BiCGStab.c 36.3 KB
Newer Older
1
2
3
4
5
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
6
7
//#include <mkl_blas.h>
#include "mymkl.h"
8
9
#include <mpi.h>
#include <hb_io.h>
10
//#include <vector>
11
12
13
14
15
16
17
18

#include "reloj.h"
#include "ScalarVectors.h"
#include "SparseProduct.h"
#include "ToolsMPI.h"
#include "matrix.h"
#include "common.h"

19
20
21
#include "../malleability/MAM.h"
#include "ToolsMAM.h"

22
23
24
25
26
27
28
29
30
// ================================================================================

#define DIRECT_ERROR 1
#define PRECOND 1
// #define SPMV_OPTIMIZED 1
#ifdef SPMV_OPTIMIZED
  #define COLL_P2P_SPMV 0
#endif

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
typedef struct {
  double tol, tol0;
  int iter, n;

  double rho;
  double *x, *b;
  double *s, *q, *r, *p, *r0, *y, *p_hat, *q_hat;
  double *aux;
  SparseMatrix matL;

#if PRECOND
  double *diags;
#endif
#if DIRECT_ERROR
  double *res_err, *x_exact;
  double direct_err;
#endif
  double t1;

  int *sizes, *dspls;
  int my_size, my_dspl;
  int *vlen;

54
  int myId, numP, isOriginal;
55
56
57
58
  MPI_Comm comm;
} Compute_data;


59
60
void BiCGStab_free (Compute_data *computeData);
void originals_set_data(Compute_data *computeData, user_redist_t *user_data, int num_target);
61
62
63
64
65
66
void targets_update(Compute_data *computeData, user_redist_t *user_data);
void user_func(void *args);
void dump(Compute_data *computeData);

void BiCGStab_init (Compute_data *computeData) {
    int size = computeData->matL.dim2, sizeR = computeData->matL.dim1; 
67
68
    int IONE = 1; 
    double DONE = 1.0, DMONE = -1.0, DZERO = 0.0;
69
70
    int n, n_dist, myId, nProcs;
    double t2;
71
#if PRECOND
72
73
74
    int i;
    int *posd = NULL;
    computeData->diags = NULL;
75
76
#endif

77
78
79
80
81
82
83
84
85
86
87
88
    computeData->s = NULL; computeData->q = NULL; computeData->r = NULL; computeData->p = NULL;
    computeData->r0 = NULL; computeData->y = NULL; computeData->p_hat = NULL; computeData->q_hat = NULL;
    computeData->aux = NULL;
    myId = computeData->myId;
    nProcs = computeData->numP;
    n = size; n_dist = sizeR;
    CreateDoubles (&computeData->s, n_dist);
    CreateDoubles (&computeData->q, n_dist);
    CreateDoubles (&computeData->r, n_dist);
    CreateDoubles (&computeData->r0, n_dist);
    CreateDoubles (&computeData->p, n_dist);
    CreateDoubles (&computeData->y, n_dist);
89
90
#if DIRECT_ERROR
    // init exact solution
91
92
93
94
    computeData->res_err = NULL; computeData->x_exact = NULL;
    CreateDoubles (&computeData->x_exact, n_dist);
    CreateDoubles (&computeData->res_err, n_dist);
    InitDoubles (computeData->x_exact, n_dist, DONE, DZERO);
95
96
97
98
#endif // DIRECT_ERROR 

#if PRECOND
    CreateInts (&posd, n_dist);
99
100
101
102
    CreateDoubles (&computeData->p_hat, n_dist);
    CreateDoubles (&computeData->q_hat, n_dist);
    CreateDoubles (&computeData->diags, n_dist);
    GetDiagonalSparseMatrix2 (computeData->matL, computeData->dspls[myId], computeData->diags, posd);
103
104
#pragma omp parallel for
    for (i=0; i<n_dist; i++) 
105
        computeData->diags[i] = DONE / computeData->diags[i];
iker_martin's avatar
iker_martin committed
106
107
    InitDoubles (computeData->p_hat, n_dist, DZERO, DZERO);
    InitDoubles (computeData->q_hat, n_dist, DZERO, DZERO);
108
#endif
109
    CreateDoubles (&computeData->aux, n); 
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

#ifdef SPMV_OPTIMIZED
    int *permP = NULL, *ipermP = NULL;
    int *vdspP = NULL, *vdimP = NULL, *vdspR = NULL, *vdimR = NULL;
    double *vecP = NULL;
    MPI_Datatype *vectDatatypeP = NULL, *vectDatatypeR = NULL;

    CreateInts (&ipermP, size);
    CreateInts (&vdimP, nProcs); CreateInts (&vdspP, nProcs + 1);
    CreateInts (&vdimR, nProcs); CreateInts (&vdspR, nProcs + 1);
    vectDatatypeP = (MPI_Datatype *) malloc (nProcs * sizeof (MPI_Datatype));
    vectDatatypeR = (MPI_Datatype *) malloc (nProcs * sizeof (MPI_Datatype));
    createAlltoallwStruct (COLL_P2P_SPMV, MPI_COMM_WORLD, mat, sizes, dspls, vdimP, 
                vdspP, &aux, &permP, ipermP, vdimR, vdspR, vectDatatypeP, vectDatatypeR);

