFmzpqS/T+xs3ry5wMfmnhhPTk7Wr7/+WugacvcZHBxc6DYAdxswYIDdgsXnn3/+qo+/4447JP2dvS+++KLIfZ87d04//PCD3YfS1q1bF7k9wB2aNm1q+900TX355Zd2t3RytszMTH355Zd2OcpZE1DckSHAuptuukk+Pj627f3792v+/Pku63/+/PmKjo62bXt7e6t9+/Yu6x+wirEIsI6xCLCGDJUuLByBR8m9CvvMmTMOa/uNN97QxIkT8yweef/99/Xss886rB+gOBsxYoR2796tTp062U3m/fLLL2rbtq3efPNNl36ABYqjtm3b2n43TVMRERGKi4sr0LH5ven+7LPPCtX/mTNn9NNPP9md2AkNDS1UG0BxMHz4cLvX8c6dO/Xcc89d8fEPPfSQ7dZqpmnq3XffLfLlM1966SW7e3c3bNhQDRo0KFJbgLvcdNNNCggIsG2fOHFCU6dOdVn/U6ZMUWxsrG3b39+fkzsoUcgQYF358uXVtWtXu/MHI0aM0PLly53e94oVK2zvJ7P779atm8qXL+/0vgFHYSwCrGMsAqwhQ6ULC0fgUXJeMkmStm/f7tD2X3vtNU2ePDnP4pEPP/xQw4cPd2hfQHFVv359rV27VjNmzFBgYKAMw5BhGEpLS9P48eMVFhamXbt2ubtMwG1q1KihkJAQ23Z6erqefvrpax736aefauPGjTIMw3ZiyDRNzZs3T/v27Stw/2PHjrW7B3HlypWZ8EaJFBoaqvvuu8/ug+kHH3ygoUOHKiUlJc/jK1SooKlTp9oen5SUpB49ehTqcs6maWrs2LH65JNP7D6UDh482JFPDXCJwMBA9e3b1y5D48aN05w5c5ze95w5c/T666/b5ahv3752Ex9AcUeGAMcYPXq07ffscwf9+vXT8OHDdfbsWYf39+eff+qZZ55Rv379lJ6efsVagJKAsQhwDMYiwBoyVIqYgAe5ePGiaRiG6eXlZRqGYVauXNkp/bz77ru2frL78vLyMp966imzVatWpmEYtn2AJ4uJiTFvv/12u9wZhmH6+vqar7zyinn58uU8x7Ru3douN4AneuWVV+xy4eXlZd5zzz3m6dOn8zw2IyPDfO+990xfX1/bY0eOHGlWr17dlqmmTZuaR48evWa/U6ZMydPvI4884oynCLjE6dOnzapVq+Z5z3XdddeZ3377rZmRkZHnmJ49e9rlICgoyJw0aZJ55syZq/b1008/mbfeeqtdP4ZhmDVr1jQvXbrkrKcIONW2bdts+cn52u7Vq5f566+/Ory/3bt3m3fccUeeHHl7e5vbtm1zeH+As5EhwDHuueeefM+j+fv7m4MGDTK//fZb89SpU0VuPy4uzly4cKH5wAMPmAEBAXkylP15DCiJGIsAx2AsAqwhQ6WDYZr//9IJgIdo1qyZDhw4YFsJvXnzZqdcQm/69OkaPXq07RLq2f1ly97mth3wdKZpasaMGXrttdeUmppq22cYhpo1a6ZPPvlEN998s+3xbdq0UVRUFBmBRzty5IiaNWtmWxGd/XoPCAhQ586d1bx5c/n5+en48eOKjIxUXFyc3dWsduzYoY8//lgffvih7ds9wcHBeu211/Twww8rODjYrr+tW7fqrbfe0ooVK+y+iWQYhjZs2KDbbrvN5f8NAEdZv369evXqpbS0NEmyy0q1atX00EMPqXPnzrrllltUuXJlpaam6oEHHtD3339vlwUfHx+1atVKbdq0UXBwsPz9/ZWYmKjDhw9r69attlsc5s7QkiVLdOedd7rt+QNWjRgxQh999FG+n1vatWungQMHqkOHDgoLC7O7b3FBZGRkaMeOHdq0aZO+++47/fzzz3Z9ZP/vsGHDXPLNWMAZyBBg3YULF3TLLbfojz/+sMuSJLtzafXq1VOjRo0UEhKiunXrqmzZsgoMDFRAQIAMw1BKSopSUlJ06dIlxcbG6ujRo4qJidHRo0dtbeRu1zRNNWvWTFu3buWy5iixGIsA6xiLAGvIUOnAwhF4nOHDh2vu3Lm2PyjOfFM7a9YsPf/88/n+kWRSHKXN/v379cQTT2jLli22DEiSl5eXRo4cqbfffluBgYEsHEGpMX78eE2aNOmqb6Tz29+/f3999913OnjwoJo1a6asrCy7xxiGoYYNG6pq1apKSUnR0aNHde7cOVtbOcegTp06ac2aNS55voAzLV++XPfdd59tgaKUf6bq1q2r2rVrq0aNGoqIiLDdtinnR57cGbzSv5umqXfeeUcvvPCCY58M4GJpaWnq3r277XZoUv6veV9fX9WtW7dQJ3eOHz9uW9SVs92c/XTo0EGrV6+Wn5+fq54y4FBkCHCMs2fPqnfv3tq5c2eeL17llN97tau52vGmaap169aKiIhQ9erVi1A1UDwwFgGOwVgEWEOGPB8LR+BxvvnmG91///22ibOKFSvq1KlT8vf3d0p/H374oZ599tk8+5kUR2lkmqb+9a9/afz48XaTdYZhqEGDBvr3v/+tUaNGaffu3ZJERuDR0tPT1bNnT61bt65Ab6RN01Tt2rW1c+dOVa1aVZI0btw4vfXWW1c8MXS1tsqVK6eoqCiFhIQ4/skBbrBt2zYNGjRIR44cuWqmJPssXOuxOR+f/Rh/f3998MEHevLJJx1VPuBWycnJGjRokJYvX17g/FzLtY41TVO9e/fWN998o6CgoCJUDRQfZAhwjLS0NI0dO1azZ89WRkbGNRf0FsSV2vD29tazzz6rKVOmOO2cIOBKjEWAYzAWAdaQIc/m5e4CAEfr1auX3ernxMREzZs3z2n9DR8+XB999JHT2gdKEsMw9OKLL2rnzp0KCwuzu/rBwYMH1a1bN+3bt6/QK06BksjX11fLly/XHXfckWfBR84f6a83wg0aNNCaNWtsi0akv65a0rdv3zxXHMm5aCS/tsqWLavFixezaAQepV27dtq9e7dGjhwpb2/vfDOQMwfZ/57z99yPze+Yzp07a9euXSwagUcpU6aMfvjhB82cOVPlypW7aiays3Ctn6tlqWzZspo+fbqWL1/OJAM8AhkCHMPPz0/Tpk1TVFSUHn74Yfn5+dm9V5Ou/H7tau/jpL/fy/n6+urhhx/W7t27NX36dCYZ4DEYiwDHYCwCrCFDno0rjsAj9evXT8uWLbNt16pVS4cOHXLq5fQ+++wzDR482G6SgqspoDTLysrS1KlTNXHiRNslL7mdE0qrBQsWaPr06dq2bVueFdfBwcEaNmyYxo4dm+/JmPT0dD333HOaO3eupCt/cyi73datW2vevHlq27atg58FUHwcPnxY06ZN05dffqnExETb/sIsTMyZRT8/P91555169tln1alTJ4fWChQ38fHxmjlzpubNm6e4uDjb/qIu7M2ZpRo1amjIkCF67rnnVKVKFcu1AsURGQIc5/z581q0aJF+/PFHbdy4UadPny5SO9WqVdPtt9+uXr166e6771alSpUcXClQvDAWAY7DWARYQ4Y8CwtH4JF++OEHvffee3b7xo4dqx49eji13//+97969NFHlZGRIYnbcACS9Ntvv+mxxx7L9753ZASlzcmTJxUdHa0zZ87Iz89P9evXV2hoqLy8rn0RuM2bN2vatGlatWqVLl26ZPdvZcuWVdeuXTVo0CANGjSIq/qg1EhLS9PKlSu1atUqbd68Wb///rtSUlKueVzFihXVvHlzhYWFKTw8XN26dVO5cuVcUDFQfGRlZWndunW2kzu7d+9WampqodoICAhQaGio7eRO586dCzSmAZ6ADAGOd/LkSe3bt09HjhxRXFycEhISlJSUpPT0dEl/XdWxTJkyCg4OVvXq1VW/fn01bdpUtWvXdnPlgHswFgGOx1gEWEOGSjYWjgAAnC4zM1OTJ0/Wm2++abv6iMTiKqAoMjMzdejQIcXHxysgIEBVq1ZVjRo15O3t7e7SALczTVOnTp3SqVOndO7cOV2+fNl2icugoCAFBwerZs2aqlixortLBYqdzMxMHT16tFAnd0JCQhh/gP+PDAEA3I2xCAAAWMHCEQCAy5w4cUJ//vmn3b5WrVq5qRoAAAAAAAAAAAAALBwBAAAAAAAAAAAAAAAopbhZHQAAAAAAAAAAAAAAQCnFwhEAAAAAAAAAAAAAAIBSioUjAAAAAAAAAAAAAAAApZSPuwsAHOX333/X9ddf7+4yCiQjI0NHjhxRo0aN3F0KYIccAdaQIQBAabFs2TIlJCTYth999FE3VgMAKA0OHDigtWvXatOmTTp58qTi4+OVmpqq4OBgVa1aVW3atFHXrl118803y9vb293lAgA8EGMRYA0ZKt4M0zRNdxcBOIKvr6+efPJJTZgwQTVq1HB3OVf0zTff6NVXX9Ujjzyi119/3d3lAHbIEWANGQIAlBZt2rRRVFSUbTszM9ON1QAly6+//qqffvpJUVFRSkhIUJkyZVS1alU1adJEPXv2VIsWLdxdIlCsrF69Wm+99ZY2bNhgtz/7tLZhGHb769Spo7Fjx2rw4MHy9fV1WZ1AScJYBBQOYxFgDRkqGVg4Ao/h5eUlwzAUGBiooUOHavTo0apdu7a7y7JZuHChJk+erF9//VWSNH78eCbrUOyQI8AaMgR4jn//+9+Ki4uzbZMVwF6bNm20e/duSX+d4GHhCEqDzMxMrVy5Ut9//72io6N1+vRpBQQEqGHDhurataseeeQRBQUFXfH4P/74Q8OHD9fGjRuv2k+LFi00ZcoU3XHHHY5+CoDLnThxQp999plt29fXVy+++GKBjk1LS9OIESP06aefSvp7YiEnwzCuuP+GG27QkiVLdN111xWteKAYYiwCCo+xCLCGDJUeLByBx8ierDNNU4ZhyNfXV4888oiGDx+utm3buqWmixcv6osvvtDMmTMVExMjSbb6mKxDcUSOAGvIEOA5uJoCcHXZGckeU8gIPN2WLVs0bNgw/fbbb7Z9ub8dV7FiRc2ePVsPPvhgnuMXLVqkhx9+WJcvX873pGhuhmHo8ccf18cffywvLy8HPQvA9WbMmKFRo0bZcjJgwAAtXLjwmsclJyerS5cu2rZt2xW/iXo12cdUrlxZP/74o8LCwopQPVC8MBYBRcNYBFhDhkoPRnt4jFtvvdV20lL6axXb/Pnz1a5dO7Vr105z587V2bNnnV5HVlaW1qxZo8GDB6tWrVoaOXKkDhw4YPdmvEyZMmrTpo3TawEKixwB1pAhwLOYplmgE6oAAM+2ZMkSde7cWb/99pttbMj5ni97+9y5c3rkkUc0depUu+PXrl2r+++/X6mpqbbjrvVjmqb+85//6P7773fHUwYc5scff5T094n/wYMHF+i4Rx99VL/88otdZrLbudpPtuxjEhIS1L9/f506dcrBzwxwLcYioOgYiwBryFDpwRVH4FE+++wzjRkzRqdPn7b7AyT99QfGy8tLHTp0UN++fRUeHq62bdsWanXblcTFxWndunVavXq1li5dqvj4+Dx9Z/9+zz33aPr06apTp47lfgFnIEeANWQI8AxcTQGe4NixY05ru3fv3tq3b58tI0eOHLnmQqt69eo5rR7AWbZv367bbrtN6enpkq79DbnsTCxbtky9e/dWUlKSmjdvrtjY2DzvDfOTs/3stj788EMNHTrUAc8GcC3TNFWpUiVdvHhRpmkqKChI8fHx8vPzu+pxn3/+uR5//PE8efDy8lKPHj3Uo0cPtWnTRsHBwQoICND58+d15MgRbd68Wf/9738VFxeXJ2/du3fXTz/95LwnCzgRYxFQdIxFgDVkqHRh4Qg8zoULFzRlyhTNnj1bSUlJ+U7aZStfvrxat26t0NBQtWzZUiEhIapdu7Zq1KihoKAgBQQESJIyMjKUkpKihIQExcbGKjY2VtHR0dqzZ492796tgwcP2trMvRoue7t9+/aaPHmywsPDnf2fALCMHAHWkCGg5GPhCDxB9i3UnCX3eHM1hmEoIyPDabUAzpCZmakbb7xRUVFReU545ifne76GDRsqOjpa06dP14svvmj3b6GhoXrkkUd08803q2rVqkpOTtahQ4e0fPlyffnll7aJwezHlytXTsePH1f58uWd+GwBx9u/f7+aNWtme/13797d9o3VK8nMzFSzZs108OBBu88yHTt21Lx589SoUaOrHp+RkaEPPvhAr7zyilJTUyX9PfG9bt063X777Q54ZoDrMBYB1jAWAdaQoVLGBDzU6dOnzeeee84MCgoyDcMwvby8bD+GYdh+cu7P78fb2/uq/56zrZztZW/feOON5vfff+/u/xxAkZAjwBoyBJRcrVu3tuXIy8vL3eUARZJ7fHDnDzlCSbRw4cI87638/PzMkSNHmlu3bjUTExPN1NRU88CBA+aMGTPMWrVq2b3mFy5caDZu3Ni2z9vb25wxY4aZlZV1xT4PHTpktmrVytZG9v/Onj3bhc8ccIxly5bZZeill1665jERERF5Xv8PPfTQVXOTn61bt5rlypWza+euu+4q4jMB3IexCLCGsQiwhgyVLl7uXrgCOEu1atU0c+ZMHT9+XJMmTVL16tXt7v2Y/SNd/X5aWVlZV/33nG3lXDnXt29frVmzRtu3b1e/fv3c+Z8CKDJyBFhDhgAA7pZ7jHDkT0H7AUqqefPm2X43TVPly5dXZGSkZs2apfbt26t8+fLy9/dXo0aN9I9//EN79uxRu3btbMdMnTpVMTExkv7KyAcffKB//OMfV81F/fr1tX79ejVs2NB2nGma+s9//uOcJwk4UfYt07I/n1zr26WStHr1arvtZs2a6bPPPiv0eNK+fXt98MEHts9LpmlqzZo1XP0KJQ5jEWANYxFgDRkqXVg4Ao9XqVIlvfrqqzp+/LiWLl2qgQMHyt/f3zbZJlk7mZpz4q5Zs2Z66623dPToUS1dupRbAcBjkCPAGjIEAHCnqy0+tPJT0D6Akig9PV1r1661vdcyDEMzZsxQhw4drnhM5cqV9d1339ku479jxw5Jf73P69ixo4YNG1agvitUqKC5c+fa5ScqKkopKSkWnhHgehcvXrTbrlChwjWP2bRpk6S/L0c+fvx4eXt7F6n/Rx55RM2aNbNtJyUl6eeffy5SW4A7MBYB1jEWAdaQodLFx90FAK7i7e2tvn37qm/fvkpOTlZkZKQiIiK0fv16RUdHKysrq9BtVq5cWe3bt1ePHj10xx13qHHjxk6oHCg+yBFgDRkCCu7zzz93a/8JCQlu7R9wNMMw1LRpU1WvXt0h7W3fvl3Jycm2E0EdO3Z0SLtAcREVFaW0tDTbt+Kuu+46Pf7449c8rk6dOnriiSc0c+ZMu2/UPf/884Xqv0uXLrrhhhu0d+9eSX/dJ3zHjh1XnSwEipvc3wbNzMy85jFxcXG2SXIfHx/16dPHUg133XWXpk6dats+evSobrvtNkttAq7CWARYx1gEWEOGShcWjqBUKlOmjO68807deeedkqRLly5p586d2r9/v44cOaLY2FhduHBBycnJyszMVGBgoIKCglStWjWFhISoQYMGCg0NVYMGDdz8TAD3IUeANWQIuLrHH3+cW1wADpJ9wiYuLk4vvviinnjiCctttmnTRlFRUbbttWvXWm4TKE727dtn+90wjEKd7OzXr59mzpxp2/by8lKXLl0KXUP37t21Z88e2/bRo0eZrEOJUrZsWbvt06dPX/OYP//80/Z7jRo1FBQUZKmGJk2aXLF9oLhjLAKsYywCrCFDpQsLRwD99YevY8eOfEsOsIAcAdaQISB/7rzNBQtXUNLNmzdPo0ePVmJiogzD0Pnz5zVkyBAtWLBAH3/8serWrevuEoFi6/z585L+vrxyaGhogY+94YYb7LZr1KihcuXKFbqG5s2b51sTUFLUqVNH0t/vqQ4ePHjNY3J+i7Uouckte7Iju4ZLly5ZbhNwFcYiwDrGIsAaMlS6eLm7AAAAAAC4EsMw3PYDlHRPPvmk9u7dq+7du9smHEzT1MqVK9WiRQvNmTPH3SUCxVZiYqLddqVKlQp8bO7HVqxYsUg1ZB+XPSZduHChSO0A7pJzwtk0Ta1YseKax1StWtX2+9mzZy3XkN1G9mJkq994BVyJsQiwjrEIsIYMlS4sHAEAAABQbJmm6bYfwBPUrl1bP/30kz766CO7b+lcunRJI0eOVHh4eIG+MQSUNv7+/nbbly9fLvCxuR+bnJxcpBpSUlLstv38/IrUDuAuzZs3V7Vq1WzbR44c0f/+97+rHhMaGmp7H/bnn3/q8OHDlmrYunWr3TZX20JJwlgEWMdYBFhDhkoXblUDAAAAoNjx9fVVRkaGpL8muW+//XZ17tzZZf1/9NFHOnPmjMv6A5xt6NCh6tmzpwYPHqw1a9bYrj6yYcMGhYaGauLEiRo1ahRX2wH+v9zfzD5x4kSBjz158qTd9pkzZ2xX/SmM7Hayjy3qt8UBdxowYIDmzp1rG3eef/55bdu27YqPv+OOO7RixQpbXr744gu9/vrrRer73Llz+uGHH2x9S1Lr1q2L1BbgDoxFgGMwFgHWkKHSwzD5Kh0AAACAYubGG2/Url27JP21cOTuu+/Wt99+67L+27Rpo6ioKNsJ0pz3ZwVKujlz5mjMmDG6dOmS7eSLYRhq166d5s+fr+uvv/6abZAReLoVK1aob9++tpOd/fr10+LFiwt07GeffaYnnnjCLl/bt29XmzZtClVD//79tXTpUkl/jYXfffed+vfvX6g2AHeLioqyvfaz8/DMM89o1qxZ+T4+MTFRdevWVVJSkkzTVFBQkH799Vc1bNiw0H0/9dRT+uSTT2xZbNSokfbv32/p+QCuxFgEOAZjEWANGSo9uFUNAAAAgGInLCxMkmwfDLdv3+7migDPMWLECO3evVudOnWynfQxTVO//PKL2rZtqzfffJOFICj12rZta/vdNE1FREQoLi6uQMfOnz8/z77PPvusUP2fOXNGP/30k903w0NDQwvVBlAchIaG6r777rMbbz744AMNHTo0zy0wJKlChQqaOnWq7fFJSUnq0aOHDhw4UOA+TdPU2LFj7SYZDMPQ4MGDHfnUAKdjLAIcg7EIsIYMlR4sHAEAAABQ7GQvHMl27NgxJSQkuKkawPPUr19fa9eu1YwZMxQYGCjDMGQYhtLS0jR+/HiFhYXZrvoDlEY1atRQSEiIbTs9PV1PP/30NY/79NNPtXHjRhmGoYCAAEl/nfScN2+e9u3bV+D+x44dq8uXL9u2K1eurAYNGhTiGQDFx8yZM1WlShVJfy8K/uSTT3T99ddr4cKFeRYrDh8+XD169LBNEBw+fFht2rTRm2++qbNnz161r5UrV6pDhw5655137PZXr15dzz77rGOfGOBkjEWA4zAWAdaQodKBW9UAAAAAKHZ27dqlG2+80e5bBStWrFDPnj1d0j+34UBpcvDgQT3xxBPatGmT3X2DfXx89OKLL2r8+PHy8/OzO4aMoDR49dVXNXnyZLuxaMCAAZozZ46qVatm99jMzEzNmjVLL7/8sjIyMmyXb/7mm2905swZSVKTJk20cuVK1atX76r9Tp06VWPHjrXr96GHHtLnn3/utOcKONv69evVq1cvpaWlSZJtrDEMQ9WqVdNDDz2kzp0765ZbblHlypWVmpqqBx54QN9//71dFnx8fNSqVSu1adNGwcHB8vf3V2Jiog4fPqytW7fa8pbzG7GGYWjJkiW688473fb8gaJiLAIch7EIsIYMeT4WjgAAAAAodtLT01WuXDmlp6fbPiBOnDhRr776qkv6Z1IcpY1pmpoxY4Zee+01paam2vYZhqFmzZrpk08+0c0332x7PBlBaXDkyBE1a9ZM6enpkv7OREBAgDp37qzmzZvLz89Px48fV2RkpOLi4uxOnu7YsUMff/yxPvzwQ9sJz+DgYL322mt6+OGHFRwcbNff1q1b9dZbb2nFihV5TpJu2LBBt912m8v/GwCOtHz5ct133322cUayn3DIVrduXdWuXVs1atRQRESE7YoHOU9j53x87rZy/rtpmnrnnXf0wgsvOPbJAC7CWAQ4FmMRYA0Z8mwsHAEAAABQLN10003avn27pL8+LPbr10+LFy92Sd9MiqO02r9/v5544glt2bLF7uojXl5eGjlypN5++20FBgaSEZQa48eP16RJk+xOWkp5T3Lm3t+/f3999913OnjwoJo1a6asrCy7xxiGoYYNG6pq1apKSUnR0aNHde7cOVtbOSfqOnXqpDVr1rjk+QLOtm3bNg0aNEhHjhyxy1F+p6hz5u5aj835+OzH+Pv764MPPtCTTz7pqPIBt2AsAhyLsQiwhgx5Li93FwAAAAAA+QkLC5P094fG7EUkrsIae5RGTZo00aZNmzR16lT5+/vbJhWysrI0a9YshYaGau3atZLICEqH1157TeHh4Xkm2kzTtPvJub9WrVr66KOPJEkNGzbUmDFj8jwmKytLBw4c0JYtW7Rr1y4lJCTYtZWtbNmy+vTTT93y3AFnaNeunXbv3q2RI0fK29s7T7ayfyTZMpH799yPze+Yzp07a9euXUwywCMwFgGOxVgEWEOGPBdXHAEAAABQLM2fP19DhgyxbRuGoVOnTuW5l7czzJ07V3Fxcbbt8ePHO71PoLjZt2+fHnvsMW3bts3u6iOGYcjPz09paWlccQSlQkpKiu69916tWLEi38spZzNNUw0aNFBERIQaN25s25+RkaG7775by5Ytu+a3w3PuL1u2rJYsWaIuXbo48NkAxcfhw4c1bdo0ffnll0pMTLTtv1rOcst5atvPz0933nmnnn32WXXq1MmhtQLuxlgEOAdjEWANGfIsLBwBAAAAUCwlJSUpJibGbl/Tpk0VEBDgpoqA0icrK0tTp07VxIkTlZaWJsl+coGFIyhNFixYoOnTp2vbtm15rrgTHBysYcOGaezYsQoKCspzbHp6up577jnNnTtX0pVPpGa327p1a82bN09t27Z18LMAip+0tDStXLlSq1at0ubNm/X7778rJSXlmsdVrFhRzZs3V1hYmMLDw9WtWzeVK1fOBRUD7sNYBDgHYxFgDRnyDCwcAQAAAAAAV/Xbb7/pscce086dO/Pcc5iFIyhtTp48qejoaJ05c0Z+fn6qX7++QkND5eV17TtCb968WdOmTdOqVat06dIlu38rW7asunbtqkGDBmnQoEGF+pYe4ElM09SpU6d06tQpnTt3TpcvX5ZpmvL19VVQUJCCg4NVs2ZNVaxY0d2lAm7DWAQ4F2MRYA0ZKplYOAIAAAAAAK4pMzNTkydP1ptvvmm7+ogkFo4ARZCZmalDhw4pPj5eAQEBqlq1qmrUqCFvb293lwYAKCUYiwAAQE4sHAEAAAAAAAV24sQJ/fnnn3b7WrVq5aZqAAAAAAAAYBULRwAAAAAAAAAAAAAAAEqpa9/wDgAAAAAAAAAAAAAAAB6JhSMAAAAAAAAAAAAAAAClFAtHAAAAAAAAAAAAAAAASikWjgAAAAAoNn7//Xd3l1BgGRkZiomJcXcZQB7kCLCGDAEA3I2xCAAAuBoLRwAAAAAUG61atdKwYcMUFxfn7lKu6ptvvlHz5s311VdfubsUIA9yBFhDhgDP8e9//1sTJ060/QAlBWMR4DkYiwBryJDrGKZpmu4uAgAAAAAkycvLS4ZhKDAwUEOHDtXo0aNVu3Ztd5dls3DhQk2ePFm//vqrJGn8+PF6/fXX3VsUkAs5AqwhQ4DnaNOmjaKiomzbmZmZbqwGKDjGIsBzMBYB1pAh1+GKIwAAAACKneTkZM2cOVMNGzbUU089pZ07d7qtlosXL2rOnDlq2rSpBg0apF9//VWsv0dJQI4Aa8gQ4BlM0yQvKLEYiwDPwFgEWEOGXIOFIwAAAACKjVtvvVWmacowDElSWlqa5s+fr3bt2qldu3aaO3euzp496/Q6srKytGbNGg0ePFi1atXSyJEjdeDAAbsPqWXKlFGbNm2cXgtQWOQIsIYMAZ4lO8tAScJYBHgWxiLAGjLkGtyqBgAAAECx8tlnn2nMmDE6ffq07YNh9scWwzDk5eWlDh06qG/fvgoPD1fbtm0d8gEyLi5O69at0+rVq7V06VLFx8fn6Tv793vuuUfTp09XnTp1LPcLOAM5AqwhQ4BnyL60efYEPJc2R0nCWAR4BsYiwBoy5DosHAEAAABQ7Fy4cEFTpkzR7NmzlZSUlO+J0mzly5dX69atFRoaqpYtWyokJES1a9dWjRo1FBQUpICAAElSRkaGUlJSlJCQoNjYWMXGxio6Olp79uzR7t27dfDgQVubOT8m5Twx2r59e02ePFnh4eHO/k8AWEaOAGvIEFDyMdGAko6xCCj5GIsAa8iQ67BwBAAAAECxdebMGb311lv65JNPlJycbHdiNPdJzKvJeZIzP7n/LfcJ2bZt2+r1119Xv379Cv0cAHcjR4A1ZAgouZhogKdgLAJKLsYiwBoy5DosHAEAAABQ7J07d05z5szRBx98oLi4OEl5T4pa+WiTX1uGYahPnz4aNWoU36SDRyBHgDVkCCh5mGiAp2EsAkoexiLAGjLkOiwcAQAAAFBiZGZmKiIiQp9//rmWLVum1NRUSdf+Zt215PxY1Lx5cz388MN65JFHuFc3PBI5AqwhQ0DBff75527