Commit 8edd155c authored by Iker Martín Álvarez's avatar Iker Martín Álvarez
Browse files

Added Code used to create Plots for the Workshop DYNRESHPC24. In addition, it...

Added Code used to create Plots for the Workshop DYNRESHPC24. In addition, it has been added the processed data and the results obtained from it
parent 871b5f25
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "603f28cb-7479-47e8-8d8d-b18a620925d1",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import pandas as pd\n",
"from pandas import DataFrame, Series\n",
"import numpy as np\n",
"import math\n",
"\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.patches as mpatches\n",
"import matplotlib.colors as colors\n",
"from matplotlib.legend_handler import HandlerLine2D, HandlerTuple\n",
"from matplotlib.colors import LinearSegmentedColormap\n",
"from scipy import stats\n",
"import scikit_posthocs as sp\n",
"import sys\n",
"\n",
"from mpl_toolkits.mplot3d import axes3d"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "516a5850-000a-488c-a52d-7051a31b691a",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1.429511096, 0.19593417907, 0.17412488914, 0.14939460301, 0.15755367208]\n"
]
}
],
"source": [
"totn = [1429.511096, 195.93417907, 174.12488914, 149.39460301, 157.55367208]\n",
"processes = [2, 20, 40, 80, 160]\n",
"iters = []\n",
"tot_iters = 1000\n",
"for it_value in totn:\n",
" iters.append(it_value / tot_iters)\n",
"print(iters)\n",
"\n",
"labelsMethods_aux = ['Merge - COLS',\n",
" 'Merge - COLA',\n",
" 'Ideal']"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "d1f3ec22-9445-414e-8acf-40da5209a90a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#OFI REDUCCION\n",
"\n",
"#CON BARRIERS\n",
"malls = [1.191402, 3.13309, 2.585917, 2.569179, 0.777284, 1.033414, 0.920364, 0.668779, 0.519809, 0.334906]\n",
"malla = [1.612513, 3.265418, 2.965351, 2.98502, 1.002663, 1.030409, 1.112991, 0.873688, 0.871016, 0.727469]\n",
"#SIN BARRIERS\n",
"#malls = []\n",
"#malla = []\n",
"labels_aux = ['(20,2)', '(40,2)', '(80,2)', '(160,2)', '(40,20)', '(80,20)', '(160,20)', '(80,40)', '(160,40)', '(160,80)']\n",
"tuples_aux = [ (20,2), (40,2), (80,2), (160,2), (40,20), (80,20), (160,20), (80,40), (160,40), (160,80)]\n",
"tots = [814.67876291, 808.5604651, 795.9308548, 795.54596305, 190.34062719, 177.72450495, 176.88434005, 163.42062998, 161.76110101, 147.07955885]\n",
"tota = [816.94620895, 807.90405488, 792.34561992, 789.45519304, 183.67259693, 176.26401806, 173.38925004, 159.47613788, 164.16760778, 146.63839984]\n",
"\n",
"spawn_min = [1.45000e-04, 6.29000e-04, 1.05700e-03, 1.47300e-03, 5.85000e-04, 1.04000e-03, 1.42700e-03, 1.04200e-03, 1.53700e-03, 1.44100e-03]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "73b84c51-16da-4277-88cc-a7571d6d159d",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"#OFI EXPANSION\n",
"\n",
"tots = [822.592448, 812.38741612, 687.25450993, 792.73712492, 189.64718318, 180.3323071, 183.42675281, 163.77047706, 156.8667469, 146.14701796]\n",
"tota = [827.57983398, 808.741225, 691.38776207, 798.37592387, 188.47194409, 182.5640409, 177.40146399, 161.12198901, 164.66972589, 150.13075709]\n",
"\n",
"labels_aux = ['(2,20)', '(2,40)', '(2,80)', '(2,160)', '(20,40)', '(20,80)', '(20,160)', '(40,80)', '(40,160)', '(80,160)']\n",
"tuples_aux = [(2,20), (2,40), (2,80), (2,160), (20,40), (20,80), (20,160), (40,80), (40,160), (80,160)]\n",
"#CON BARRIERS\n",
"malls = [1.459048, 1.377933, 1.562658, 1.646107, 1.336804, 1.289738, 1.335803, 1.006473, 1.193941, 1.098027]\n",
"malla = [4.291689, 4.300612, 5.926505, 6.496032, 1.582687, 1.722409, 1.863822, 1.683262, 1.657882, 1.50607]\n",
"#SIN BARRIERS \n",
"#malls = [1.386815, 1.352518, 1.552363, 1.545332, 1.200833, 1.278144, 1.446389, 1.350773, 1.233166, 1.073713]\n",
"#malla = [4.266167, 4.137584, 4.408637, 7.202143, 1.580283, 1.684443, 1.784895, 1.481095, 1.592655, 1.49029]\n",
"\n",
"spawns = [0.646706, 0.637626, 0.79149, 0.874327, 0.703415, 0.77506, 0.923799, 0.922304, 0.875446, 0.808462]\n",
"spawna = [0.667736, 0.599761, 0.883783, 1.069666, 0.683896, 0.838215, 0.875225, 0.769545, 0.918761, 0.887716]\n",
"\n",
"reds_s = [0.031203, 0.034094, 0.036393, 0.036872, 0.325629, 0.161447, 0.051848, 0.275889, 0.117939, 0.124082]\n",
"reds_a = [0.016136, 0.018315, 0.017299, 0.020972, 0.00817, 0.008836, 0.010475, 0.006352, 0.006724, 0.001864]\n",
"\n",
"spawn_min = [5.68926e-01, 5.94807e-01, 6.34480e-01, 7.45979e-01, 5.23472e-01, 6.66369e-01, 8.03722e-01, 6.67325e-01, 8.09060e-01, 7.51335e-01,]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1d1e1454-5908-4904-b481-cfb21b04c81b",
"metadata": {
"tags": []
},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'spawna' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[4], line 5\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m index \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(malla)):\n\u001b[1;32m 4\u001b[0m index_iter \u001b[38;5;241m=\u001b[39m index\u001b[38;5;241m%\u001b[39m\u001b[38;5;28mlen\u001b[39m(iters)\n\u001b[0;32m----> 5\u001b[0m mall_aux \u001b[38;5;241m=\u001b[39m malla[index] \u001b[38;5;241m-\u001b[39m spawna[index] \u001b[38;5;241m-\u001b[39m reds_a[index] \n\u001b[1;32m 6\u001b[0m aux_value \u001b[38;5;241m=\u001b[39m math\u001b[38;5;241m.\u001b[39mceil( mall_aux \u001b[38;5;241m/\u001b[39m iters[index_iter])\n\u001b[1;32m 7\u001b[0m aux_value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmax\u001b[39m(aux_value, \u001b[38;5;241m2\u001b[39m)\n",
"\u001b[0;31mNameError\u001b[0m: name 'spawna' is not defined"
]
}
],
"source": [
"iters_a = [] # Total de iteraciones asincronas esperadas\n",
"iters_s = [] # Total de iteraciones sincronas esperadas para caso ideal\n",
"for index in range(len(malla)):\n",
" index_iter = index%len(iters)\n",
" mall_aux = malla[index] - spawna[index] - reds_a[index] \n",
" aux_value = math.ceil( mall_aux / iters[index_iter])\n",
" aux_value = max(aux_value, 2)\n",
" iters_a.append(aux_value)\n",
" \n",
" mall_aux = malls[index] - spawns[index] - reds_s[index] \n",
" aux_value = math.ceil(mall_aux / iters[index_iter])\n",