  // Code required before the loop  
    PermuteInts (mat.vpos, ipermP, mat.vptr[mat.dim1]);
#endif

129
    computeData->iter = 0;
130
131
132
133
134
135
#ifdef SPMV_OPTIMIZED
    joinDistributeVectorSPMV (COLL_P2P_SPMV, MPI_COMM_WORLD, x, vecP, vdimP, vdspP, 
                                vdimR, vdspR, vectDatatypeP, vectDatatypeR);
    InitDoubles (s, sizeR, DZERO, DZERO);
    ProdSparseMatrixVectorByRows (mat, 0, vecP, s);                  // s = A * x
#else
136
137
138
    MPI_Allgatherv (computeData->x, sizeR, MPI_DOUBLE, computeData->aux, computeData->sizes, computeData->dspls, MPI_DOUBLE, computeData->comm);
    InitDoubles (computeData->s, sizeR, DZERO, DZERO);
    ProdSparseMatrixVectorByRows (computeData->matL, 0, computeData->aux, computeData->s); // s = A * x
139
#endif
140
141
    rcopy (&n_dist, computeData->b, &IONE, computeData->r, &IONE);                                // r = b
    raxpy (&n_dist, &DMONE, computeData->s, &IONE, computeData->r, &IONE);           // r -= s
142

143
144
    rcopy (&n_dist, computeData->r, &IONE, computeData->p, &IONE);                                // p = r
    rcopy (&n_dist, computeData->r, &IONE, computeData->r0, &IONE);                               // r0 = r
145
    // compute tolerance and <r0,r0>
146
147
    computeData->rho = rdot (&n_dist, computeData->r, &IONE, computeData->r, &IONE);
    MPI_Allreduce (MPI_IN_PLACE, &computeData->rho, 1, MPI_DOUBLE, MPI_SUM, computeData->comm);
148

149
150
    computeData->tol0 = sqrt (computeData->rho);
    computeData->tol = computeData->tol0;
151
152
153

#if DIRECT_ERROR
    // compute direct error
154
155
    rcopy (&n_dist, computeData->x_exact, &IONE, computeData->res_err, &IONE);                    // res_err = x_exact
    raxpy (&n_dist, &DMONE, computeData->x, &IONE, computeData->res_err, &IONE);                  // res_err -= x
156
157

    // compute inf norm
158
159
    computeData->direct_err = norm_inf(n_dist, computeData->res_err);
    MPI_Allreduce(MPI_IN_PLACE, &computeData->direct_err, 1, MPI_DOUBLE, MPI_MAX, computeData->comm);
160
161

    //    // compute euclidean norm
162
    //    direct_err = rdot (&n_dist, res_err, &IONE, res_err, &IONE);            // direct_err = res_err' * res_err
163
164
165
166
    //    MPI_Allreduce(MPI_IN_PLACE, &direct_err, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
    //    direct_err = sqrt(direct_err);
#endif // DIRECT_ERROR

167
168
169
170
171
#if PRECOND
    RemoveInts (&posd);
#endif

    MPI_Barrier(computeData->comm);
172
    if (myId == 0) 
173
174
        reloj (&computeData->t1, &t2);
}
175

176
177
178
179
180
void BiCGStab_compute (Compute_data *computeData, user_redist_t *user_data) {
    int size = computeData->matL.dim2, sizeR = computeData->matL.dim1; 
    int IONE = 1; 
    double DONE = 1.0, DMONE = -1.0, DZERO = 0.0;
    int n, n_dist;
181
    int maxiter, myId, reconfigure, rec_iter, state, flag;
182
    double beta, alpha, umbral, omega, tmp, snrm2;
183
184
185
186
187
188
    double t3, t4;
    double reduce[2];

    n = size; n_dist = sizeR; maxiter = 16 * size; rec_iter = maxiter / 2; umbral = 1.0e-8;
    myId = computeData->myId;
    state = -1;
189
190
    reconfigure = 0; rec_iter = 500; maxiter = 1000;
	  flag = (computeData->rho == 0.0)? -1: 1;
191

192
193
//    while ((computeData->iter < maxiter) && (computeData->tol > umbral)) {
    while ((computeData->iter < maxiter) && (flag == 1)) {
194
#if PRECOND
195
        VvecDoubles (DONE, computeData->diags, computeData->p, DZERO, computeData->p_hat, n_dist);              // p_hat = D^-1 * p
196
#else
197
        computeData->p_hat = computeData->p;
198
199
200
201
202
203
204
#endif
#ifdef SPMV_OPTIMIZED
        joinDistributeVectorSPMV (COLL_P2P_SPMV, MPI_COMM_WORLD, p_hat, vecP, vdimP, 
                                    vdspP, vdimR, vdspR, vectDatatypeP, vectDatatypeR);
        InitDoubles (s, sizeR, DZERO, DZERO);
        ProdSparseMatrixVectorByRows (mat, 0, vecP, s);                   // s = A * p
#else
205
206
207
        MPI_Allgatherv (computeData->p_hat, sizeR, MPI_DOUBLE, computeData->aux, computeData->sizes, computeData->dspls, MPI_DOUBLE, computeData->comm);
        InitDoubles (computeData->s, sizeR, DZERO, DZERO);
        ProdSparseMatrixVectorByRows (computeData->matL, 0, computeData->aux, computeData->s);                   // s = A * p
208
209
210
211
#endif