tf9y4cYqNjWWiAR6HsQgoOMYiwBoyVHqwcAQAAABAiZScnKzIyEhFRERo/fr1io6OVlZWVqHbqVy5stq3b68ePXrojjvuUOPGjZ1QLVA8kSPAGjIEXJ2Xl5fliWxHYKIBnoyxCLg6xiLAGjJUerBwBAAAAIBHuHTpknbu3Kn9+/fryJEjio2N1YULF5ScnKzMzEwFBgYqKChI1apVU0hIiBo0aKDQ0FA1aNDA3aUDxQY5AqwhQ4C97IkGd56Czu6fiQaUFoxFgD3GIsAaMlR6sHAEAAAAAAAAAOBwfEMVAOBujEWANWSo9PBxdwEAAAAAAAAAAM/l7m+oAgDAWARYQ4Y8HwtHAAAAAAAAAAAO5+vrq4yMDEl/nfC//fbb1blzZ5f1/9FHH+nMmTMu6w8AUPwwFgHWkKHSg4UjAAAAAAAAAACHa9mypXbt2mXbrlq1qsaPH++y/pcsWcJEAwCUcoxFgDVkqPTwcncBAAAAAAAAAADPExYWJumvb6eapqnt27e7uSIAQGnDWARYQ4ZKDxaOAAAAAAAAAAAcLnuiIduxY8eUkJDgpmoAAKURYxFgDRkqPVg4AgAAAAAAAABwuNwTDZK0bds2N1QCACitGIsAa8hQ6cHCEQAAAAAAAACAw7Vs2VJ+fn52+7i8OQDAlRiLAGvIUOnBwhEAAAAAAAAAgMP5+voqNDRUpmna9jHRAABwJcYiwBoyVHqwcAQAAAAAAAAA4BTZlzc3DEOS6ycack5yAABKJ8YiwBoyVDr4uLsAAAAAAAAAAIBnyp5oyD7hf/LkSZ05c0bVqlVzet9PP/204uLinN4PAKB4YywCrCFDpYNhskQHAAAAAAAAAOAESUlJiomJsdvXtGlTBQQEuKkiAEBpw1gEWEOGSgcWjgAAAAAAAAAAAAAAAJRSXu4uAAAAAAAAAAAAAAAAAO7BwhEAAAAAAAAAAAAAAIBSioUjAAAAAAAAAAAAAAAApRQLRwAAAAAAAAAAAAAAAEopFo4AAAAAAAAAAAAAAACUUiwcAQAAAAAAAAAAAAAAKKVYOAIAAAAAAAAAcJjff//d3SUUWEZGhmJiYtxdBgDAwRiLAGvIUOnDwhEAAAAAAAAAgMO0atVKw4YNU1xcnLtLuapvvvlGzZs311dffeXuUgAADsZYBFhDhkofFo4AAAAAAAAAABwmMzNT8+bNU6NGjTRq1CidOHHC3SXZWbhwoW688UY98MADOnTokLvLAQA4AWMRYA0ZKn1YOAIAAAAAAAAAcLjk5GTNnDlTDRs21FNPPaWdO3e6rZaLFy9qzpw5atq0qQYNGqRff/1Vpmm6rR4AgGswFgHWkKHSg4UjAAAAAAAAAACHufXWW2WapgzDkCSlpaVp/vz5ateundq1a6e5c+fq7NmzTq8jKytLa9as0eDBg1WrVi2NHDlSBw4csJtgKFOmjNq0aeP0WgAArsVYBFhDhkofw2QZDgAAAAAAAADAgT777DONGTNGp0+ftk04ZJ+KNgxDXl5e6tChg/r27avw8HC1bdvW9jgr4uLitG7dOq1evVpLly5VfHx8nr6zf7/nnns0ffp01alTx3K/AIDih7EIsIYMlS4sHAEAAAAAAAAAONyFCxc0ZcoUzZ49W0lJSflOOGQrX768WrdurdDQULVs2VIhISGqXbu2atSooaCgIAUEBEiSMjIylJKSooSEBMXGxio2NlbR0dHas2ePdu/erYMHD9razHnqO+cEQ/v27TV58mSFh4c7+z8BAMDNGIsAa8hQ6cHCEQAAAAAAAACA05w5c0ZvvfWWPvnkEyUnJ9tNMOSeDLianJMF+cn9b7knNtq2bavXX39d/fr1K/RzAACUbIxFgDVkyPOxcAQAAAAAAAAA4HTnzp3TnDlz9MEHHyguLk5S3skFK6er82vLMAz16dNHo0aN4hupAADGIsAiMuS5WDgCAAAAAAAAAHCZzMxMRURE6PPPP9eyZcuUmpoq6drfUL2WnKe6mzdvrocffliPPPII97wHAOTBWARYQ4Y8DwtHAAAAAAAAAABukZycrMjISEVERGj9+vWKjo5WVlZWodupXLmy2rdvrx49euiOO+5Q48aNnVAtAMATMRYB1pAhz8DCEQAAAAAAAABAsXDp0iXt3LlT+/fv15EjRxQbG6sLFy4oOTlZmZmZCgwMVFBQkKpVq6aQkBA1aNBAoaGhatCggbtLBwB4CMYiwBoyVDKxcAQAAAAAAAAAAAAAAKCU8nJ3AQAAAAAAAAAAAAAAAHAPFo4AAAAAAAAAAAAAAACUUiwcAQAAAAAAAAAAAAAAKKVYOAIAAAAAAAAAAAAAAFBKsXAEAAAAAAC4hGma6tChgwzDkGEY8vb21t69e91dFkqxDz74wPZ6NAxD48aNc3dJAAAAAAC4nGGapunuIgAAAAAAgOf77LPP9Pjjj9u2Bw8erHnz5rmvICdITk7Wrl27dPjwYSUmJioxMVHe3t4KCgpShQoVVK9ePV133XWqW7euvLz4Po+7paen6/rrr1dMTIwkyd/fX7/99psaNmzo5soAAAAAAHAdFo4AAAAAAACnS0xMVNOmTXX69GlJUmBgoGJiYlSrVq2rHhceHq7169fn2e/j46Pff/9djRs3LnJNjRo10sGDB23bISEhOnLkSKHbiY+P1+eff64vvvhCUVFRyszMvOYxZcuWVdu2bXXTTTepa9euCg8PV0BAQKH7LorrrrtOR48ezbO/YsWKOnTokCpVqlTktn18fOyef6dOnbRu3Tq7x7zxxhuaMGFCkfuw4tNPP7VbvCRJ33zzjQYNGmTb7tu3r3744QcXVwYAAAAAgPvw1RYAAAAAAOB0U6dOtS0akaSnnnrqmotGriYjI0OvvPKKI0qzVMPUqVNVt25djRo1Srt27SrQohFJunTpkjZs2KB//etf6t27typXrqyvv/7ayRVf3fnz5/X222+7tQZ3uPfee9W8eXPb9rJly/IsdgEAAAAAwJOxcAQAAAAAADjV6dOnNWvWLNu2r6+vXnjhBcvtLly4UL/88ovldori/Pnzuv322zVmzBilpKRYbi8lJcVuYY27vP/++zp+/Li7y3ApwzD08ssv2+179dVX3VQNAAAAAACu5+PuAgAAAAAAgGd7++23lZSUZNt++