" aux_value = max(aux_value, 2)\n",
" iters_s.append(aux_value)\n",
"print(iters_a)\n",
"print(iters_s)\n",
"iters_a = np.array(iters_a)\n",
"iters_s = np.array(iters_s)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5e9d9070-70d7-4c30-92eb-4709726ff6c1",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[813.48736091, 805.4273751, 793.3449378, 792.97678405, 189.56334318999998, 176.69109095000002, 175.96397604999999, 162.75185098, 161.24129201, 146.74465285000002]\n",
"[816.94620895, 807.90405488, 792.34561992, 789.45519304, 183.67259693, 176.26401806, 173.38925004, 159.47613788, 164.16760778, 146.63839984]\n"
]
}
],
"source": [
"ideal = []\n",
"for index in range(len(tota)):\n",
" index_iter = index%len(iters)\n",
" aux_value = tots[index] - malls[index]\n",
" ideal.append(aux_value)\n",
"print(ideal)\n",
"print(tota)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "40a27c2c-3aee-4edc-9136-b13fa4416205",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[812.722637535, 801.81799257, 789.4528495049999, 793.5323840399999, 185.029534105, 172.66439103999997, 176.74392557500002, 161.75974607499998, 165.83928061, 153.474137545]\n"
]
}
],
"source": [
"ideal2 = []\n",
"for tuple_aux in tuples_aux:\n",
" index1 = tuple_aux[0]\n",
" index1 = processes.index(index1)\n",
" index2 = tuple_aux[1]\n",
" index2 = processes.index(index2)\n",
" val_aux = (iters[index1] + iters[index2]) * 500\n",
" ideal2.append(val_aux)\n",
"print(ideal2)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "de3b66fe-8992-48c3-8474-f3aa13a1a770",
"metadata": {
"tags": []
},
"outputs": [
{
"ename": "TypeError",
"evalue": "unsupported operand type(s) for -: 'list' and 'list'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[7], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m iters_diff \u001b[38;5;241m=\u001b[39m iters_a \u001b[38;5;241m-\u001b[39m iters_s\n\u001b[1;32m 2\u001b[0m iters_diff\n\u001b[1;32m 4\u001b[0m ideal3 \u001b[38;5;241m=\u001b[39m []\n",
"\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for -: 'list' and 'list'"
]
}
],
"source": [
"iters_diff = iters_a - iters_s\n",
"iters_diff\n",
"\n",
"ideal3 = []\n",
"for index in range(len(tota)):\n",
" index_iter = index%len(iters)\n",
" aux_value = tota[index] - malla[index] + (iters_diff[index] * iters[index_iter])\n",
" ideal3.append(aux_value)\n",
"print(ideal3)\n",
"print(tota)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "fd74e4dd-553a-4493-8429-9ca62841ffc6",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4.9999999999999996e-06\n",
"100000000000\n",
"[0.28416491103999997, 0.28464891103999995, 0.28507691103999994, 0.28549291103999996, 0.28460491103999996, 0.28505991103999995, 0.28544691104, 0.28506191103999995, 0.28555691103999997, 0.28546091104]\n"
]
}
],
"source": [
"ideal4 = []\n",
"L = 5 * (10 **-6)\n",
"B = 100 * (10 **9)\n",
"D = 3550186388 * 8\n",
"print(L)\n",
"print(B)\n",
"for spawn_value in spawn_min:\n",
" aux_value = L + D / B\n",
" ideal4.append(aux_value + spawn_value)\n",
"print(ideal4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a6606f9f-fc4a-465f-a603-9acc7b146d5a",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"colors_m = ( \n",
" colors.to_rgba(\"red\"), #MCOLS\n",
" colors.to_rgba(\"blue\"), #MCOLA \n",
" colors.to_rgba(\"red\"), #MRMA1T\n",
" colors.to_rgba(\"mediumseagreen\"), #BCOLA\n",
" colors.to_rgba(\"orange\"), #BCOLA\n",
" )\n",
"f=plt.figure(figsize=(22, 14))\n",
"ax=f.add_subplot(111)\n",
"\n",
"x = np.arange(len(labels_aux))\n",
"plot_index = 0\n",
"#ax.plot(x, tots, color=colors_m[plot_index], linestyle='-', marker= '.', markersize=18, label=\"Sinc\")\n",
"tota_tmp = []\n",
"tots_tmp = []\n",
"ideal_tmp = []\n",
"ideal4_tmp = []\n",
"for index in range(len(tota)):\n",
" tota_tmp.append(ideal2[index] / tota[index])\n",
" tots_tmp.append(ideal2[index] / tots[index])\n",
" ideal_tmp.append(ideal2[index] / ideal[index])\n",
" ideal4_tmp.append(ideal[index] / ideal4[index])\n",
" '.','v','s','p',\n",
"plot_index = 1\n",
"ax.plot(x, tots_tmp, color=colors_m[plot_index], linestyle='--', marker='v', markersize=18, label=\"Sinc\")\n",
"plot_index = 2\n",
"ax.plot(x, tota_tmp, color=colors_m[plot_index], linestyle=':', marker='s', markersize=18, label=\"Asinc\")\n",
"plot_index = 3\n",
"ax.plot(x, ideal_tmp, color=colors_m[plot_index], linestyle='-.', marker='p', markersize=18, label=\"Ideal\")\n",
"plot_index = 4\n",
"#ax.plot(x, ideal4_tmp, color=colors_m[plot_index], linestyle='-.', marker='h', markersize=18, label=\"Ideal4\")\n",
"\n",
"ax.set_xlabel(\"(NS,NT)\", fontsize=36)\n",
"name_legend = \"Difference over Ideal\"\n",
"ax.set_ylabel(name_legend, fontsize=36)\n",
"plt.xticks(x, labels_aux,rotation=90)\n",
"ax.tick_params(axis='both', which='major', labelsize=36)\n",
"ax.tick_params(axis='both', which='minor', labelsize=36)\n",
"plt.legend(loc='best', fontsize=30,ncol=2,framealpha=0.8)\n",
"ax.axhline(y=1, color='black', linestyle='--')\n",
" \n",
"#plt.ylim([0,1.1])\n",
"f.tight_layout()\n",
"f.savefig(\"Images/TEST\"+\".eps\", format=\"eps\", dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "f37522d1-d4d8-4d86-a96e-ea0b262e0320",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"[1.191402, 3.13309, 2.585917, 2.569179, 0.777284, 1.033414, 0.920364, 0.668779, 0.519809, 0.334906]\n",
"[1.612513, 3.265418, 2.965351, 2.98502, 1.002663, 1.030409, 1.112991, 0.873688, 0.871016, 0.727469]\n",