        if (myId == 0) 
#if DIRECT_ERROR
212
            printf ("PD=%d %d \t %20.10e \t %g \t %g \n", computeData->numP, computeData->iter, computeData->tol, umbral, computeData->direct_err);
213
#else        
214
        printf ("%d \t %20.10e \n", computeData->iter, computeData->tol);
215
#endif // DIRECT_ERROR
216
217
        alpha = rdot (&n_dist, computeData->r0, &IONE, computeData->s, &IONE);
        MPI_Allreduce (MPI_IN_PLACE, &alpha, 1, MPI_DOUBLE, MPI_SUM, computeData->comm);
218

219
        alpha = computeData->rho / alpha;
220

221
        rcopy (&n_dist, computeData->r, &IONE, computeData->q, &IONE);                            // q = r
222
        tmp = -alpha;
223
        raxpy (&n_dist, &tmp, computeData->s, &IONE, computeData->q, &IONE);                      // q = r - alpha * s;
224
225
226
227
228
229
230
231
232
	
        snrm2 = rnrm2 (&n_dist, computeData->s, &IONE);                               // snrm2 = norm (s)
        MPI_Allreduce (MPI_IN_PLACE, &snrm2, 1, MPI_DOUBLE, MPI_SUM, computeData->comm);
        if (snrm2 < umbral) {
          raxpy (&n, &alpha, computeData->p_hat, &IONE, computeData->x, &IONE);               // x = x + alpha*p_hat;
          if (myId == 0) printf ("snrm2 < umbral\n");
          flag = 0;
          break;
	}
233
234
235

        // second spmv
#if PRECOND
236
        VvecDoubles (DONE, computeData->diags, computeData->q, DZERO, computeData->q_hat, n_dist);             // q_hat = D^-1 * q
237
#else
238
        computeData->q_hat = computeData->q;
239
240
241
242
243
244
245
#endif
#ifdef SPMV_OPTIMIZED
        joinDistributeVectorSPMV (COLL_P2P_SPMV, MPI_COMM_WORLD, q_hat, vecP, vdimP, 
                                  vdspP, vdimR, vdspR, vectDatatypeP, vectDatatypeR);
        InitDoubles (y, sizeR, DZERO, DZERO);
        ProdSparseMatrixVectorByRows (mat, 0, vecP, y);                // y = A * q
#else
246
247
248
        MPI_Allgatherv (computeData->q_hat, sizeR, MPI_DOUBLE, computeData->aux, computeData->sizes, computeData->dspls, MPI_DOUBLE, computeData->comm);
        InitDoubles (computeData->y, sizeR, DZERO, DZERO);
        ProdSparseMatrixVectorByRows (computeData->matL, 0, computeData->aux, computeData->y);                // y = A * q
249
250
#endif
        // omega = <q, y> / <y, y>
251
252
253
        reduce[0] = rdot (&n_dist, computeData->q, &IONE, computeData->y, &IONE);
        reduce[1] = rdot (&n_dist, computeData->y, &IONE, computeData->y, &IONE);
        MPI_Allreduce (MPI_IN_PLACE, reduce, 2, MPI_DOUBLE, MPI_SUM, computeData->comm);
254
255

        omega = reduce[0] / reduce[1];
256
257
258
259
260
        if (omega == 0.0) {
	  if (myId == 0) printf ("omega < 0.0\n");
          flag = -2;
          break;
        }
261
262

        // x+1 = x + alpha * p + omega * q
263
264
        raxpy (&n_dist, &alpha, computeData->p_hat, &IONE, computeData->x, &IONE); 
        raxpy (&n_dist, &omega, computeData->q_hat, &IONE, computeData->x, &IONE); 
265
266

        // r+1 = q - omega * y
267
        rcopy (&n_dist, computeData->q, &IONE, computeData->r, &IONE);                            // r = q
268
        tmp = -omega;
269
        raxpy (&n_dist, &tmp, computeData->y, &IONE, computeData->r, &IONE);                      // r = q - omega * y;
270
271
        
        // rho = <r0, r+1> and tolerance
272
273
274
        reduce[0] = rdot (&n_dist, computeData->r0, &IONE, computeData->r, &IONE);
        reduce[1] = rdot (&n_dist, computeData->r, &IONE, computeData->r, &IONE);
        MPI_Allreduce (MPI_IN_PLACE, reduce, 2, MPI_DOUBLE, MPI_SUM, computeData->comm);
275
276

        tmp = reduce[0];
277
        computeData->tol = sqrt (reduce[1]) / computeData->tol0;
278
279
280
281
282
283
284
285
286
287
        if (computeData->tol < umbral) {
	  if (myId == 0) printf ("tol < umbral\n");
          flag = 0;
          break;
        }
        if (tmp == 0.0) {
	  if (myId == 0) printf ("rho == 0.0\n");
          flag = -1;
          break;
        }
288
289