OGHVbduXYe0/dJLL7n86hAXL15U9+7dtX379nz/vW3btrrlllvUrFkzVaxYUQEBATp37pwSEhK0d+9e7dixQ9HR0crKynJp3QWRmpqqcePG6T//+Y/T+qhRo4ZatWpVqGOOHTumc+fO2e2rW7euKleuXKh2rvT4Bx98UK+99ppiY2MlSZs3b9aKFSt0xx13FKp9AAAAAABKIhaOAAAAAAAAp0lISNC8efPs9o0YMcJh7a9fv97lE/zjxo3Ld9HIvffeq0mTJqlp06bXbOP06dNasmSJFi1apNWrVxerRSRffPGFRo8erRtuuMEp7T/99NN6+umnC3XM448/rs8++8xu38SJE/X44487pCZfX18NGTJEb7zxhm3f1KlTWTgCAAAAACgVuFUNAAAAAABwmg8//FDJycm27bZt2yosLMyhfYwZM8ZlCy9iYmL0/vvv59n/7rvv6ptvvinQohFJql69uoYNG6affvpJMTExeuGFFwp99QxnycrK0pgxY9xdhssNHjxY3t7etu0NGzZox44dbqwIAAAAAADXYOEIAAAAAABwioyMjDyLLAYPHmypTW9vb9111112+/bs2aMvvvjCUrsFtWDBAmVmZtrt69evn1544YUit1m/fn29++67evTRR62WVyQNGjRQmzZt7PatWLFC69evd0s97lKnTh11797dbt/MmTPdVA0AAAAAAK7DwhEAAAAAAOAUERERiouLs217eXnpnnvusdzu5MmT7a4MIUmvv/66Ll++bLnta4mIiMizb+TIkU7v15kMw9CUKVPy7H/ppZfcUI173XvvvXbb3333nS5evOimagAAAAAAcA0WjgAAAAAAAKf4/PPP7bY7dOig6tWrW263efPmeuKJJ+z2HTt2TLNnz7bc9rUcPXo0z74bb7zR6f06W48ePdStWze7fb/88osWLlzoporco3///vLx8bFtJycnl7r/BgAAAACA0oeFIwAAAAAAwOGSkpK0bNkyu319+/Z1WPsTJkxQYGCg3b7Jkyfr/PnzDusjP2fOnMmzLygoyKl9usrUqVNlGIbdvldffVUZGRluqsj1KleurFtvvdVu31dffeWmagAAAAAAcA0WjgAAAAAAAIeLjIxUamqq3b7w8HCHtV+rVi09//zzdvsSEhI0efJkh/WRn4CAgDz78rsKSUnUtm1b3X///Xb79u/fr48//thNFblH586d7bY3bNigS5cuuakaAAAAAACcj4UjAAAAAADA4SIiIuy2y5cvr7Zt2zq0j5dfflnBwcF2+2bNmqXY2FiH9pNTjRo18uz75ptvnNafq7311lvy8/Oz2zdx4kQlJSW5qSLXy71wJC0tTZGRkW6qBgAAAAAA52PhCAAAAAAAcLj169fbbbdu3Vre3t4O7aNChQp69dVX7falpqbq9ddfd2g/OeW+jYn01y1ytmzZ4rQ+Xal+/fp6+umn7fbFxcVp2rRpbqrI9cLCwvLcsmfdunXuKQYAAAAAABdg4QgAAAAAAHCoixcvKjo62m5faGioU/oaMWKEQkJC7PZ9/vnn+u2335zS38CBA/PsS0pKUqdOnfT8888rJibGKf260rhx41SuXDm7ff/617909uxZN1XkWkFBQWrYsKHdvm3btrmpGgAAAAAAnI+FIwAAAAAAwKF27typrKwsu30tW7Z0Sl/+/v6aNGmS3b7MzEyNGTPGKf316dNHN910U5796enpmjlzpho3bqzQ0FD985//1IIFC3To0CGn1OFMVapU0Ysvvmi37+LFi5o4caKbKnK9G264wW57165dyszMdFM1AAAAAAA4FwtHAAAAAACAQ+3fvz/PvtxXBXGkhx56SK1atbLbt2zZMm3cuNEp/X311VeqUqXKFf99z549mjFjhu6//341bNhQlStXVrdu3TRu3DitWrVKSUlJTqnLkUaNGqUaNWrY7Zs7d26JXAhTFLlfr8nJyYqNjXVTNQAAAAAAOBcLRwAAAAAAgEMdOXIkz77atWs7rT8vLy9NmTIlz/6XX37ZKf01bNhQ69atU7NmzQr0+HPnzikyMlJvvvmmevTooSpVqmjQoEH68ccfnVKfIwQFBWn8+PF2+9LT0/Xqq6+6qSLXqlOnTp59+b2uAQAAAADwBCwcAQAAAAAADpXflRlyX73C0Xr16qUuXbrY7duyZYsWLVrklP5atGih7du364033lCFChUKdWxqaqq++eYb9e7dW7fddpt++eUXp9Ro1ZAhQ9SkSRO7fQsWLNCOHTvcVJHr1KxZM8++48ePu6ESAAAAAACcj4UjAAAAAADAoS5cuJBnX1BQkNP7nTp1qgzDsNv3yiuvKCMjwyn9ZV+V49ixY5o3b566du0qX1/fQrWxefNm3Xbbbfrggw+cUqMVPj4+evvtt+32mabptCu5FCdlypTJs+/ixYtuqAQAAAAAAOdj4QgAAAAAAHCo5OTkPPsCAgKc3m9YWJjuu+8+u33R0dH65JNPnNpv+fLlNXjwYK1evVrnz59XZGSkJk6cqLvuukv16tW75vEZGRl69tlni+XikXvuuUc333yz3b7IyEj99NNPbqrINQIDA/PsS0pKckMlAAAAAAA4HwtHAAAAAACAQ2VmZtptG4YhLy/XnIJ466238lz1Y8KECfkuZnGGMmXKqEuXLho3bpyWLFmio0eP6uzZs1q0aJGGDx+uqlWrXvHY559/Xjt37nRJnYUxderUPPvGjBkj0zTdUI1r+Pj45NnnrCvXAAAAAADgbiwcAQAAAAAADpX7ag2maSotLc0lfTds2FBDhw6123fq1Cm99957Luk/P1WqVNGAAQM0Z84cnThxQh999JEqVaqU53EZGRl6/fXX3VDh1XXs2FF9+vSx2/frr7/qyy+/dFNFzpeSkpJnX363rwEAAAAAwBOwcAQAAAAAADhUUFBQnn35TcQ7y+uvv65y5crZ7Xv33Xf1559/uqyGK/H19dWwYcP066+/KiQkJM+/L1++XHFxcW6o7OqmTJmS56ox48aNc9mCIFfL7/Wa3+saAAAAAABPwMIRAAAAAADgUNWqVcuzLyEhwaX9jx492m7fhQsX9Oabb7qshmupV6+evvrqq3z/LTIy0sXVXFvLli316KOP2u07cuSI5syZ46aKnCu/12t+r2sAAAAAADwBC0cAAAAAAIBD5XcljdjYWJfWMHr0aFWvXt1u34cffqjDhw+7tI6rufXWWxUWFpZnf3R0tBuqubaJEycqICDAbt+bb76pCxcuuKki58nv9Zrf6xoAAAAAAE/AwhEAAAAAAOBQDRo0yLPP1QtHypYtq9dff91uX1paml577TWX1nEtN910U559xeGWOvmpW7euRo4cabcvPj5eU6dOdVNFznPixIk8+6677jrXFwIAAAAAgAuwcAQAAAAAADhUaGhonn3uuIrG0KFD1bhxY7t9X3/9tXbt2uXyWq6kQoUKefb5+Pi4oZKCGTt2rCpVqmS3b8aMGTp58qSbKnKOffv22W3Xr19f5cuXd1M1AAAAAAA4FwtHAAAAAACAQzVs2FCVK1e227dnzx6X1+Hj46O33nrLbp9pmnr55ZddXsuVnD59Os++3LfYKU4qVaqksWPH2u1LTk7WG2+84Z6CnMA0zTyv13bt2rmpGgAAAAAAnI+FIwAAAAAAwOHat29vt71792631HHvvffmuR3MqlWrtGrVKrfUk9vatWvz7GvYsKEbKim4kSNHqm7dunb75s+fn+cqHSXVwYMHdenSJbt9uV/PAAAAAAB4EhaOAAAAAAAAh+vRo4fd9sGDB912O5OpU6fm2TdmzBiZplnotv7zn//owoULjihLX3/9tQ4fPmy3z8fHRz179nRI+84SEBCgiRMn2u3LzMzMcyWSkmrjxo159hX3/08AAAAAALCChSMAAAAAAMDh7rjjjjz71q1b5/pCJIWHh6t37952+3bu3KlDhw4Vuq0pU6YoJCREEyZMUHx8fJFr2rRpk4YPH55nf69evVSpUqVrHh8eHi7DMOx+/vOf/xS5nsJ69NFH1bJlS7t9S5YsUWZmpstqcJbcV4GpV6+eWrRo4aZqAAAAAABwPhaOAAAAAAAAh2vSpImaN29ut2/16tVuquavq454eTnmNMj58+f1xhtvqGbNmrrrrru0cOHCPLc2uZLTp0/rpZdeUteuXZWYmGj3b35+fpo2bZpDanQ2Ly8vTZkyxd1lOJxpmoqMjLTbd9ddd7mpGgAAAAAAXMPH3QUAAAAAAADP9PDDD+vVV1+1bS9dulQZGRny8XH96YgbbrhBDz/8sD7//HOHtZmenq6lS5dq6dKl8vb2VosWLdS+fXs1aNBAwcHBqlSpktLS0pSYmKgDBw5o+/bt+t///qesrKx825s+fbqaNGnisPqcrU+fPurUqZPWr1/v7lIcZuvWrXluqfToo4+6qRoAAAAAAFyDhSMAAAAAAMApHnnkEb322msyTVOSFB8fr3Xr1qlbt25uqWfSpElasGCBLl++7PC2MzMzFRUVpaioqEIf6+Pjo9mzZ+vpp592eF3ONnXqVN18883uLsNhvvvuO7vt5s2bKywszE3VAAAAAADgGtyqBgAAAAAAOEXdunXVp08fu31ffvmlm6qR6tWrp2effdZSG6+99pp69uwpPz8/h9QUHh6uXbt2FXrRyNmzZ/Psa9GihUNqKoz27dvr/7V3/yBV9XEYwJ97hxpCk5amQESiwLCSaM7VQUMcEhdbGgXBpckgGlzbmlqCFEF0URpyazJ1KkWlQSOoKcFFsved3sPr9vbn3vPezuczne8PzjnPfHnu9wwPDzf9vY1wcnKS2dnZU2etWOYBAACAH6U4AgAAADTM5OTkqXlubi5fv34tKU3y8OHDdHR0/PT9Y2NjWVlZyZcvXzI/P5+JiYn09fX958/v1Gq1dHd3Z3JyMmtra1ldXU1PT88PZfj8+XPevXt36mxgYCC3bt36oef8Lk+ePCnl80O/2/Lycg4ODor5/PnzuX//fomJAAAAoDlqf/2zLxYAAACgAfr6+rK+vl7MT58+/eXNH/833759y4cPH7Kzs5NPnz7l8PAwR0dHOXv2bNra2tLe3p7Ozs5cu3YtbW1tv/Suly9f5t69e6fO3r59m5s3b/7Sc6tucHAwS0tLxTw1NZWZmZkSEwEAAEBzKI4AAAAADbW4uJihoaFi7u7uzvb2dup1i1B/xoMHD/Ls2bNiHhoaysLCQomJWt/Ozk6uXLmS79+/J0nOnTuXvb29XLx4seRkAAAA0Hh+oQEAAAAaanBwMLdv3y7m3d3dzM/Pl5iotb1+/bq4rtVqefToUYlp/gwzMzNFaSRJJiYmlEYAAACoDBtHAAAAgIZbXV1Nf39/MV+/fj3r6+up1Wolpmo9BwcHuXTpUjGPjIxkbm6uxESt7+PHj+nq6srx8XGS5MKFC9nb20tHR0e5wQAAAKBJbBwBAAAAGu7OnTsZHh4u5s3NzczOzpaYqDX9e9tIvV7P9PR0eWH+ENPT00VpJEkeP36sNAIAAECl2DgCAAAANMX+/n6uXr2ao6OjJElXV1fev3+fM2fOlJysdYyPj+f58+dJktHR0bx48aLcQC1ua2srPT09OTk5SZLcuHEja2trqdf91woAAIDqUBwBAAAAmmZxcTEbGxvFPDo6msuXL5eYiCp79epV3rx5U8x3795Nb29viYkAAACg+RRHAAAAAAAAAAAqyt5NAAAAAAAAAICKUhwBAAAAAAAAAKgoxREAAAAAAAAAgIpSHAEAAAAAAAAAqCjFEQAAAAAAAACAilIcAQAAAAAAAACoKMURAAAAAAAAAICKUhwBAAAAAAAAAKgoxREAAAAAAAAAgIpSHAEAAAAAAAAAqCjFEQAAAAAAAACAivobDsQo0lAaHOkAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 2200x1400 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "colors_m = ( \n",
    "    colors.to_rgba(\"blue\"), #MCOLA \n",
    "    colors.to_rgba(\"red\"), #MRMA1T\n",
    "    colors.to_rgba(\"orange\"), #BCOLA\n",
    "    )\n",
    "f=plt.figure(figsize=(22, 14))\n",
    "ax=f.add_subplot(111)\n",
    "\n",
    "x = np.arange(len(labels_aux))\n",