        // beta = (alpha / omega) * <r0, r+1> / <r0, r>
290
291
        beta = (alpha / omega) * (tmp / computeData->rho);
        computeData->rho = tmp;
292
293
294
       
        // p+1 = r+1 + beta * (p - omega * s)
        tmp = -omega; 
295
296
297
        raxpy (&n_dist, &tmp, computeData->s, &IONE, computeData->p, &IONE);                     // p -= omega * s
        rscal (&n_dist, &beta, computeData->p, &IONE);                                           // p = beta * p
        raxpy (&n_dist, &DONE, computeData->r, &IONE, computeData->p, &IONE);                    // p += r
298
299
300

#if DIRECT_ERROR
        // compute direct error
301
302
303
        rcopy (&n_dist, computeData->x_exact, &IONE, computeData->res_err, &IONE);               // res_err = x_exact
        raxpy (&n_dist, &DMONE, computeData->x, &IONE, computeData->res_err, &IONE);             // res_err -= x
  
304
        // compute inf norm
305
306
        computeData->direct_err = norm_inf(n_dist, computeData->res_err);
        MPI_Allreduce(MPI_IN_PLACE, &computeData->direct_err, 1, MPI_DOUBLE, MPI_MAX, computeData->comm);
307
308

        //        // compute euclidean norm
309
        //        direct_err = rdot (&n_dist, res_err, &IONE, res_err, &IONE);
310
311
312
313
        //        MPI_Allreduce(MPI_IN_PLACE, &direct_err, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
        //        direct_err = sqrt(direct_err);
#endif // DIRECT_ERROR

314
315
316
        computeData->iter++;
        if (computeData->iter == rec_iter) { reconfigure = 1;}
	if (reconfigure) {
317
//          dump(computeData);
318
319
320
	  MAM_Checkpoint(&state, MAM_CHECK_COMPLETION, user_func, (void *) user_data);
	  if(state == MAM_COMPLETED) {
	    reconfigure = 0; 
321
            BiCGStab_free (computeData);
322
            targets_update(computeData, user_data);
323
324
            sizeR = computeData->matL.dim1; 
            n_dist = sizeR;
325
//            dump(computeData);
326
327
	    }
	}
328
329
    }

330
    MPI_Barrier(computeData->comm);
331
332
333
    if (myId == 0) 
        reloj (&t3, &t4);

334
335
    if(state == MAM_PENDING) {
      MAM_Checkpoint(&state, MAM_WAIT_COMPLETION, user_func, (void *) user_data);
336
337
      BiCGStab_free (computeData);
      targets_update(computeData, user_data);
338
339
    }

340
341
342
343
344
345
346
347
348
349
350
351
352
#ifdef SPMV_OPTIMIZED
    // Code required after the loop 
    PermuteInts (mat.vpos, permP, mat.vptr[mat.dim1]);

    // Freeing memory for Permutation
    free (vectDatatypeR); vectDatatypeR = NULL; free (vectDatatypeP); vectDatatypeP = NULL;
    RemoveDoubles (&vecP); RemoveInts (&permP);
    RemoveInts (&vdspR); RemoveInts (&vdimR); RemoveInts (&vdspP); RemoveInts (&vdimP);
    RemoveInts (&ipermP);
#endif

    if (myId == 0) {
        printf ("Size: %d \n", n);
353
354
355
356
        printf ("Iter: %d \n", computeData->iter);
        printf ("Tol: %g \n", computeData->tol);
        printf ("Time_loop: %20.10e\n", (t3-computeData->t1));
        printf ("Time_iter: %20.10e\n", (t3-computeData->t1)/computeData->iter);
357
    }
358
359
360
}

void BiCGStab_free (Compute_data *computeData) {
361

362
    RemoveDoubles (&computeData->x); RemoveDoubles (&computeData->b);
363
364
365
    RemoveDoubles (&computeData->aux); RemoveDoubles (&computeData->s); 
    RemoveDoubles (&computeData->q); RemoveDoubles (&computeData->r); 
    RemoveDoubles (&computeData->p); RemoveDoubles (&computeData->r0); RemoveDoubles (&computeData->y);
366
#if PRECOND
367
368
    RemoveDoubles (&computeData->diags);
    RemoveDoubles(&computeData->p_hat); RemoveDoubles (&computeData->q_hat); 
369
#endif
iker_martin's avatar
iker_martin committed
370
371
372
#if DIRECT_ERROR
    RemoveDoubles (&computeData->res_err); RemoveDoubles (&computeData->x_exact); 
#endif
373
374

    RemoveInts (&computeData->sizes); RemoveInts (&computeData->dspls); 
iker_martin's avatar
iker_martin committed
375
    RemoveInts (&computeData->vlen);
376
377
378
379
380
381
    if (computeData->isOriginal) {
      RemoveSparseMatrix (&computeData->matL);
      computeData->isOriginal = 0;
    } else {
      RemoveSparseMatrix2 (&computeData->matL);
    }
382
383
384
385
386
387
388
389
390
391
}

/*********************************************************************************/

int main (int argc, char **argv) {
    int dim; 
    double *sol1 = NULL, *sol2 = NULL;
    int index = 0, indexL = 0;
    SparseMatrix mat  = {0, 0, NULL, NULL, NULL}, sym = {0, 0, NULL, NULL, NULL};

392
393
    int root = 0, myId, nProcs;
    int isTarget, numTarget, req, initNumP;
394
395
396
    int dimL, dspL, *vdimL = NULL, *vdspL = NULL;
    SparseMatrix matL = {0, 0, NULL, NULL, NULL};
    double *sol1L = NULL, *sol2L = NULL;
397
    double beta;
398

399
400
    int IONE = 1;
    double DMONE = -1.0;
401

402
403
404
    int mat_from_file, nodes, size_param, stencil_points;
    Compute_data computeData;
    user_redist_t user_data;
405
406
407

    /***************************************/

408
    MPI_Init_thread (&argc, &argv, MPI_THREAD_MULTIPLE, &req);
409
410
411
412
413
414

    // Definition of the variables nProcs and myId
    MPI_Comm_size(MPI_COMM_WORLD, &nProcs);
    MPI_Comm_rank(MPI_COMM_WORLD, &myId);
    root = nProcs-1;
    root = 0;
415
416
417
    computeData.myId = myId;
    computeData.numP = nProcs;
    computeData.comm = MPI_COMM_WORLD;
418
    initNumP = computeData.numP; 
419
420
421
    user_data = empty_user_data;
    user_data.comm = computeData.comm;

422
    //prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY, 0, 0, 0);
423
    isTarget = MAM_Init(root, &computeData.comm, argv[0], user_func, (void *) &user_data);
424

425
426
    if(isTarget) {
      targets_update(&computeData, &user_data);
427
      computeData.isOriginal = 0;
428
//            dump(&computeData);
429
430
431
432
    } else {
    /***************************************/
      if (argc == 4) {
          mat_from_file = atoi(argv[2]);
iker_martin's avatar
iker_martin committed
433
	  numTarget = atoi(argv[3]);
434
435
436
437
438
439
      } else {
          mat_from_file = atoi(argv[2]);
          nodes = atoi(argv[3]);
          size_param = atoi(argv[4]);
          stencil_points = atoi(argv[5]);
      }
440
441
    /***************************************/

442
//      printf ("A\n");
443
444
445
446
      CreateInts (&vdimL, nProcs); CreateInts (&vdspL, nProcs); 
      if(mat_from_file) {
          if (myId == root) {
              // Creating the matrix
447
448
//              ReadMatrixHB (argv[1], &sym);
              CreateSparseMatrixHB (argv[1], &sym, 1);
449
450
451
              TransposeSparseMatrices (sym, 0, &mat, 0);
              dim = mat.dim1;
          }
452
453

        // Distributing the matrix
454
455
456
457
458
459
          dim = DistributeMatrix (mat, index, &matL, indexL, vdimL, vdspL, root, MPI_COMM_WORLD);
          dimL = vdimL[myId]; dspL = vdspL[myId];
          if (myId == root) {
            RemoveSparseMatrix (&mat);
            RemoveSparseMatrix (&sym);
          } 
460
//          printf ("B\n");
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
      }
      else {
          dim = size_param * size_param * size_param;
          int divL, rstL, i;
          divL = (dim / nProcs); rstL = (dim % nProcs);
          for (i=0; i<nProcs; i++) vdimL[i] = divL + (i < rstL);
          vdspL[0] = 0; for (i=1; i<nProcs; i++) vdspL[i] = vdspL[i-1] + vdimL[i-1];
          dimL = vdimL[myId]; dspL = vdspL[myId];
          int band_width = size_param * (size_param + 1) + 1;
          band_width = 100 * nodes;
          long nnz_here = ((long) (stencil_points + 2 * band_width)) * dimL;
          printf ("dimL: %d, nodes: %d, size_param: %d, band_width: %d, stencil_points: %d, nnz_here: %ld\n",
                  dimL, nodes, size_param, band_width, stencil_points, nnz_here);
          allocate_matrix(dimL, dim, nnz_here, &matL);
          generate_Poisson3D_filled(&matL, size_param, stencil_points, band_width, dspL, dimL, dim);

          // To generate ill-conditioned matrices
  //        double factor = 1.0e6;
  //        ScaleFirstRowCol(matL, dspL, dimL, myId, root, factor);
      }
      MPI_Barrier(MPI_COMM_WORLD);

      // Creating the vectors
      CreateDoubles (&sol1, dim);
//      CreateDoubles (&sol2, dim);
      CreateDoubles (&sol1L, dimL);
      CreateDoubles (&sol2L, dimL);

//      InitDoubles (sol2, dim, 0.0, 0.0);
      InitDoubles (sol1L, dimL, 0.0, 0.0);
      InitDoubles (sol2L, dimL, 0.0, 0.0);
492
493
494