    "plot_index = 0\n",
    "#ax.plot(x, tots, color=colors_m[plot_index], linestyle='-', marker= '.', markersize=18, label=\"Sinc\")\n",
    "malla_tmp = malla.copy()\n",
    "malls_tmp = malls.copy()\n",
    "#for index in range(len(tota)):\n",
    "    #malla_tmp[index] = malla[index] / ideal4[index]\n",
    "    #malls_tmp[index] = malls[index] / ideal4[index]\n",
    "    #malla_tmp[index] = ideal4[index] / malla[index]\n",
    "    #malls_tmp[index] = ideal4[index] / malls[index]\n",
    "plot_index = 0\n",
    "ax.plot(x, malls_tmp, color=colors_m[plot_index], linestyle='--', marker='v', markersize=18, label=labelsMethods_aux[plot_index])\n",
    "plot_index = 1\n",
    "ax.plot(x, malla_tmp, color=colors_m[plot_index], linestyle=':', marker='s', markersize=18, label=labelsMethods_aux[plot_index])\n",
    "plot_index = 2\n",
    "ax.plot(x, ideal4, color=colors_m[plot_index], linestyle='-.', marker='h', markersize=18, label=labelsMethods_aux[plot_index])\n",
    "\n",
    "ax.set_xlabel(\"(NS,NT)\", fontsize=36)\n",
    "name_legend = \"Time(s)\"\n",
    "ax.set_ylabel(name_legend, fontsize=36)\n",
    "plt.xticks(x, labels_aux,rotation=90)\n",
    "ax.tick_params(axis='both', which='major', labelsize=36)\n",
    "ax.tick_params(axis='both', which='minor', labelsize=36)\n",
    "plt.legend(loc='best', fontsize=30,ncol=2,framealpha=0.8)\n",
    "#ax.axhline(y=1, color='black', linestyle='--')\n",
    "\n",
    "print(malls_tmp)\n",
    "print(malla_tmp)\n",
    "print(ideal4)\n",
    "plt.ylim([0,6.7])\n",
    "f.tight_layout()\n",
    "f.savefig(\"Images/TEST\"+\".eps\", format=\"eps\", dpi=300)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "id": "c961e35e-20dc-4ede-8618-6b4987f2abac",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "  80686760\n",
      "3404950172\n"
     ]
    }
   ],
   "source": [
    "row = 2017169\n",
    "matrix = 283073458\n",
    "\n",
    "mam = row * 8 * 5\n",
    "user = (matrix * (4 + 8)) + (row * 4)\n",
    "print(\"  \" +str(mam))\n",
    "print(user)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "4921dc40-d2e1-4f95-941f-79153d1a9e34",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "42.19961455881981"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "user/mam"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "id": "a2f35195-aaf1-4dc6-85ff-a612f37b897b",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3.550186388"
      ]
     },
     "execution_count": 81,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "3550186388 / (1000 * 1000 * 1000)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "ffc12e7f-12f6-46bf-a399-c9c1d231ca9e",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([-3.32100894, -3.32565943, -4.75105871, -4.70867003, -0.30450212,\n",
       "       -0.45525678, -0.48542673, -0.71140234, -0.42443466, -0.3941093 ])"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "testa = np.array(malla_tmp)\n",
    "tests = np.array(malls_tmp)\n",
    "tests- testa"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0d9db153-773f-4690-8699-f37e5678d2a7",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}