    /***************************************/

495
//      printf ("C\n");
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

      beta = 1.0 / sqrt(dim);
      if(mat_from_file) {
          // compute b = A * x_c, x_c = 1/sqrt(nbrows)
          InitDoubles (sol1, dim, 1.0, 0.0);
          ProdSparseMatrixVectorByRows (matL, 0, sol1, sol1L);                  // s = A * x
          rscal (&dimL, &beta, sol1L, &IONE);                                         // s = beta * s
      } else {
          InitDoubles (sol1, dim, 0.0, 0.0);

          int k=0;
          int *vptrM = matL.vptr;
          for (int i=0; i < matL.dim1; i++) {
              for(int j=vptrM[i]; j<vptrM[i+1]; j++) {
                  sol1L[k] += matL.vval[j];
              }
          }
      }

515
//      printf ("D\n");
516
517
518

//      MPI_Scatterv (sol2, vdimL, vdspL, MPI_DOUBLE, sol2L, dimL, MPI_DOUBLE, root, MPI_COMM_WORLD); //FIXME It does not seem to do anything

519
//      printf ("E\n");
520
521
522
523
524
525
526
527
528
529
      computeData.sizes = vdimL;
      computeData.my_size = dimL;
      computeData.dspls = vdspL;
      computeData.my_dspl = dspL;
      computeData.b = sol1L;
      computeData.x = sol2L;
      computeData.matL = matL;
      computeData.n = computeData.matL.dim2;
      RemoveDoubles (&sol1); 
      BiCGStab_init (&computeData);
530
531
      originals_set_data(&computeData, &user_data, numTarget);
      computeData.isOriginal = 1;
532
533
534
    }


535
    BiCGStab_compute (&computeData, &user_data);
536
537
538
539


    // Error computation ||b-Ax||
//    if(mat_from_file) {
540
        dim = computeData.matL.dim2;
541
542
543
544
545
        CreateDoubles (&sol2, dim);
        InitDoubles (sol2, dim, 0.0, 0.0);
        MPI_Allgatherv (computeData.x, computeData.my_size, MPI_DOUBLE, sol2, computeData.sizes, computeData.dspls, MPI_DOUBLE, computeData.comm);
        InitDoubles (computeData.x, computeData.my_size, 0, 0);
        ProdSparseMatrixVectorByRows (computeData.matL, 0, sol2, computeData.x);
546
        raxpy (&computeData.my_size, &DMONE, computeData.x, &IONE, computeData.b, &IONE);          
547
548
        beta = rdot (&computeData.my_size, computeData.b, &IONE, computeData.b, &IONE);
        MPI_Allreduce (MPI_IN_PLACE, &beta, 1, MPI_DOUBLE, MPI_SUM, computeData.comm);
549
550
551
552
553
        
//    } else {
//        // case with x_exact = {1.0}
//        for (int i=0; i<dimL; i++)
//            sol2L[i] -= 1.0;
554
//        beta = rdot (&dimL, sol2L, &IONE, sol2L, &IONE);            
555
556
557
//    } 

    beta = sqrt(beta);
558
    if (computeData.myId == 0) {
559
        printf ("Error: %20.10e\n", beta);
560
561
        print_global_results(computeData.t1);
    }
562
563
564

    /***************************************/
    // Freeing memory
565
    BiCGStab_free (&computeData);
566
    RemoveDoubles (&sol2); 
567
568
569
570
571
    MAM_Finalize ();

    if(initNumP > numTarget && computeData.myId == 0) {
      MPI_Abort(MPI_COMM_WORLD, -100);
    }
572
    if(computeData.comm != MPI_COMM_WORLD && computeData.comm != MPI_COMM_NULL) MPI_Comm_free(&(computeData.comm));
573
574
575
576
577
578

    MPI_Finalize ();

    return 0;
}

579
580
581
582
583
584

/* MAM New functions */

/*
 * Función para declarar los datos a comunicar por parte de MAM
 */
585
void originals_set_data(Compute_data *computeData, user_redist_t *user_data, int num_target) {
586

587
588
589
590
    TransformHeadertoLength (computeData->matL.vptr, computeData->my_size);
    CreateInts (&computeData->vlen, computeData->my_size); 
    CopyInts (computeData->matL.vptr+1, computeData->vlen, computeData->my_size); 
    TransformLengthtoHeader (computeData->matL.vptr, computeData->my_size);
591
592
593

    MAM_Set_target_number(num_target);

594
595
596
597
598
599
    //MAM_Data_add(&(computeData->n), NULL, 1, MPI_INT, MAM_DATA_REPLICATED, MAM_DATA_CONSTANT);
    //MAM_Data_add(&(computeData->tol0), NULL, 1, MPI_DOUBLE, MAM_DATA_REPLICATED, MAM_DATA_CONSTANT);
    //MAM_Data_add(&(computeData->t1), NULL, 1, MPI_DOUBLE, MAM_DATA_REPLICATED, MAM_DATA_CONSTANT);
    MAM_Data_add(&(computeData->n), NULL, 1, MPI_INT, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    MAM_Data_add(&(computeData->tol0), NULL, 1, MPI_DOUBLE, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    MAM_Data_add(&(computeData->t1), NULL, 1, MPI_DOUBLE, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
600
601
602
603
604
605
606
607

    MAM_Data_add(&(computeData->iter), NULL, 1, MPI_INT, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    MAM_Data_add(&(computeData->tol), NULL, 1, MPI_DOUBLE, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    MAM_Data_add(&(computeData->rho), NULL, 1, MPI_DOUBLE, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
#if DIRECT_ERROR
    MAM_Data_add(&(computeData->direct_err), NULL, 1, MPI_DOUBLE, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
#endif

608
609
610
611
612
613
    //MAM_Data_add(computeData->vlen, NULL, computeData->n, MPI_INT, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT); 
    //MAM_Data_add(computeData->r0, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
    //MAM_Data_add(computeData->b, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);

    MAM_Data_add(computeData->r0, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    MAM_Data_add(computeData->b, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
614
#if PRECOND
615
616
    //MAM_Data_add(computeData->diags, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
    MAM_Data_add(computeData->diags, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
617
618
#endif
#if DIRECT_ERROR
619
620
    //MAM_Data_add(computeData->x_exact, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
    MAM_Data_add(computeData->x_exact, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
621
622
623
624
625
#endif

    MAM_Data_add(computeData->p, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    MAM_Data_add(computeData->r, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    MAM_Data_add(computeData->x, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
626
627
628
629
#if PRECOND
    MAM_Data_add(computeData->p_hat, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    MAM_Data_add(computeData->q_hat, NULL, computeData->n, MPI_DOUBLE, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
#endif
630

631
632
633
634
635
    user_data->n = computeData->n;
    user_data->array_vptr = computeData->matL.vptr;
    user_data->array_vlen = computeData->vlen;
    user_data->array_vpos = computeData->matL.vpos;
    user_data->array_vval = computeData->matL.vval;
636
637
638
639
640
641
642
643
644
645
646
647
}


void targets_update(Compute_data *computeData, user_redist_t *user_data) {
    size_t entry, total_qty;
    void *value = NULL;
    MPI_Datatype type;

    MPI_Comm_size(computeData->comm, &computeData->numP);
    MPI_Comm_rank(computeData->comm, &computeData->myId);

    entry = 0;
648
    /*
649
650
651
652
653
654
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_CONSTANT);
    computeData->n = *((int *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_CONSTANT);
    computeData->tol0 = *((double *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_CONSTANT);
    computeData->t1 = *((double *)value);
655
    */
iker_martin's avatar
iker_martin committed
656
    
657
658
659
660
661
662
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    computeData->n = *((int *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    computeData->tol0 = *((double *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    computeData->t1 = *((double *)value);
iker_martin's avatar
iker_martin committed
663
664
    
    //entry = 0;
665
666
667
668
669
670
671
672
673
674
675
676
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    computeData->iter = *((int *)value); 
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    computeData->tol = *((double *)value); 
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    computeData->rho = *((double *)value); 
#if DIRECT_ERROR
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_REPLICATED, MAM_DATA_VARIABLE);
    computeData->direct_err = *((double *)value); 
#endif

    entry = 0;
677
    /*
678
679
680
681
682
683
684
685
686
687
688
689
690
691
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
    computeData->vlen = ((int *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
    computeData->r0 = ((double *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
    computeData->b = ((double *)value);
#if PRECOND
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
    computeData->diags = ((double *)value);
#endif
#if DIRECT_ERROR
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_CONSTANT);
    computeData->x_exact = ((double *)value);
#endif
692
    */
iker_martin's avatar
iker_martin committed
693
    
694
695
696
697
698
699
700
701
702
703
704
705
706
    computeData->vlen = user_data->recv_vlen;
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->r0 = ((double *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->b = ((double *)value);
#if PRECOND
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->diags = ((double *)value);
#endif
#if DIRECT_ERROR
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->x_exact = ((double *)value);
#endif
iker_martin's avatar
iker_martin committed
707
708
709
    
    
    //entry = 0;
710
711
712
713
714
715
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->p = ((double *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->r = ((double *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->x = ((double *)value);
716
717
718
719
720
721
#if PRECOND
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->p_hat = ((double *)value);
    MAM_Data_get_pointer(&value, entry++, &total_qty, &type, MAM_DATA_DISTRIBUTED, MAM_DATA_VARIABLE);
    computeData->q_hat = ((double *)value);
#endif
722
723
724
725
  
    int n = computeData->n;
    CreateInts (&computeData->sizes, computeData->numP); 
    CreateInts (&computeData->dspls, computeData->numP); 
726
727
728
729
730
731
    ComputeMatrixSizes (n, computeData->sizes, computeData->dspls, computeData->comm);
    computeData->my_size = computeData->sizes[computeData->myId];
    computeData->my_dspl = computeData->dspls[computeData->myId];

    computeData->matL = user_data->other_subm;
    int n_dist = computeData->matL.dim1;
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    CreateDoubles (&computeData->s, n_dist);
    CreateDoubles (&computeData->q, n_dist);
    CreateDoubles (&computeData->y, n_dist);
    CreateDoubles (&computeData->aux, n); 
#if DIRECT_ERROR
    CreateDoubles (&computeData->res_err, n_dist);
#endif

    *user_data = empty_user_data;
    user_data->array_vptr = computeData->matL.vptr;
    user_data->array_vlen = computeData->vlen;
    user_data->array_vpos = computeData->matL.vpos;
    user_data->array_vval = computeData->matL.vval;
    user_data->comm = computeData->comm;
}


void user_func(void *args) {
    int local_flag, flag = 0;
    mam_user_reconf_t user_reconf;

    MAM_Get_Reconf_Info(&user_reconf);
    user_redist_t *user_data = (user_redist_t *) args;
    if(!user_data->initiated) {
756
757
758
      targets_distribution_synch(user_reconf, user_data);
      flag = 1;
      /*
759
760
761
762
763
764
765
      targets_distribution(user_reconf, user_data);
      user_data->initiated = 1;

      if(user_reconf.rank_state == MAM_PROC_NEW_RANK) {
        MPI_Waitall(2, user_data->reqs, MPI_STATUSES_IGNORE);
	flag = 1;
      }
766
      */
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    } else {
      MPI_Testall(2, user_data->reqs, &local_flag, MPI_STATUSES_IGNORE);
      MPI_Allreduce(&local_flag, &flag, 1, MPI_INT, MPI_MIN, user_data->comm);
    }

    if(flag) MAM_Resume_redistribution(NULL);
}


void dump(Compute_data *computeData) {
  int i;

  if(computeData->myId == 0) printf("TamBL="); 
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {
      printf("%d, ", computeData->my_size);
    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

790
  if(computeData->myId == 0) printf("\nVlen="); 
791
792
793
794
795
796
797
798
799
800
801
802
803
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%d, ", computeData->vlen[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }
iker_martin's avatar
iker_martin committed
804

805
  if(computeData->myId == 0) printf("\nVptr="); 
iker_martin's avatar
iker_martin committed
806
807
808
809
810
811
812
813
814
815
816
817
818
819
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size+1; j++) {
        printf("%d, ", computeData->matL.vptr[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

820
  if(computeData->myId == 0) printf("\nVpos="); 
iker_martin's avatar
iker_martin committed
821
822
823
824
825
826
827
828
829
830
831
832
833
834
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->matL.vptr[computeData->my_size]; j++) {
        printf("%d, ", computeData->matL.vpos[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

835
  if(computeData->myId == 0) printf("\nVval="); 
iker_martin's avatar
iker_martin committed
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->matL.vptr[computeData->my_size]; j++) {
        printf("%lf, ", computeData->matL.vval[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

  if(computeData->myId == 0) printf("\nX="); 
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%lf, ", computeData->x[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

  if(computeData->myId == 0) printf("\nB="); 
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%lf, ", computeData->b[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

  if(computeData->myId == 0) printf("\nr="); 
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%lf, ", computeData->r[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

  if(computeData->myId == 0) printf("\nr0="); 
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%lf, ", computeData->r0[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

  if(computeData->myId == 0) printf("\np="); 
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%lf, ", computeData->p[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

  if(computeData->myId == 0) printf("\ndiags="); 
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%lf, ", computeData->diags[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

  if(computeData->myId == 0) printf("\np_hat="); 
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%lf, ", computeData->p_hat[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }
954

iker_martin's avatar
iker_martin committed
955
  if(computeData->myId == 0) printf("\nq_hat="); 
956
  fflush(stdout); MPI_Barrier(computeData->comm);
iker_martin's avatar
iker_martin committed
957
958
959
960
961
962
963
964
965
966
967
968
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%lf, ", computeData->q_hat[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }
969
/*
iker_martin's avatar
iker_martin committed
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
  if(computeData->myId == 0) printf("\ns="); 
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%lf, ", computeData->s[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }

  if(computeData->myId == 0) printf("\ny="); 
  fflush(stdout); MPI_Barrier(computeData->comm);
  for(i=0; i<computeData->numP; i++) {
    if(computeData->myId == i) {

      for(int j=0; j<computeData->my_size; j++) {
        printf("%lf, ", computeData->y[j]);
      }

    }
    fflush(stdout);
    sleep(1);
    MPI_Barrier(computeData->comm);
  }
  */
1000
}
iker_martin's avatar
iker_martin committed
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

/*
typedef struct {
  double tol, tol0;
  int iter, n;

  double rho;
  double *x, *b;
  double *s, *q, *r, *p, *r0, *y, *p_hat, *q_hat;
  double *aux;
  SparseMatrix matL;

#if PRECOND
  double *diags;
#endif
#if DIRECT_ERROR
  double *res_err, *x_exact;
  double direct_err;
#endif
  double t1;

  int *sizes, *dspls;
  int my_size, my_dspl;
  int *vlen;

  int myId, numP;
  MPI_Comm comm;
} Compute_data;
*/