"[0.28416491103999997, 0.28464891103999995, 0.28507691103999994, 0.28549291103999996, 0.28460491103999996, 0.28505991103999995, 0.28544691104, 0.28506191103999995, 0.28555691103999997, 0.28546091104]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACI4AAAVtCAYAAACf1pfGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gV1P0/8E9CWEa2gOxRpAJupFJRi4BWrVoFRVyMalv3wCrVSp11YcVVR62IiqLV70+L2lonCCrgALVARZENYQpEdsbvD+qVmwRIQkKA+3o9z33KOfeMz70NJg/3nXPS8vPz8wMAAAAAAAAAgJSTXtEFAAAAAAAAAABQMQRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApKiMii6ArcvLy4sFCxZEjRo1Ii0traLLAQAAAAAAAAB2cvn5+ZGdnR2NGzeO9PStnykiOLKTW7BgQTRr1qyiywAAAAAAAAAAdjFz586Npk2bbnWM4MhOrkaNGhGx6f/MmjVrVnA1AAAAAAAAAMDObtWqVdGsWbNE5mBrBEd2ct9fT1OzZk3BEQAAAAAAAACg2L7PHGzN1i+yAQAAAAAAAABgtyU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFJVR0QUAAAAAALBryMvLi5ycnMjLy6voUgAAYJeTnp4eGRkZkZ6+c53xITgCAAAAAMAW5eTkRHZ2dmRnZ8fq1asruhwAANjlZWZmRo0aNaJGjRqRkVHxsY2KrwAAAAAAgJ3S6tWrY+7cuZGfnx+ZmZmx9957R5UqVSI9PT3S0tIqujwAANhl5OfnR15eXmzYsCGys7MjKysrFi1aFM2aNYvMzMwKrU1wBAAAAACAQr4PjWRmZkajRo12it+EBACAXV1mZmbUqVMncnJyYuHChTF37twKD4/sXBfnAAAAAABQ4XJychKhkSZNmgiNAABAGcvIyIgmTZpEZmZmzJ07N3JyciqsFsERAAAAAACSZGdnR35+fjRq1CjS0/0zMgAAlIf09PRo1KhR5OfnR3Z2dsXVUWE7AwAAAACwU8rOzo7MzEwnjQAAQDnLyMiIzMxMwREAAAAAAHYOeXl5sXr16qhRo0ZFlwIAACmhRo0asXr16sjLy6uQ/QVHAAAAAABI+P5u9SpVqlRwJQAAkBq+/9n7+5/FdzTBEQAAAAAAEr7/Lcf0dP98DAAAO8L3P3s7cQQAAAAAgJ1GWlpaRZcAAAApoaJ/9hYcAQAAAAAAAABIUYIjAAAAAAAAAAApSnAEAAAAAAAAACBFCY4AAAAAAAAAAKQowREAAAAAAAAAgBQlOAIAAAAAAAAAkKIERwAAAAAAAAAAUlRGRRcAAAAAAAAAFWX16tUxadKkmDlzZixevDjWrl0b1atXjzp16kTDhg3jkEMOiUaNGpXpnvPnz4/JkyfHrFmzYtWqVZGfnx977rlnNG/ePPbbb79o06ZNme63IyxevDg++eSTmDdvXqxYsSLWr18fmZmZUatWrWjRokW0bt06WrZsGWlpaRVdKgAFCI4AAAAAAAAl0rJly5g9e3ah/ocffjguuOCCUq05bNiwOO+88wr1t2jRImbNmlWqNWFLsrOzY/jw4fH888/H+PHjIzc3d6vjmzRpEieddFKcffbZ0aVLl1KFHxYtWhQPP/xwjBw5MqZPn77N/Xr37h2XXHJJtG7dusR7DR8+PAYMGJBo/+xnP4vRo0eXeJ1tWblyZTz++OPx+OOPx9SpU7c5vnbt2tGxY8c4+uij47jjjouOHTuWeU1A+enatWuMGTMm0c7Pz6/Aanac0aNHx9FHH51o33DDDXHjjTdWXEHlwFU1AAAAAADsFubPj5g2LWLOnIilSyPWrInIy6voqlLLE088Ueq5w4YNK8NKoGi5ublxzz33RLNmzeKyyy6L999/f5uhkYhNJ4Q88sgjceSRR8ZBBx0Ur732WrH33LBhQ9x8883RsmXLuOmmm7YZGvl+v6FDh0bbtm3j0ksvjezs7GLvt6O88sor0a5du7jqqquKFRqJiFixYkW8/fbbcf3118ehhx4aK1asKN8iIUV8f5rP94/yCIqxe3PiCAAAAAAAu7x16yI6doxYtKjwc9WqbXpUr77pseeeEZmZETVqbPrfPfb44X+/f2yp3bx5RIsWO/717SomTpwYU6ZMiQ4dOpRo3vTp0+P9998vp6pgk6ysrDj99NNj3LhxRT6/zz77RJMmTaJ+/fqRm5sbWVlZMW/evJgzZ07SuM8//zxOPPHEGDlyZPTp02ebe/bs2TM+/PDDQs9lZmZGhw4donHjxpGRkRELFiyIL7/8MpYtW5YYk5ubGw8++GC8+eabMWrUqGjbtm0pXnnZGz58eJx33nmRVyCdV61atWjfvn00b948MjMz47vvvoulS5fGf/7zn1i5cmUFVcsuYcn7EV/eH/HjyyLqd6noaiDlCI4AAAAAALDLq1o1okGDiMWLIwqemr5u3aZHUb/YnpYWkZ6+6X+/v3kiP3/To6hDCBo02HSiSdWqZf4SdmmVK1eOjRs3RsSmU0fuvvvuEs3f/LSRzdeCsjJv3rzo2rVrzJgxI6m/ZcuWcc0118SJJ54YzZo1K3Lu9OnT47XXXotHHnkk6bSQdevWbXXPRYsWRdeuXePLL79M6j/ooINi8ODBcfzxx0f16tWTnsvJyYnRo0fHkCFD4o033kj0f/nll3HUUUfFmDFj4sc//nGxXnN5+fTTT+P8889PCo20bt06brrppujZs2fssccehebk5+cn3seXXnppi+EdUtDquRGTromY81xEpEfM+XtE8z4RB98VkVn030mg7LmqBgAAAACAXV5aWsQf/lA4NLIt3wdEcnIiNm7c9MjJKTo0kp4e8aMfRVSpUjY1705OPPHExJ9HjBgROTk5xZ6bm5sbTz31VKJ90kknlWltsHHjxjj99NMLhUZuvPHG+O9//xsXXnjhFkMjERFt27aNK6+8MqZMmRKPPfZYNGrUaJt75uXlxdlnn10oNHLzzTfHxx9/HD179iwUGomIyMjIiB49esS///3vGD58eFSuXDnx3KJFi6JXr16xdu3abe5fnq688sqk6326dOkSkyZNinPOOafI0EhERFpaWvz4xz+OgQMHxtixY2Pq1KlxwQUXRKVKlXZU2exsctZEfHFTxCv7RMx98X+d/wsjzX1xU/8XN28aB5Q7wREAAAAAAHYLvXpFNGv2w8khZS0vL+KOO8pv/V3Zr371q8SfFy1aFK+99lqx5/7rX/+KhQsXFrkWlIXf/e53MX78+EQ7PT09hg8fHjfccENULcHxQRkZGXH++efHpEmT4sgjj9zq2Ntvvz3efvvtpL577rknBg8eXOywRL9+/eK5556LjIwfLhCYMmVKXHHFFcWuuazNmzcv3nvvvUQ7IyMjnnnmmahZs2aJ1mnXrl08/PDDUaNGjbIukZ1dfn7E7OcjRrXZFAzJWx+RXyBsmJ+zqf+LmzaNm/18yZOhQIkIjgAAAAAAsFvIyIgYNKj81u7RI+Koo8pn/V1d586do127don2E088Uey5m19T065duzjssMPKtDZS25QpU+KBBx5I6hs4cGD069ev1Gs2bNgw3nnnnejWrVuRzy9cuDBuvvnmpL4+ffrElVdeWeK9evbsGYMK/Iftr3/9a0yaNKnEa5WFsWPHJrV/+tOfRosWLSqkFnZByz+JeLNLxPt9ItZlReKEkS3K2zTu/T6b5i3/dEdUCSkpY9tDAAAAAABg1zBgwKYra1auLNt1c3IibrutbNfc3QwYMCCuueaaiIh47bXXYvHixdGgQYOtzlmyZEm8+uqriXZZnzYyderU+OKLL2LJkiWxatWqqFu3bjRq1CiOOOKIqFevXpnutXbt2hg3blzMnz8/Fi1aFJUqVYqf/OQncdRW0kYbN26MsWPHxjfffBNLliyJevXqRZMmTeLwww+POnXqlGl9ERHLly+PDz74ILKysmLp0qVRrVq1qF+/fhx00EHRoUOHMt9vZ3DHHXdE/mYnFeyzzz5x6623bve6GRkZ0bx58yKfu//++2PDhg2Jdq1ateLee+8t9V7XX399PPfcc0lX7dx9993xzDPPlHrN0lqwYEFSu2nTpju8BnZBaxdFfHZdxDdPRKR9f65BcU8Q+d+4ZR9FvH5oROsBEQfeFlG9YXlUCilLcAQAAAAAgN3GHntEXHllxM03b7papixkZESccEJEp05ls97uqm/fvnHddddFTk5O5OTkxNNPPx1XXXXVVuc89dRTsXHjxojY9EH8ueeeu911LFu2LIYMGRIjRoyI+fPnFzkmPT09Dj/88LjhhhuiR48exVq3f//+8eSTTybaM2fOjJYtW8bcuXPjuuuui5dffjm+++67pDm//OUviwyOZGdnx0033RSPP/54rFixotDzVatWjZNPPjnuvPPOaNWqVcyaNStatWqVeL5fv34xfPjwYtWdn58fzz//fNx7773x0UcfRd4W/mI0adIkLr300rjsssuievXqxVp7Z7dw4cJ47rnnkvouvfTSEl1PU1Lr1q2LRx99NKmvX79+0bBh6T/krlatWlxyySVJJ5b8/e9/jyFDhkTjxo1LvW5p5OQkXymyfPnyHbo/u5j8/Ihpd0d8ceOmq2ciPyI/t5Rr/e9rb+aTEbOfizjgpoh9r3J/XBn5+uuvY+LEibFgwYLIyMiIJk2axH777Zd0mlhZycnJiYkTJyZCk+vXr4/69etHy5Yto0uXLlGtWrXtWn/RokUxderUmDFjRqxYsSI2bNgQtWvXjr322is6duwYP/rRj8rolexeBEcAAAAAANitXHxxxO23R6xfXzbr5eZG/OlPZbPW7qxhw4ZxwgknxKhRoyJi03U12wqObH6lzQknnBANGzaMpUuXlrqGp556Ki699NJYtWrVVsfl5eXFuHHj4phjjolzzjknHn/88ahSpUqJ93v55ZdjwIABRYY/tmTKlCnx85//fIuhloiI9evXxwsvvBBvvPFGjBgxIvbbb78S1xYR8c0338Rpp51WrGtN5s+fH7///e/jkUceiVdffXW3OIHkrbfeSgo6VKtWLfr27Vuue06YMCG+/fbbpL7zzz9/u9c999xzY9CgQYmTTHJycuKtt94q99dTUMFThMaNGxfLli0r8xN82E3k50RMvqaM18yNyF0TMenqiB9fHpFWuWzXTzFvvvlm/P73v49PPy36GqBDDjkkBg4cGGefffZ27zVt2rS49dZb49VXX93i9+nq1avHySefHDfffHO0bdu2WOvm5ubGmDFj4sUXX4y33norvvrqq62Ob9q0aVx00UVx0UUXRa1atUr8OnZX6dseAgAAAAAAu4699or4zW8iKlXa/rUyMiL69Iko5ef2KWfzq2amTJkSH3300RbHTpgwIaZMmVLk3NL44x//GP369Uv6MCotLS323XffOOmkk+Kss86K448/PurXr580b8SIEXHCCScUOklhWyZMmBB9+vRJhEZq164dxxxzTJx55plx/PHHR4sWLQrN+fLLL6Nr166FQiN169aNY489Ns4888w49thjo27duhERsXLlyujdu3d8/vnnJaotImLixIlx2GGHFQqN1KtXL3r06BF9+vSJU089tVAoZdasWdGlS5eYPHlyiffc2YwZMyapfcghh5T7h4TvvfdeUnvvvfeO/ffff7vXrVevXhxyyCFJfWPHjt3udUvqpz/9aVJ79erVcdZZZxUKywA7t/z8/Lj00kvj2GOP3WJoJCLi008/jXPOOSfOOeecEn+f/F5ubm5ceeWVsd9++8Wzzz671XDn2rVr4/nnn48OHTrEfffdV6z177vvvujevXs8/PDD2wyNRETMmzcvrrvuujjooIO2+tpTjRNHAAAAAADY7QwcGPGXv2z/Onl5m669oXh+8YtfRMOGDWPRokURETFs2LDotIU7foYNG5b4c4MGDeKEE04o9b5PPvlk3HLLLYl2enp6XHzxxfG73/0umjdvnjQ2Pz8//vGPf8Tll18ec+bMiYiIt99+OwYPHhy33357sff89a9/HevXr4+mTZvG3XffHaeddlpU2iytlJ+fH7Nnz060c3Nz49xzz006UaV+/fpxzz33RJ8+fSIj44ePbHJycmLkyJExcODAWLp0aZx33nnFfzMiIisrK0455ZSkvQ477LC45ZZbokePHpFW4GqHr7/+Oq6++up4+eWXI+KHwMonn3wSNWrUKNHeO5P3338/qb2lr8Wy9MEHHyS1Dz300DJbu2PHjjF+/Pgt7rUj7LvvvnHooYfGxx9/nOh74403ok2bNvGrX/0qTj311PjJT36S9PUM7HwuuuiieOSRR5L60tPT49BDD40WLVrEhg0bYtq0aTF9+vSIiHjmmWeidu3aJd5n7dq1ccopp8Qbb7yR1F+5cuU46KCDomnTplG1atXIysqKiRMnxpo1ayJi0/fBK664Ir799tu48cYbt7pHwSvYqlSpEvvuu280bdo0atWqFbm5ubFkyZL47LPPkq7XmjVrVnTr1i0++eQT19eEE0cAAAAAANgNtWwZ0bv3phNDSqtSpYgBAyLatCmzsnZ7GRkZcc455yTazz33XKxbt67QuO9/o/h75557blSuXLrrBmbPnh0XXnhhol21atV47bXX4v777y8UGonYdArJKaecEh999FG02ez/3CFDhsTMmTOLvW92dna0bt06PvzwwzjjjDOSQiPf79OyZctE+7HHHks6gaV+/foxduzYOOeccwp9yJ6RkRHnnntujBkzJvbaa68SX99z3nnnxcKFC5Pa77//fhxzzDGFQiMREW3atImXXnopLrvsskTfV199FUOHDi3Rvjubgie7tGvXrtz3nDdvXlK7LK/8KXg6TMG9dpR77rmn0Nfs8uXL4+67744uXbpEzZo148gjj4yBAwfGyJEjkwJUQMV78cUXC4VGzj777Jg7d25MmDAh/v73v8fLL78cX375ZYwfPz4OPvjgiIj4y1/+UuITsC6++OKk0EitWrVi6NChsWzZspg4cWL8v//3/2LkyJHx7rvvxtKlS+Puu++OatWqJcbffPPN8a9//Wub++y9994xaNCgGDt2bKxevTo+++yzeO211+LZZ5+N559/Pt55551YsmRJ/Pvf/068nohNQcmyuIZndyA4AgAAAABAmVq9esuPghmCrY1du7b0Y9esibj00ohSnqoeERFpaRHXXJPct3bt1uso7dh164o3blew+ZUzK1asiJdeeqnQmBdffDFWrlyZaA8YMKDU+w0ZMiTWbvYFMHTo0DjuuOO2Oa9Bgwbx7LPPJtq5ubklDkoMHz48mjZtWqyxDz74YKH2j3/8463Oad++fbGP6v/exx9/HP/85z8T7Z/+9Kfx17/+tVCwpSj33HNPHHDAAUk1rl+/vkT77yw2btwY2dnZSX2l+W35ktr8t9kjIurUqVNmaxesf9WqVaW+OmJ7HHnkkTF8+PCoWrVqkc+vXbs2xo0bF0OHDo2zzjorWrZsGS1atIiLL744JkyYsIOrJSIiclaX/JG32ddWXs7/+teWfN0d9bpyN/zQn59X9P45a0v+PuRu9t/A/Pzyf03lbO3atXHxxRcn9Q0aNChGjBgRjRs3LjT+sMMOi7Fjx8bhhx8eEVGia6leeOGFeOKJJxLtFi1axOTJk+OKK64o8jSr6tWrx1VXXRVvv/12IjySn58fl112WaFTRTZ31llnxZw5c+KOO+6II444YosnHqWnp8exxx4bH374Yfz85z9P9E+YMCFGjx5d7Ne1uxIcAQAAAACgTO2555YfvXolj23QYMtjjz8+eWzLllsee9RRyWPbt4/o0mX7XkdOTsSxxyb3HXXUlmvY7HCJiNhU/5bGNmiQPLZXry2P3dW0b98+DjvssER78ytpiur7yU9+UupTGVavXp20VuvWreO3v/1tsed36tQpjjzyyER71KhRxZ7bpUuXpLlb8/nnn8eUKVMS7bZt20bv3r2LNfess85KOhllW+6///6k9m233Rbp6cX7OKhSpUpx+eWXJ9pLliyJDz/8sNh770wKBjgiKiY4UpZ7FrVWUa9zRzj77LNjwoQJ0b1792KNnzNnTjz00EPRuXPn6NatW3z22WflXCFJ/r5nyR/zNgv9zXtpU9/oAt+Y/9Fy62u8WHbBqSK9WOeHvabc9kP/ymmb+v7RMnn86ONL/j58OvCH+euXburbhY0cOTIWL16caHfq1Cluu+22rcyIyMzMjJEjR0ZmZmax98nPz4+bN7vrLyMjI0aNGpV0EteWHH744Ulzv/7668RVakVp3LhxiU4tq1q1ajzxxBNJc5555pliz99dCY4AAAAAAABlavNTR955552YM2dOov3NN9/EmDFjEu3tOW1k3LhxSaeNnHbaacUOSXzv6KOPTvx59uzZSbVuzSmnnFLsPT744IOk9umnn17suSUd/9ZbbyX+vPfee8fPfvazEu21+fsRETF27NgSzaf8FHXNUEU68MAD46233oqPP/44Lr/88mjVqlWx5r377rvRuXPnGDFiRDlXCBT01FNPJbVvvPHGYn3fbN68efz6178u9j7vvvtu/Oc//0m0zz777KQTrbbl4osvTrqypiTBzuJo1KhR4hSViMLfp1PRdtzuCAAAAAAAhX333ZafK3hbxma/9FpIwc8xZs0q/tipUzedKJ+fH9G5c8S0aRFbOeW80FoDB0bceOOm62o29957xV/nX/8q/tj/+7+I3Nzijd0V9OnTJ6644opYu3Zt5OXlxZNPPhmDBw+OiE2njeTn50fEpmPpzzzzzFLvM27cuKR248aNY9bWvlCKUKVKlaT2N998E82bN9/mvIMPPrjYexQ8XeHQQw8t9tyITb8RXhwzZsyIhQsXJtpt2rSJ2bNnl2ivDRs2JLVnzJhRovlbkpWVFesK3lW1BXvvvXfSB4alUbdu3UJ9m1+PVF7q1q0bCxYsKJc9V6xYUeR+Fa1jx47RsWPHuPfee2PevHnx4YcfxqeffhqffvppTJgwocj3YN26ddG/f/9o0KBBHFvwaCfKXu+tfGPekvTNriJqeur/1ijwzfaXs7a+Rt7G8j115LRvI9L/d2pE2mYnTtRqV/Rr7vqviCjmN+bvpW32cXrVvUr3Xu4kNm7cGBMnTky069atm3Rly7acffbZce+99xZr7JtvvpnUPuOMM4q9T0TEHnvsET/5yU/ivffei4jShxjXrFkT2dnZsW7dusTPHt/b/Cqx//73v5Gfn7/TBfR2JMERAAAAAADKVAlOMi+3sXvs8cOfBw+O6NOnZHOvu67o/apXL/46JRm7nZ+R73Rq1qwZvXr1SpwoMHz48Lj++usjPz8/6bede/bsGbVq1Sr1PnPnzk1qX3HFFXHFFVeUer2I4l/90aDgfUNbsXTp0qR2ixYtSlRTcYIsEYXfj3HjxhX7FIgtKaurUPr06ZN00szWvPvuu9G1a9ft2q9y5cpRo0aNyM7OTvQVFbwoawWDI99++22ZrV1wrZo1a0ZGxs71UV/Tpk3j9NNPT5ySk5eXFxMnToynn346hg0blhQeys3NjV//+tfx1VdfFQpwUcYySvANtCjpGZseJV03b+P27bstGZk/BEc2l5ZedG0ZJfjGXJS0tO1/LyvQlClTkk7p6tixY1QqmOjdioMOOiiqVq0a69ev3+bYgsHOunXrljjYWbNmzcSfZ82aFXl5eVs9HSUvLy9Gjx4dL774Ynz00UcxderUWLNmTbH2ysvLi1WrVm3XzyS7up3ruwkAAAAAAJSxXr0imjWLmDdv0wkkW5OeHjFoUESdcvwF6VTxq1/9KhEc+f56mnXr1iWFG7bnmpqIiGXLlm3X/KJsHjTYmho1ahR7zYKBhZLMjUj+8GxrKvL92Bk1btw4vvzyy0R72rRp5b5nkyZNkq5nmDJlSpmtXXCtJk2alNna5SU9PT06d+4cnTt3jquuuipOOeWU+OKLLxLPz5kzJ1544YU4++yzK7BKSA2LFi1Kau+zzz4lmp+RkRGtWrWK//73v9scWzDI2Llz5xLtVVBeXl6sWLFii6csjR07Ni655JL4/PPPS73HypUrUzo4UrKL/gAAAAAAYBeTkbEpDFIctWpFXH55+daTKrp27Zp02sUTTzwRw4YNS7RbtGgR3bp12649Cl6rUhYKHmVfFqpWrZrULmndxR2/q7wfO0qXLl2S2ptf0VBeDj/88KT2Rx99VGZrf/zxx1vda2fXunXr+Oc//xmZBY5zeuONNyqoIkgtRZ1aVFLFDVbsyCDjiy++GN27d9+u0EjEpnBKKhMcAQAAAABgtzdgQMS2Ph9JS4u4/vqIEh4GwRakpaVF//79E+0XX3wxRo0alWj3798/0tLStmuPvfbaK6n9wQcfRH5+/nY9Nq+5rNQpcIRNSa8vKe51MQXfj9/85jfb/X6MHj26RLVuyejRo4u95/ZeU/O9n/3sZ0ntTz/9NFauXFkma2/JkUcemdTOyspKOmGjtJYtWxaffvrpVvfaFTRt2jTOOOOMpL7inF4AlL3t/R68NTsqyDh79uzo169fbNz4w7VIDRo0iCuvvDL+3//7f/H555/H0qVLY82aNZGXl5f0vaZfv35lXuOuTHAEAAAAAIDd3h57RFx55aaraIqSlhbRoEHEhRfu2Lp2d/3794/0/73pa9asifXr10dE4VBJaTVs2DCpPX369O1eszy0aNEiqV3SIEFxx+8q78eO0qNHj8jIyEi0161bF08//XS57tm5c+eoXbt2Ut/jjz++3euOGDEi6YPYjIyM6NGjx3avWxEOOuigpHZJg1RA6RQMMZYmSFfcOZsHGatVq1YotFGaR8uWLQvtc+edd8aaNWsS7ZNOOim++eabuOeee+LUU0+N/fffP+rVqxfVq1cvFJRZtWpViV//7kxwBAAAAACAlHDxxRGVKxf9XH5+xE03RVSvvmNr2t01b948unfvXqj/6KOPLvIDoJIqeFXHznrlRefOnZPa7777bonmF3d8hw4dkq4R+PDDD7d4tH8qaNy4caHTLR544IFy+U3471WvXj1+85vfJPU9+eSTsXjx4lKvuW7dunjggQeS+k477bRo0qRJqdesSJUqVUpqF/fqC3ZBaRkRBw+JqLRHRFqlbY8v1pqVIjIyIw6+e9P6FFvBcOFXX31Vovk5OTkxc+bMEu+1bt26mDNnTon2Kq5//OMfiT/vueeeMWLEiELXYW3JggULyqWmXZXgCAAAAAAAKWGvvSJ+85uIAp9ZRlpaRPPmEb/6VcXUtbv7VRFvbFF9pdG9e/ekD6FHjRq1XR/Ql5cjjjgiqlWrlmj/4x//KHadWVlZSVf8bE2lSpWSgjrr168v9xM2dnaDBg1Kak+fPj3++Mc/bve6OTk5W/wg9PLLL4/Km6XUVqxYEZdffnmp97r11ltjxowZSX2/+93vSr1eRZs6dWpSe1cNwFAMaWkR7X4XcfI3Ea37R0Ra6cMeaRmb5rfuH3HSjIh2V21an2Lr0KFDVN8sIfvJJ59ETk5OsedPnjw5cXLYtuyIYOeaNWuSwh9HHXVU1NzWvYT/s27dupg0aVKZ17QrExwBAAAAACBlDBy46XSRzeXnR9x665ZPI2H79OzZM8aOHZv0OO2008pk7Tp16sTZZ5+daH/33Xc75QfqtWvXTjr5Yv369XHFFVcUa+5ll11WohMyLr300qT2TTfdFAsXLiz2/N3N/vvvHxdddFFS35AhQ2LEiBGlXnPRokXRvXv3eOedd4p8vnHjxjF48OCkvueeey6GDh1a4r1efvnluPPOO5P6zjvvvOjYsWOJ1yoLM2fOjBUrVpR6/ooVK+Lvf/97Ul+3bt22syp2etUbRhz2t4jjPo6o1+l/ncUNffzv4+x6P4k47pNN61RvuPUpFKly5crxk5/8JNFevnx5/Pvf/y72/GeeeabYY3/+858ntf/2t78Ve25xFfxvUUlOL3r22WfL9fSpXZHgCAAAAAAAKaNly4jevSMy/vcLz+npEW3bRpx1VoWWtVurUqVKHHHEEUmPqlWrltn6N954Y9J6Tz/9dAwaNChyc3NLtM7UqVPjvffeK7O6CrrmmmuiSpUqifbIkSNj4MCBW/xt740bN8bll18eL7zwQon26dq1axxzzDGJ9uLFi+OEE06IefPmlWid7OzsePbZZ0s0Z2c1dOjQ6NSpU6Kdl5cXffv2jVtvvbVEHxzm5ubG448/HgcffPA2v1b+8Ic/RNeuXZP6Bg4cGH/605+K/bX59NNPxxlnnJH0NdKuXbu4//77i11zWRszZky0bNky/vjHP5b4dJ81a9bEmWeeGUuWLEn0Va1aNXr27FnWZbKzqntIxDHvR3R5PqLa3rHt8EhaRPW9N40/ZlxE3YN3RJW7tb59+ya1b7rppsjLy9vmvDlz5sRjjz1W7H2OP/74+NGPfpRoT5w4MYYNG1b8QouhTp06Se3//ve/xZq3cuXKuOWWW8q0lt2B4AgAAAAAACnlmmsivv8cNi8v4rbbCl9fw66jVatW8de//jWp76677oojjjgiXnnlla0ewz9r1qz4y1/+Et26dYsOHTps8QSJstC+ffu46aabkvqGDh0aBx54YNx7770xYcKE+Oqrr2LChAlx7733xoEHHpgICPTp06dEez355JPRtGnTRHvy5MlxwAEHxF133RVLly7d4rzs7OwYNWpUnHfeedGkSZO47rrrSrTvzqpKlSrx4osvRsuWLRN9+fn5MXjw4Nh3333j0Ucfjfnz529x/ldffRVDhw6N9u3bx/nnn1+sE1zS09Pj2WefjTZt2iT1X3/99dGpU6d46aWXYt26dYXm5ebmxttvvx0///nPo2/fvknBlvr168eLL74Ye+yxRzFedbJ169bFrFmzSvUo+Fv933/o2qRJkzjxxBPj2Wef3WowafXq1TFixIg48MAD4/XXX0967ve//33S1yopIC0tokXviJO/jtj/xoj0qoWvr0nL2NS//00RJ329abxracrEmWeeGQ0aNEi0P/roo/jDH/6w1Tnfh75Wr15d7H0yMjLi5ptvTuq78MIL4//9v/9XsoIj4q233opvvvmmUH/16tVjn332SbQnTZq0zStx1qxZE3369IlZs2aVuI7dXSkvkQIAAAAAgF3TwQdHdOsW8c47EQceGOGX3Xd9ffv2jaysrLj22msTvzk9fvz4OPnkk2OPPfaIgw8+OBo2bBjVq1eP7OzsWLp0aUydOnW7rtwojUGDBsWcOXPi4YcfTvRNnTo1rrzyyi3O6datW9x6663x3HPPJfrStvEBaqNGjeLVV1+NE044IRYsWBAREd9++20MGjQofv/730e7du2idevWUatWrVi/fn2sWLEiZsyYEbNmzYr8ze5yqlu3bmlf6k6nefPm8f7778dpp50WH374YaJ/5syZccEFF0RERNu2baNp06ax1157RW5ubmRlZcXcuXNjzpw5Ra65rQBHo0aNYsyYMXHqqafGxIkTE/2TJk2Knj17xp577hn77bdfNGrUKDIyMmLhwoUxbdq0WLZsWaG12rRpE6NGjYp27dqV5uXHhAkTolWrVqWae8MNN8SNN95YqD8nJydee+21eO211yIiokmTJvGjH/0o6tWrF5mZmZGdnR2zZ8+OqVOnFnmyS+/eveP6668vVU3sBjL2iNj/jxGtB0RMHhQxe2RsOvMgL6L56REH3RmR2ayiq9ztVK9ePR588MHo3bt3ou+OO+6IefPmxZ133hmNGzdOGj9x4sS48MIL49NPP42ITVevFfd751lnnRVvv/124qSRDRs2RK9eveKss86KgQMHbvHKrdzc3Pj8889j1KhR8fzzz8e0adPi3XffjdatWxcae8YZZ8Stt96aaJ9++unx0EMPxZlnnhnp6T+coZGfnx9vv/12XHXVVfH5559HxKYw3uYnIKU6wREAAAAAAFLO4MERixZF3HWXX2LeXVxzzTVxwAEHxIABAyIrKyvRv2bNmnj//feLtUbBY+/LWlpaWjz00EPRpk2buOGGG+K7777b6vhLLrkk/vznP8eMGTOS+mvUqLHNvQ488MCYNGlSnHvuuUm/gZ2fnx9Tp06NqVOnbnON8n4/drTGjRvHe++9F0OHDo1bb701Vq1alfT89OnTY/r06dtc59BDD4077rgjunfvXqw9x44dG3/605/irrvuSjpl5Lvvvovx48dvdX6lSpXiN7/5Tdxxxx1Rs2bNbe5X3ho1ahS1atWKlStXFnpu/vz5Wz255XvVq1ePa6+9Nq677rqo5LgnMptFdHk2ou3FEV8+EPHjSyPqd6noqnZrp59+elxwwQXxyCOPJPpGjBgRzz77bHTq1ClatGgRGzZsiKlTpyb9N/HCCy+MqVOnxpgxY4q91yOPPBLffvttvPTSS4m+Z599Np599tmoX79+HHjggVGvXr1IT0+PVatWxYIFC2LatGlFnshUlKuuuiqGDRuWCEmuWrUqzjnnnPjd734Xhx56aNSqVSuWL18ekydPTjot6uyzz46MjIx48skni/1adneCIwAAAAAApJyuXSP+85+KroKydtxxx8XMmTNj2LBh8dhjj8Vnn32WdIJGQZUrV45OnTrFscceG2eddVbSkfflaeDAgXHmmWfG008/Ha+88krMmDEjli1bFnXr1o0mTZpEt27dol+/ftGhQ4eIiEK/3V2rVq1i7dOgQYP497//HWPHjo177rkn3nzzzW1eNdCqVavo3r179OrVK4455phSvb6dWUZGRlx99dXx29/+NoYPHx7PPfdcTJgwIXFSzZY0a9YsTj755DjnnHOic+fOJdqzSpUqcdNNN8WFF14YDz30UIwcOTK+/vrrrc5p3LhxnH766XHppZfGj370oxLtV55+/vOfx5IlS2L06NHx+uuvx/vvvx+ffvppbNy4cZtz27ZtG3369InzzjsvmjdvvgOqZZdSv4vAyA700EMPRXp6ejz00EOJvry8vJgwYUJMmDCh0Pgzzjgj7r///ujRo0eJ9qlcuXL83//9XwwZMiRuuOGGpEDIkiVL4q233irWGpmZmUU+V7t27Xj11VfjuOOOi8WLFyf6s7Ky4tVXXy1yztlnnx1PPPFE/PrXvy7Ra9ndpeVv7ScmKtyqVasSyc2dIUkKAAAAAOze1q1bFzNnzoxWrVpFtWrVKroc2C7Lly+P8ePHx8KFC2P58uWxcePG2HPPPaNBgwbRtm3b2Hfffbd53cjO4PHHH4/zzz8/0X7wwQfj4osvLvE6OTk58fHHH8fXX38dy5Yti+zs7Nhjjz2iVq1a0bp162jXrl3svffeZVn6LuG7776LSZMmxTfffBNLliyJtWvXxh577BG1a9eORo0aRceOHaNhw4ZluufcuXNj8uTJMXv27Fi1alXk5+dHZmZmNG/ePPbff/8dFmIqC+vXr4+vv/46vvrqq1i4cGFkZ2cn/q7VrFkzWrRokThVACgfLVu2jNmzZyfa7777bnTt2nWb895444249tprE1fRFHTggQfGlVdeGf369YuIiK5duyadOFKSqEFWVlbcd999MXLkyKRai1KjRo048sgj4xe/+EWcccYZ2/zvx8KFC+P3v/99jBw5ssggW1paWnTp0iUuv/zyOO200yIion///kknjsycOTNatmxZ5PqjR4+Oo48+OtHe0hVe26M8fgYvSdZAcGQnJzgCAAAAAOxIgiOw8+nXr1889dRTifaHH35Y4lMvAGBLvvrqq5g4cWIsXLgw0tPTo0mTJrHffvslTr4qazNnzoxPP/00lixZEt9++22kp6dHjRo1onHjxrHvvvvGPvvsU6qrrFasWBHjxo2Lb775Jr777ruoW7du7L333nHooYdG06ZNy+GVlB3BEbZKcAQAAAAA2JEER2DnsmzZsmjWrFmsXbs2IiKqVasW3377rb+fALAbqejgSHqZ7AgAAAAAAECZu+iiixKhkYiI3r17C40AAGVKcAQAAAAAAGAHOf7442P8+PHbHJednR19+/aNv//974m+9PT0uOyyy8qzPAAgBWVUdAEAAAAAAACp4vXXX4/XX389OnToEKecckp06tQpWrRoEXvuuWdkZ2fHnDlzYvTo0fHUU0/F8uXLk+ZeffXV0bFjxwqqHADYXQmOAAAAAAAA7GBTpkyJKVOmFHv8WWedFbfccks5VgQApCpX1QAAAAAAAOwg9erVK9H4Bg0axH333RfPPPNMVK5cuZyqAgBSmRNHAAAAAAAAdpCsrKwYO3ZsjBkzJj7++OOYMWNGZGVlxerVqyMtLS3q1KkTDRo0iE6dOsXRRx8dvXr1iurVq1d02QDAbkxwBAAAAAAAYAfJyMiIo48+Oo4++uiKLgUAICJcVQMAAAAAAAAAkLIERwAAAAAAAAAAUpTgCAAAAAAAAABAihIcAQAAAAAAAABIUYIjAAAAAAAAAAApSnAEAAAAAAAAACBFCY4AAAAAAAAAAKQowREAAAAAAAAAgBQlOAIAAAAAAAAAkKIERwAAAAAAAAAAUpTgCAAAAAAAAABAihIcAQAAAAAAAABIUYIjAAAAAAAAAAApSnAEAAAAAAAAACBFCY4AAAAAAAAAAKQowREAAAAAAAAAgBQlOAIAAAAAAAAAkKIERwAAAAAAAAAAUlRGRRewq9qwYUNMnjw5pk+fHosXL441a9ZEtWrVonbt2tGqVavYd999o0mTJhVdJgAAAAAAAADAFgmOlNBrr70Wf/vb3+KNN96INWvWbHVs48aN48gjj4wTTjghevXqFZmZmTuoSgAAAAAAAACAbRMcKaZPPvkkLrzwwvjoo4+KPWfBggXx/PPPx/PPPx+tW7eOI444ohwrBAAAAAAAoKRWr14dkyZNipkzZ8bixYtj7dq1Ub169ahTp040bNgwDjnkkGjUqFGZ7jl//vyYPHlyzJo1K1atWhX5+fmx5557RvPmzWO//faLNm3alOl+ALA1giPFcN9998XVV18dGzdurOhSAAAAAACgwrVs2TJmz55dqP/hhx+OCy64oFRrDhs2LM4777xC/S1atIhZs2aVak3Ykuzs7Bg+fHg8//zzMX78+MjNzd3q+CZNmsRJJ50UZ599dnTp0iXS0tJKvOeiRYvi4YcfjpEjR8b06dO3uV/v3r3jkksuidatW5d4r+HDh8eAAQMS7Z/97GcxevToEq9TWtddd13cfvvtSX1/+MMf4tZbb91hNQBQfOkVXcDO7vrrr48rrriiUGgkLS0tDjnkkBg0aFA88MAD8fzzz8fTTz8d9913X1xwwQVx2GGHRXq6txcAAAAAgNTxxBNPlHrusGHDyrASKFpubm7cc8890axZs7jsssvi/fff32ZoJGLTCSGPPPJIHHnkkXHQQQfFa6+9Vuw9N2zYEDfffHO0bNkybrrppm2GRr7fb+jQodG2bdu49NJLIzs7u9j7VbTc3Nx46qmnCvUPHz68WO81ADueE0e24i9/+Uv86U9/KtTfq1evGDJkSLRq1Wqr85ctWxajRo2KRx99tFTJUwAAAAAASmDOnIilS8t3j732imjevHz32IVNnDgxpkyZEh06dCjRvOnTp8f7779fTlXBJllZWXH66afHuHHjinx+n332iSZNmkT9+vUjNzc3srKyYt68eTFnzpykcZ9//nmceOKJMXLkyOjTp8829+zZs2d8+OGHhZ7LzMyMDh06ROPGjSMjIyMWLFgQX375ZSxbtiwxJjc3Nx588MF48803Y9SoUdG2bdtSvPId6/XXX4/58+cX6p8/f378+9//jhNOOKECqgJgawRHtuCTTz6JgQMHJvVVqlQphg8fHuecc06x1qhXr14MGDAgBgwYEPn5+eVRJgAAAAAAEZtCIz/+ccS6deW7T7VqEV9+KTxSQOXKlRMndz/xxBNx9913l2j+5qeNbL4WlJV58+ZF165dY8aMGUn9LVu2jGuuuSZOPPHEaNasWZFzp0+fHq+99lo88sgjSaeFrNvGf28WLVoUXbt2jS+//DKp/6CDDorBgwfH8ccfH9WrV096LicnJ0aPHh1DhgyJN954I9H/5ZdfxlFHHRVjxoyJH//4x8V6zRXl8ccf3+pzgiMAOx93qRQhLy8vfv3rX8eGDRuS+p944olih0YKcuIIAAAAAEA5Wrq0/EMjEZv2KO9TTXZBJ554YuLPI0aMiJycnGLPLXitxUknnVSmtcHGjRvj9NNPLxQaufHGG+O///1vXHjhhVsMjUREtG3bNq688sqYMmVKPPbYY9GoUaNt7pmXlxdnn312odDIzTffHB9//HH07NmzUGgkIiIjIyN69OgR//73v2P48OFRuXLlxHOLFi2KXr16xdq1a7e5f0VZvHhxvPrqq4l227ZtY5999km0X3nllViyZElFlAbAVgiOFGHEiBExadKkpL5evXrFueeeW0EVAQAAAADAzutXv/pV4s+LFi2K1157rdhz//Wvf8XChQuLXAvKwu9+97sYP358op2enh7Dhw+PG264IapWrVrsdTIyMuL888+PSZMmxZFHHrnVsbfffnu8/fbbSX333HNPDB48OCpVqlSs/fr16xfPPfdcZGT8cIHAlClT4oorrih2zTvaU089lXRiUL9+/aJfv36J9saNG+Ppp5+uiNIA2ArBkSLcddddSe2MjIy49957K6YYAAAAAADYyXXu3DnatWuXaD/xxBPFnrv5NTXt2rWLww47rExrI7VNmTIlHnjggaS+gQMHJoUZSqphw4bxzjvvRLdu3Yp8fuHChXHzzTcn9fXp0yeuvPLKEu/Vs2fPGDRoUFLfX//610K/AL2z2Pzvc3p6evTt2zf69u0b6ek/fCS5tatsAKgYGdseklrGjx8fU6ZMSeo78cQTo2nTphVUEQAAAAAA7PwGDBgQ11xzTUREvPbaa7F48eJo0KDBVucsWbIk6VqLsj5tZOrUqfHFF1/EkiVLYtWqVVG3bt1o1KhRHHHEEVGvXr0y3Wvt2rUxbty4mD9/fixatCgqVaoUP/nJT+Koo47a4pyNGzfG2LFj45tvvoklS5ZEvXr1okmTJnH44YdHnTp1yrS+iIjly5fHBx98EFlZWbF06dKoVq1a1K9fPw466KDo0KFDme+3M7jjjjsiPz8/0d5nn33i1ltv3e51MzIyonnz5kU+d//998eGDRsS7Vq1am3XLyhff/318dxzzyVdtXP33XfHM888U+o1y8MHH3wQ06ZNS7S7d++e+Hyte/fu8eabb0bEpr+X48ePj86dO1dInQAUJjhSwAsvvFCob8CAARVQCQAAAAAA7Dr69u0b1113XeTk5EROTk48/fTTcdVVV211zubXWmRkZJTJlfHLli2LIUOGxIgRI2L+/PlFjklPT4/DDz88brjhhujRo0ex1u3fv388+eSTifbMmTOjZcuWMXfu3Ljuuuvi5Zdfju+++y5pzi9/+csigyPZ2dlx0003xeOPPx4rVqwo9HzVqlXj5JNPjjvvvDNatWoVs2bNilatWiWe79evXwwfPrxYdefn58fzzz8f9957b3z00UeRl5dX5LgmTZrEpZdeGpdddllUr169WGvv7BYuXBjPPfdcUt+ll15aoutpSmrdunXx6KOPJvX169cvGjZsWOo1q1WrFpdccknSiSV///vfY8iQIdG4ceNSr1vWCp4k0r9//6Q/fx8c+X6s4AjAzsNVNQVs/k0rYtMPjz/72c8qqBoAAAAAANg1NGzYME444YREuzjX1Ww+5oQTTtiuD9cjNgVRWrduHXfeeecWQyMREXl5eTFu3Lg45phj4txzz006HaIkXn755TjggANixIgRhUIjWzJlypRo165d/PnPfy4yNBIRsX79+njhhRfi4IMPTjqRpaS++eab6NixY5x55pkxYcKELYZGIiLmz58fv//976N9+/aFTmbfVb311luRk5OTaFerVi369u1brntOmDAhvv3226S+888/f7vXPffcc6NKlSqJdk5OTrz11lvbvW5Z+e677+Lvf/97ol2zZs049dRTE+1TTz01atWqlWg///zzsXr16h1aIwBbJjiymezs7PjPf/6T1Ne+ffukb2QzZsyIG2+8MY466qho0KBBVK5cOWrXrh1t2rSJbt26xa233hofffTRji4dAAAAAAAq3OZXzUyZMmWr/14+YcKEpIDC9l5T88c//jH69esXq1atSvSlpaXFvvvuGyeddFKcddZZcfzxx0f9+vWT5o0YMSJOOOGEpIBBcUyYMCH69OmTCH/Url07jjnmmDjzzDPj+OOPjxYtWhSa8+WXX0bXrl0LhVrq1q0bxx57bJx55plx7LHHRt26dSMiYuXKldG7d+/4/PPPS1RbRMTEiRPjsMMOi0mTJiX116tXL3r06BF9+vSJU089Nfbbb7+k52fNmhVdunSJyZMnl3jPnc2YMWOS2occckjSZz7l4b333ktq77333rH//vtv97r16tWLQw45JKlv7Nix271uWXn++eeTwlO9e/dOOrmmevXq0bt370Q7Ozu7yFsAAKgYrqrZzH/+85+ke+4iIg4++OCIiFi9enVcc8018cgjjxRK5K5cuTJWrlwZM2bMiHfffTcGDx4cRx11VPzpT3+KI444YofVDwAAAAAAFekXv/hFNGzYMBYtWhQREcOGDYtOnToVOXbYsGGJPzdo0CDptJKSevLJJ+OWW25JtNPT0+Piiy+O3/3ud9G8efOksfn5+fGPf/wjLr/88pgzZ05ERLz99tsxePDguP3224u9569//etYv359NG3aNO6+++447bTTolKlSkn7zJ49O9HOzc2Nc889N5YuXZroq1+/ftxzzz3Rp0+fyMj44SObnJycGDlyZAwcODCWLl0a5513XvHfjIjIysqKU045JWmvww47LG655Zbo0aNHpKWlJY3/+uuv4+qrr46XX345In4IrHzyySdRo0aNEu29M3n//feT2lv6WixLH3zwQVL70EMPLbO1O3bsGOPHj9/iXhVpa9fUbN732GOPJc0pahwAO54TRzbzzTffFOpr0qRJfPXVV3HggQfGQw89tNVj3Db33nvvxVFHHRW33XZbWZcJAAAAAAA7pYyMjDjnnHMS7eeeey7WrVtXaNzatWvj+eefT7TPPffcqFy5cqn2nD17dlx44YWJdtWqVeO1116L+++/v1BoJGLTKSSnnHJKfPTRR9GmTZtE/5AhQ2LmzJnF3jc7Oztat24dH374YZxxxhlJoZHv92nZsmWi/dhjjyWdwFK/fv0YO3ZsnHPOOUmhkYhN7+O5554bY8aMib322ispAFIc5513XixcuDCp/f7778cxxxxTKDQSEdGmTZt46aWX4rLLLkv0ffXVVzF06NAS7buzKXiyS7t27cp9z3nz5iW1O3ToUGZrFzwdpuBeFWXatGnx4YcfJtr77LNPdOnSpdC4ww8/PNq2bZtojxs3Lr788ssdUiMAWyc4spnNf4j6XuXKleO4446LGTNmJPWnp6dH48aNo3379tGwYcMif9DKz8+PP/zhD3HppZcWu4b169fHqlWrkh4AAAAAALuU1as3PTY/4XnDhk1969cXPXbzX9rbuHFTX8HAwdbGFly3PK1dG7H5tSa5uZtqWLu28LjVq4seu2ZN8th16zb1b9xYeOwuZvMrZ1asWBEvvfRSoTEvvvhirFy5MtEeMGBAqfcbMmRIrN3svR86dGgcd9xx25zXoEGDePbZZxPt3NzcEgclhg8fHk2bNi3W2AcffLBQ+8c//vFW57Rv3z7uu+++EtX08ccfxz//+c9E+6c//Wn89a9/LRRsKco999wTBxxwQFKN63fk360ytHHjxsjOzk7qq127drnvu3z58qR2nTp1ymztgvWvWrWqxFcslYeCp43069dvi2MLnjCy+clDAFQcwZHNfPvtt4X6hgwZknQSSbNmzeKxxx6LxYsXx/z582PKlCmRlZUVc+fOjbvvvrvIHwAefPDBePLJJ4tVw+233x61atVKPJo1a1b6FwQAAAAAUBH23HPTY/NTEoYM2dR3ySXJYxs02NT/vytDIiLiL3/Z1Ffweo6WLTf1T5v2Q9/w4Zv6rr22rF/Flh1xRMS///1D+513NtXw058mjzv++E39mwcnxo/f1Hfggclje/Xa1P/MMz/0ffHFpr5dTPv27eOwww5LtIv6YHjzvp/85CelPpVh9erVSWu1bt06fvvb3xZ7fqdOneLII49MtEeNGlXsuV26dEmauzWff/55TJkyJdFu27Zt9O7du1hzzzrrrKSTUbbl/vvvT2rfdtttkZ5evI+DKlWqFJdffnmivWTJkqSTJHYlBQMcERUTHCnLPYtaq6jXuSNt3Lgxnn766UQ7PT09+vbtu8Xxffv2Tfp6fOqpp3aK8AtAqhMc2UxRqdnNj9Dr0aNHTJ06Nc4///yoV69e0rgmTZrEVVddFVOnTo3999+/0DqXXHJJsb55X3vttbFy5crEY+7cuaV4JQAAAAAAUHE2P3XknXfeiTmbBYO++eabGDNmTKK9PaeNjBs3Lum0kdNOO63YIYnvHX300Yk/z549O6nWrTnllFOKvccHH3yQ1D799NOLPbek4996663En/fee+/42c9+VqK9Nn8/IiLGjh1bovmUn6JOv69or7zySixevDjR7tat21Z/KbpJkybRo0ePRDsrKyvphBwAKkbGtoekjvzNj00soF27dvHKK69EtWrVtrrG3nvvHW+++Wbst99+SXcOfvfdd3HffffFTTfdtNX5VatWjapVq5ascAAAAACAncl332363z32+KHv6qsjrrgiIqPAP0t//4Fj9eo/9F18ccSvfx1R8GqNWbMKj+3fP+KssyI+/zzi8MPLoPhiGDcuYrMTNaJbt02vuWBg4V//2nStzub/5tu586axBT8A/r//23Q1TZUqP/Ttv/8P7+Uupk+fPnHFFVfE2rVrIy8vL5588skYPHhwRGw6beT7f4+vXr16nHnmmaXeZ9y4cUntxo0bx6zvv06Kqcrm73lsCrY0b958m/MOPvjgYu/x2WefJbUPPfTQYs+N2HQySnHMmDEjFi5cmGi3adMmZs+eXaK9NmzYUGjNspCVlZX0y7pbs/fee2/z85htqVu3bqG+za9HKi9169aNBQsWlMueK1asKHK/ilTwRKGCV9EUpX///vHGG28k2o8//nicfPLJZV0aACUgOLKZypUrb/G5hx9+uNg/pDRs2DDuuOOOOP/885P6//rXv24zOAIAAAAAsMvLzCzcV6VKcihia2MrV970KMnYHfkLedWrJwdgKlUqurbNAy7bGlvUvz9vaewuoGbNmtGrV68YMWJEREQMHz48rr/++sjPz4+nnnoqMa5nz55Rq1atUu9T8NTuK664Iq644opSrxdR/Ks/GjRoUOw1N/9F04iIFi1alKim4gRZIgq/H+PGjYtWrVqVaK+CyuoqlD59+iSdNLM17777bnTt2nW79qtcuXLUqFEjsrOzE31FBS/KWsHgyLfffltmaxdcq2bNmpFRMIy3Ay1YsCBef/31pHp69uy5zXmnnnpq1KpVKxGq+ec//xlZWVmx9957l1utAGydq2o2k7mFH8D333//Eh/ldvbZZ0edOnWS+rKysuK///1vqesDAAAAAIBdxebX1Xx/Pc0bb7yRFG7YnmtqIiKWLVu2XfOLsnnQYGtq1KhR7DULBhZKMjdi0wfyxVGR78fOqHHjxkntadOmlfueTZo0SWpPmTKlzNYuuFbBvXa04cOHR25ubqLdu3fvqF5UYK6AatWqRZ8+fRLtnJycePLJJ8ulRgCKR3BkM/Xq1Suy/9hjjy3xWtWqVYsjjzyyUH/BY/MAAAAAAGB31LVr16TTLp544omkay1atGgR3bp12649Cl6rUha2dq19aRW8or6kdRd3/K7yfuwoXbp0SWpPnDix3Pc8vMCVWR999FGZrf3xxx9vda8dKT8/v9A1NX/7298iLS2tWI9HH300aW7BtQDYsQRHNtOoUaMi+0tyT+G25m1+PBkAAAAAAOyu0tLSon///on2iy++GKNGjUq0+/fvH2lpadu1x1577ZXU/uCDDyI/P3+7HpvXXFYKnlBe0utLintdTMH34ze/+c12vx+jR48uUa1bMnr06GLvub3X1Hyv4Gnyn376aeJ6lPJS8JeKs7Ky4osvvtjudZctWxaffvrpVvfakcaMGRMzZswos/WmT5/ul68BKpDgyGZat25dZP+WTiLZlqLmlccxcQAAAAAAsDPq379/pKdv+ihizZo1sX79+ogoHCoprYYNGya1p0+fvt1rlocWLVoktUsaJCju+F3l/dhRevToERkZGYn2unXr4umnny7XPTt37hy1a9dO6nv88ce3e90RI0YknSiTkZERPXr02O51S6ssXtOOWBOA4hEc2cw+++wTlSpVKtRf8Ai54qpWrVqhvnXr1pVqLQAAAAAA2NU0b948unfvXqj/6KOPjpYtW273+gWv6njjjTe2e83y0Llz56T2u+++W6L5xR3foUOHqFWrVqL94YcfRnZ2don22p00btw4zjjjjKS+Bx54oFyu9Ple9erV4ze/+U1S35NPPhmLFy8u9Zrr1q2LBx54IKnvtNNOiyZNmpR6ze2xcuXK+L//+79Eu0qVKjFlypSYOXNmiR7Tp0+PzMzMxDovvPBCSn+9AlQkwZHN7LHHHtG+fftC/aU9tmzFihWF+kp7egkAAAAAAOyKfvWrXxWrrzS6d++e9Auho0aN2q4P6MvLEUcckfTLpv/4xz+KXWdWVlbSFT9bU6lSpaSgzvr168v9hI2d3aBBg5La06dPjz/+8Y/bvW5OTk7MmTOnyOcuv/zyqFy5cqK9YsWKuPzyy0u916233lroWpjf/e53pV5vez377LOxdu3aRPv444+P9u3bR8uWLUv02GeffeKXv/xlYp3Vq1fHc889VxEvCSDlCY4UUNS9eTNnzizVWrNmzSrUV79+/VKtBQAAAAAAu6KePXvG2LFjkx6nnXZamaxdp06dOPvssxPt7777rkI/UN+S2rVrJ518sX79+rjiiiuKNfeyyy4r0QkZl156aVL7pptuioULFxZ7/u5m//33j4suuiipb8iQITFixIhSr7lo0aLo3r17vPPOO0U+37hx4xg8eHBS33PPPRdDhw4t8V4vv/xy3HnnnUl95513XnTs2LHEa5WVglfKnHXWWaVeq+Bc19UAVAzBkQJ+8YtfFOr74IMPSrVWUfMOPvjgUq0FAAAAAAC7oipVqsQRRxyR9CjtFfFFufHGG5PWe/rpp2PQoEGRm5tbonWmTp0a7733XpnVVdA111wTVapUSbRHjhwZAwcOjJycnCLHb9y4MS6//PJ44YUXSrRP165d45hjjkm0Fy9eHCeccELMmzevROtkZ2fHs88+W6I5O6uhQ4dGp06dEu28vLzo27dv3HrrrSUK5eTm5sbjjz8eBx988Da/Vv7whz8U+mXlgQMHxp/+9Kdif20+/fTTccYZZyR9jbRr1y7uv//+Ytdc1j777LP45JNPEu0aNWrESSedVOr1fv7zn8dee+2VaE+YMCGmTJmyXTUCUHKCIwV079499t5776S+1157LZYvX16idb744ouYPHlyUl/16tXjpz/96faWCAAAAAAA/E+rVq3ir3/9a1LfXXfdFUcccUS88sorWwxmRGw6Ofwvf/lLdOvWLTp06LDFEyTKQvv27eOmm25K6hs6dGgceOCBce+998aECRPiq6++igkTJsS9994bBx54YCIg0KdPnxLt9eSTT0bTpk0T7cmTJ8cBBxwQd911VyxdunSL87Kzs2PUqFFx3nnnRZMmTeK6664r0b47qypVqsSLL74YLVu2TPTl5+fH4MGDY999941HH3005s+fv8X5X331VQwdOjTat28f559/frFOcElPT49nn3022rRpk9R//fXXR6dOneKll16KdevWFZqXm5sbb7/9dvz85z+Pvn37JgVb6tevHy+++GLssccexXjVydatWxezZs0q1WPFihWJdQqeCHLKKadE9erVS1zP9zIyMgqdQDRs2LBSrwdA6WRUdAE7m4yMjPjtb3+b9MPb2rVr44477oi77rqr2OvccMMNhfpOOumkMk1RAwAAAAAAEX379o2srKy49tprIy8vLyIixo8fHyeffHLssccecfDBB0fDhg2jevXqkZ2dHUuXLo2pU6cmfSC+IwwaNCjmzJkTDz/8cKJv6tSpceWVV25xTrdu3eLWW2+N5557LtGXlpa21X0aNWoUr776apxwwgmxYMGCiIj49ttvY9CgQfH73/8+2rVrF61bt45atWrF+vXrY8WKFTFjxoyYNWtW5OfnJ9apW7duaV/qTqd58+bx/vvvx2mnnRYffvhhon/mzJlxwQUXRERE27Zto2nTprHXXntFbm5uZGVlxdy5c2POnDlFrrmtAEejRo1izJgxceqpp8bEiRMT/ZMmTYqePXvGnnvuGfvtt180atQoMjIyYuHChTFt2rRYtmxZobXatGkTo0aNinbt2pXm5ceECROiVatWpZp7ww03xI033hjr16+PZ555Jum57bmmZvM1HnnkkUT76aefjjvuuCMqV6683WsDUDyCI0W4/PLL44EHHkg6ZeTPf/5zHHXUUXHiiSduc/79998fL730UlJfWlpaofvsAAAAAAAoI3vtFVGtWkQRv8FfpqpV27QXO51rrrkmDjjggBgwYEBkZWUl+tesWRPvv/9+sdaoU6dOeZUXEZs+K3jooYeiTZs2ccMNN8R333231fGXXHJJ/PnPf44ZM2Yk9deoUWObex144IExadKkOPfcc+ONN95I9Ofn58fUqVNj6tSp21yjvN+PHa1x48bx3nvvxdChQ+PWW2+NVatWJT0/ffr0mD59+jbXOfTQQ+OOO+6I7t27F2vPsWPHxp/+9Ke46667kk4Z+e6772L8+PFbnV+pUqX4zW9+E3fccUfUrFlzm/uVp5deeinps7P69etHjx49tnvdI444Ipo3b54I6CxZsiRGjRoVvXr12u61ASgewZEi1KlTJ+6+++741a9+lejLy8uLnj17xl133RWXXHJJZGQUfuvWrFkTN998c9x5552Fnjv//PNjv/32K9e6AQAAAABSVvPmEV9+GbGVazjKxF57bdqLndJxxx0XM2fOjGHDhsVjjz0Wn332WdIJGgVVrlw5OnXqFMcee2ycddZZsc8+++yQOgcOHBhnnnlmPP300/HKK6/EjBkzYtmyZVG3bt1o0qRJdOvWLfr16xcdOnSIiCh0MkqtWrWKtU+DBg3i3//+d4wdOzbuueeeePPNN2P16tVbndOqVavo3r179OrVK4455phSvb6dWUZGRlx99dXx29/+NoYPHx7PPfdcTJgwIXFSzZY0a9YsTj755DjnnHOic+fOJdqzSpUqcdNNN8WFF14YDz30UIwcOTK+/vrrrc5p3LhxnH766XHppZfGj370oxLtV14KXlPTu3fvIj8vK6m0tLTo06dP0sn/jz/+uOAIwA6Ulr+1n5hS3LnnnhsjRowo1N+iRYs45ZRTYr/99otatWrF8uXL45NPPol//OMfsXjx4kLjO3XqFGPHji3VNTWrVq2KWrVqxcqVKys8SQoAAAAA7P7WrVsXM2fOjFatWkW1atUquhzYLsuXL4/x48fHwoULY/ny5bFx48bYc889o0GDBtG2bdvYd999t3ndyM7g8ccfj/PPPz/RfvDBB+Piiy8u8To5OTnx8ccfx9dffx3Lli2L7Ozs2GOPPaJWrVrRunXraNeuXey9995lWfou4bvvvotJkybFN998E0uWLIm1a9fGHnvsEbVr145GjRpFx44do2HDhmW659y5c2Py5Mkxe/bsWLVqVeTn50dmZmY0b9489t9//x0WYgJg51AeP4OXJGsgOLIVGzZsiD59+hS6dqYkOnfuHC+//HKpf6AQHAEAAAAAdiTBEdj59OvXL5566qlE+8MPPyzxqRcAwM6rooMj6WWy426qSpUq8eKLL8Ytt9xS4tNCMjIy4qKLLorRo0eXeQoVAAAAAABIDcuWLYsXXngh0a5WrVocdNBBFVcQALDbERzZhvT09Lj++utj2rRpcfHFF0fdunW3Or5hw4Zx/vnnx7Rp0+Ivf/lLqa6nAQAAAAAAiIi46KKLYu3atYl27969nQYEAJSpjIouYFfRqlWrePDBB+P++++PyZMnx5QpUyIrKys2bNgQtWvXjr322ivatWsX+++/f6SlpVV0uQAAAAAAwE7o+OOPjxtuuGGbV81kZ2fHxRdfHH//+98Tfenp6XHZZZeVd4kAQIoRHCmh9PT0OOSQQ+KQQw6p6FIAAAAAAIBdzOuvvx6vv/56dOjQIU455ZTo1KlTtGjRIvbcc8/Izs6OOXPmxOjRo+Opp56K5cuXJ829+uqro2PHjhVUOQCwuxIcAQAAAAAA2MGmTJkSU6ZMKfb4s846K2655ZZyrAgASFXpFV0AAAAAAABAqqhXr16Jxjdo0CDuu+++eOaZZ6Jy5crlVBUAkMqcOAIAAAAAALCDZGVlxdixY2PMmDHx8ccfx4wZMyIrKytWr14daWlpUadOnWjQoEF06tQpjj766OjVq1dUr169ossGAHZjgiMAAAAAAAA7SEZGRhx99NFx9NFHV3QpAAAR4aoaAAAAAAAAAICUJTgCAAAAAAAAAJCiBEcAAAAAAAAAAFKU4AgAAAAAAAAAQIoSHAEAAAAAAAAASFGCIwAAAAAAAAAAKUpwBAAAAAAAAAAgRQmOAAAAAABQSH5+fkWXAAAAKaGif/YWHAEAAAAAICE9fdM/G+fl5VVwJQAAkBq+/9n7+5/FdzTBEQAAAAAAEjIyMiIiYsOGDRVcCQAApIbvf/b+/mfxHU1wBAAAAACAhPT09MjMzIzs7OyKLgUAAFJCdnZ2ZGZmOnEEAAAAAICdQ40aNWL16tWRk5NT0aUAAMBuLScnJ1avXh01atSosBoERwAAAAAASFKjRo1IS0uLhQsXJu5bBwAAylZeXl4sXLgw0tLSBEcAAAAAANh5ZGRkRLNmzWL16tUxf/58J48AAEAZy8nJifnz58fq1aujWbNmkZGRUWG1VNzOAAAAAADstDIzM6NZs2Yxd+7c+OqrryIzMzNq1KgRVapUifT09EhLS6voEgEAYJeRn58feXl5sWHDhsjOzo7Vq1dHWlpaNGvWLDIzMyu0NsERAAAAAACKlJmZGW3atIns7OzIzs6OrKysii4JAAB2eZmZmbH33ntHjRo1KvSkke9VfAUAAAAAAOy0MjIyok6dOlGnTp3Iy8uLnJycyMvLq+iyAABgl5Oenh4ZGRmRnp5e0aUkERwBAAAAAKBY0tPTo0qVKhVdBgAAUIZ2rhgLAAAAAAAAAAA7jOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHitC/f/9IS0srk8dxxx1X0S8HAAAAAAAAAKBIgiMAAAAAAAAAAClKcAQAAAAAAAAAIEVlVHQBu4LKlStH+/btSzX3Rz/6URlXAwAAAAAAAABQNgRHiqFx48YxefLkii4DAAAAAAAAAKBMuaoGAAAAAAAAACBFCY4AAAAAAAAAAKQowREAAAAAAAAAgBQlOAIAAAAAAAAAkKIERwAAAAAAAAAAUpTgCAAAAAAAAABAihIcAQAAAAAAAABIURkVXcCuYM2aNXH77bfHuHHj4r///W8sWbIk1q9fH3Xr1o26detG27Zt46ijjopu3brFgQceWNHlAgAAAAAAAAAUS1p+fn5+RRexs+nfv388+eSTpZp7+OGHx6BBg+Lkk08uk1pWrVoVtWrVipUrV0bNmjXLZE0AAAAAAAAAYPdVkqyBq2rK2AcffBC//OUvo3fv3rFq1aoSz1+/fn2sWrUq6QEAAAAAAAAAUB4ER0qgbt260bp162jfvn00atQoKleuvMWxL7zwQnTs2DGysrJKtMftt98etWrVSjyaNWu2vWUDAAAAAAAAABRJcGQr9t9//7j22mvjnXfeiaVLl8ayZctixowZMWXKlFiwYEFkZ2fH2LFj48orr4w999yz0Pyvv/46TjzxxFi9enWx97z22mtj5cqVicfcuXPL8iUBAAAAAAAAACSk5efn51d0ETubF154IVq1ahWHHnposecsW7YsBgwYEK+88kqh5y655JJ44IEHSlVLSe4dAgAAAAAAAAAoSdZAcKSMnXfeeTFs2LCkvsqVK8d///vfaN26dYnXExwBAAAAAAAAAEqiJFkDV9WUsUcffTQ6duyY1Ldx48a4//77K6giAAAAAAAAAICiCY6UsYyMjLjjjjsK9f/rX/+qgGoAAAAAAAAAALZMcKQcdO/ePRo2bJjUN3369Jg3b14FVQQAAAAAAAAAUJjgSDlIS0uLo446qlD/nDlzKqAaAAAAAAAAAICiCY6Uk0aNGhXqW7JkSQVUAgAAAAAAAABQNMGRcpKZmVmob+3atRVQCQAAAAAAAABA0QRHyklRp4vstddeFVAJAAAAAAAAAEDRBEfKybRp0wr11a9fvwIqAQAAAAAAAAAomuBIOVi+fHmMHz8+qa9atWrRtm3bCqoIAAAAAAAAAKAwwZFycPfdd0dubm5SX9euXaN69eoVVBEAAAAAAAAAQGGCI2Xs448/jnvvvbdQ/2mnnbbjiwEAAAAAAAAA2ArBkc3MnDkzHn300Vi/fn2p5n/00Udx4oknxtq1a5P627ZtG/369SuLEgEAAAAAAAAAyozgyGZWrlwZF1xwQbRu3ToGDx4cn332WbHmLVmyJAYPHhxdunSJRYsWJT2Xnp4e9957b2RkZJRHyQAAAAAAAAAApZaWn5+fX9FF7CwmT54cBx98cFJf06ZN45BDDokDDjggGjVqFLVq1YqqVavGt99+G/Pnz48PPvggxo4dG+vWrStyzQceeCAuueSSUte0atWqqFWrVqxcuTJq1qxZ6nUAAAAAAAAAgNRQkqyBYzC2Yd68eTFv3rwYNWpUieZVq1Yt7r777rj44ovLqTIAAAAAAAAAgO0jOFIOjjjiiHj00Uejffv2FV0KAAAAAAAAAMAWCY5sZr/99ov33nsvRo8eHePGjYtJkybFkiVLijW3RYsWccwxx8SFF14YhxxySDlXCgAAAAAAAACw/dLy8/PzK7qIndnChQvjm2++iblz58aSJUtizZo1sXHjxqhRo0bUqVMn6tevH4ccckg0bNiwXPYvyb1DAAAAAAAAAAAlyRo4cWQbGjVqFI0aNaroMgAAAAAAAAAAylx6RRcAAAAAAAAAAEDFEBwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjgAAAAAAAAAApCjBEQAAAAAAAACAFCU4AgAAAAAAAACQogRHAAAAAAAAAABSlOAIAAAAAAAAAECKEhwBAAAAAAAAAEhRgiMAAAAAAAAAAClKcAQAAAAAAAAAIEUJjmyn/Pz86Nq1a6SlpRV6dO3ataLLAwAAAAAAAADYIsGR7fTAAw/EmDFjKroMAAAAAAAAAIASExzZDl9//XVce+21FV0GAAAAAAAAAECpCI6UUl5eXgwYMCDWrFlT0aUAAAAAAAAAAJSK4Egp3XvvvTFu3LhE+7DDDqvAagAAAAAAAAAASk5wpBSmT58e119/faJdt27duP/++yuwIgAAAAAAAACAkhMcKaG8vLzo379/rF27NtF33333RYMGDSqwKgAAAAAAAACAkhMcKaG77747Pvzww0T7F7/4RZxzzjkVWBEAAAAAAAAAQOkIjpTAtGnT4oYbbki0a9asGY888kgFVgQAAAAAAAAAUHqCI8WUm5sb/fv3j3Xr1iX67r777mjatGkFVgUAAAAAAAAAUHqCI8V01113xcSJExPtbt26xa9//esKrAgAAAAAAAAAYPsIjhTDlClT4sYbb0y0MzMz429/+1vFFQQAAAAAAAAAUAYER7YhJycn+vXrFxs2bEj03XbbbdGqVasKrAoAAAAAAAAAYPsJjmzD7bffHp988kmiffjhh8cll1xSgRUBAAAAAAAAAJQNwZGt+Pzzz+OWW25JtKtVqxbDhg2L9HRvGwAAAAAAAACw68uo6AJ2Vhs3box+/frFxo0bE3033HBD/PjHPy7XfdevXx/r169PtFetWlWu+wEAAAAAAAAAqcvRGVtw6623xuTJkxPtjh07xtVXX13u+95+++1Rq1atxKNZs2blvicAAAAAAAAAkJoER4owadKkuO222xLtypUrx7Bhw6JSpUrlvve1114bK1euTDzmzp1b7nsCAAAAAAAAAKnJVTUFbNiwIfr16xc5OTmJvmuvvTYOOOCAHbJ/1apVo2rVqjtkLwAAAAAAAAAgtTlxpICbbropvvjii0R7v/32iz/84Q8VWBEAAAAAAAAAQPkQHNnMxx9/HHfddVeiXalSpRg2bFhUqVKlAqsCAAAAAAAAACgfgiP/s379+ujfv3/SFTUDBw6MTp06VWBVAAAAAAAAAADlR3Dkf+67776YMmVKor3PPvvEzTffXIEVAQAAAAAAAACUr4yKLmBnsWDBgqR2dnZ2dO7cudjzN2zYUKjv448/joMOOqhQ/+TJk0taHgAAAAAAAABAmRMc2YKsrKzIysrarjVWr14dn332WRlVBAAAAAAAAABQtlxVAwAAAAAAAACQogRHAAAAAAAAAABSlODI/9x7772Rn59f6sfMmTMLrfmzn/2syLEAAAAAAAAAADsDwREAAAAAAAAAgBQlOAIAAAAAAAAAkKIERwAAAAAAAOD/s3ff4VGVaR/Hv5OEDgldXBVEVLCBolhQLIgFda1YFjt2AV3b2hArYi/YK/auq2tBERHsFRE7ioqCAgKS0CHJef943pCEHjIzZ5J8P9eVizNPzjzPrSuY9fzmviVJqqEMjkiSJEmSJEmSJEmSJNVQBkckSZIkSZIkSZIkSZJqKIMjkiRJkiRJkiRJkiRJNVROug6KoohJkybx+++/M3v2bObOnUthYSH169enQYMGtGzZkjZt2tCwYcN0lSRJkiRJkiRJkiRJklSjpSw48tVXXzFq1Cg+/fRTPv30U37++WcKCwtX+b6mTZvSqVMnunTpwnbbbcfuu+9Oo0aNUlWmJEmSJEmSJEmSJElSjZWIoihK1majR4/miSee4LXXXuOPP/5Ysl7RIxKJxJLrnJwcunbtygEHHEDv3r1p2bJlssqtEgoKCsjLyyM/P5/c3Ny4y5EkSZIkSZIkSZIkSRmuIlmDSgdHpk6dyl133cXDDz/Mb7/9BiwbFCkbBFkdK3p/dnY2e+21F6eeeir77rtvJaquOgyOSJIkSZIkSZIkSZKkikhLcOTbb7/l+uuv56mnnmLRokXlwh5LB0Uq03Fk6T1KvrfRRhtx1lln0adPH2rVqlXR8qsMgyOSJEmSJEmSJEmSJKkiUhoc+fnnnxk4cCBPPfUUURQtE+iA8kGRunXrsskmm9CmTRvWXXdd1l57berXr0+9evXIyclh/vz5zJ8/n5kzZzJp0iQmT57M999/z59//lm+0OXsn0gkWHfddbn00ks57rjjyMrKqshfSpVgcESSJEmSJEmSJEmSJFVESoIj+fn5DBw4kLvvvpvCwkKiKFpumKN169bstttu7LbbbnTp0oX27duvUaBjxowZjB07lnfffZe3336bjz/+mEWLFoWi///csgGSjTfemFtvvZU999yzwmdlMoMjkiRJkiRJkiRJkiSpIpIeHBk6dCgXXnghf/31V7nASMlbN9lkE3r16kWvXr3YYostkvCXsKw5c+bwyiuv8Pzzz/Paa68xf/785QZIDjzwQG655RbWW2+9lNSRbgZHJEmSJEmSJEmSJElSRSQ9OJKVlbVMd5H69etz2GGHcdJJJ7HDDjtUvuoKKCgo4JFHHuH+++9n3LhxQAiNlIRaLr30UgYOHJjWmlLF4IgkSZIkSZIkSZIkSaqIimQNKjRDJooimjZtymWXXcbvv//Ogw8+mPbQCEBubi79+vVj7NixjBgxgt13353VnLgjSZIkSZIkSZIkSZKk/7fawZG8vDyuvfZaJk6cyMCBA2nSpEkq61pt3bt358033+STTz4xQCJJkiRJkiRJkiRJklQBOatz07nnnstFF11E48aNU1zOmttmm2148803GTFiBH///Xfc5UiSJEmSJEmSJEmSJGW8RGSLjoxWkblDkiRJkiRJkiRJkiRJFckarPaoGkmSJEmSJEmSJEmSJFUvBkckSZIkSZIkSZIkSZJqKIMjkiRJkiRJkiRJkiRJNZTBEUmSJEmSJEmSJEmSpBrK4IgkSZIkSZIkSZIkSVINlRN3AUubOXMmr7/+OuPGjSM/P58WLVrQqVMn9ttvP+rUqRN3eZIkSZIkSZIkSZIkSdVGSoIj48ePL/d6gw02ICdn1UcNHjyYq6++mnnz5i3zvby8PG688UaOP/74pNUpSZIkSZIkSZIkSZJUkyU9OPLBBx/QrVu3Ja/XWWcdfv3111W+r2/fvtx9991EUbTc78+aNYsTTzyRb7/9luuvvz5Z5UqSJEmSJEmSJEmSJNVYWcne8LnnniOKoiUBkJNPPpmsrJUf88ILL3DXXXcBkEgkVvgVRRE33XQTDz/8cLLLliRJkiRJkiRJkiRJqnGSHhx5++23SSQSS1736tVrpfdHUcTFF1+8zNrSX8CS8Mh//vMfZs+enezSJUmSJEmSJEmSJEmSapSkBkfmzp3L119/veT1+uuvT4cOHVb6ntdff50ffvhhSSgEoGfPnowdO5YFCxbwyy+/cOaZZ5YbYTN9+nQeeOCBZJYuSZIkSZIkSZIkSZJU4yQ1ODJ+/HiKioqA0B2kS5cuq3zPk08+ueS65D0vv/wyHTt2pHbt2rRp04abb76Z8847jyiKlgRMnnjiiWSWLkmSJEmSJEmSJEmSVOMkNTjy66+/lnu92WabrfI9r732WrluIwMHDiQra9myBg4cSF5e3pLXn3/+ueNqJEmSJEmSJEmSJEmSKiGpwZEpU6YALAmBrL322iu9f9y4ccycOXPJ6+bNm9OzZ8/l3tugQQP22muvciNrxo0bV9mSJUmSJEmSJEmSJEmSaqykBkfmzZtX7nVubu5K73/vvfeWXCcSCXr27EkikVjh/Z07dy73+qefflqDKiVJkiRJkiRJkiRJkgRJDo4sWLCg3OucnJyV3v/ZZ58BpR1Kdt1115Xev+6665Z7nZ+fX8EKJUmSJEmSJEmSJEmSVCKpwZF69eqVez1nzpyV3v/ee++V6zDSrVu3ld5ft25dgCXvWdX+kiRJkiRJkiRJkiRJWrGkBkdKRtOUBDsmTpy4wnsnT55cbtRMs2bNaNeu3Ur3nzt3brnXtWrVWtNSJUmSJEmSJEmSJEmSarykBkfatGlT7vWnn366wntfeeWVJdeJRIKuXbuucv9Zs2YBpaNtGjVqtAZVSpIkSZIkSZIkSZIkCZIcHOnUqdOS6yiKGDlyJDNmzFjuvQ8//PCS+wB22WWXVe7/yy+/lHvdqlWrNS1VkiRJkiRJkiRJkiSpxktqcKRly5ZsuummS17Pnz+fc845Z5n7XnjhBT766KMlI20A9tlnn1Xu/8UXX5R7vcEGG1SiWkmSJEmSJEmSJEmSpJotJ9kb9u7dmwEDBpBIJIiiiEcffZTJkydzwgkn0KxZM9577z1uuOGGJd9PJBJsvfXWtG/ffqX7FhYWMmbMmCXvy87OZqONNkp2+ZIkSZIkSZIkSZIkSTVGIiqZFZMk+fn5bLzxxkyfPh1gSTikrJK1kl+ffvppevXqtdJ933zzTfbaa68l79tqq634/PPPk1l6RiooKCAvL4/8/Hxyc3PjLkeSJEmSJEmSJEmSJGW4imQNkjqqBiAvL4/bb799yeuSoEfZr5IgSSKRoEePHqsMjUAYbwOloZOuXbsmu3RJkiRJkiRJkiRJkqQaJenBEYBDDz2Ue+65h9q1ay8JepT9KgmQdOnShSeffHKV+82ZM4cnn3yyXOeSvfbaKxWlS5IkSZIkSZIkSZIk1RgpCY4AnHjiiYwbN44+ffrQrFmzJWERgE6dOnHLLbfwzjvv0LRp01Xu9eCDD1JQULDk/XXr1qVHjx6pKl2SJEmSJEmSJEmSJKlGSEQlaYwUmzNnDrNnz6Zp06bUqVOnQu/98MMPmTZt2pLXeXl57LrrrkmuMDNVZO6QJEmSJEmSJEmSJElSRbIGOWmqiYYNG9KwYcM1eu8OO+yQ5GokSZIkSZIkSZIkSZKUslE1kiRJkiRJkiRJkiRJymwGRyRJkiRJkiRJkiRJkmoogyOSJEmSJEmSJEmSJEk1lMERSZIkSZIkSZIkSZKkGsrgiCRJkiRJkiRJkiRJUg21WsGRrl278sEHH6S6lkqbO3cuAwcO5MYbb4y7FEmSJEmSJEmSJEmSpIy3WsGRjz76iG7dunHIIYfw5ZdfprqmCluwYAFDhgyhXbt2DBo0iLlz58ZdkiRJkiRJkiRJkiRJUsar0KiaF198kc6dO7Pffvvx/vvvp6qm1TZz5kwGDRpEmzZtOOuss5g2bVrcJUmSJEmSJEmSJEmSJFUZqxUcycnJWXIdRRHDhg1j5513pmPHjtx5553k5+enrMDleffddzn66KNZd911GThwIH/99RdRFJFIJIiiiNq1a6e1HkmSJEmSJEmSJEmSpKooEUVRtKqbvv32W/r168eoUaNIJBJACJAAJBIJateuTY8ePejVqxf77rsvzZs3T2qRRUVFfPjhhzz//PO88MILTJo0aZkaoiiiUaNGXHbZZZxxxhlkZ2cntYa4FBQUkJeXR35+Prm5uXGXI0mSJEmSJEmSJEmSMlxFsgarFRwp8dRTT3HRRRfx66+/LjdAUmLTTTdl1113ZZtttqFjx45suumm1KlTZ7X/An777Te++uorvvzyS959913ef/995s6du9zzoigiKyuLo446imuuuYZWrVqt9jlVgcERSZIkSZIkSZIkSZJUESkLjgAsXryYe+65h6uvvpopU6aUC4yU3arseiKRoGXLlqyzzjq0atWKBg0aUK9ePbKzs1mwYAHz589n5syZTJo0icmTJ7Nw4cJyZy5v35K1Aw88kKuuuopNN920In8ZVYbBEUmSJEmSJEmSJEmSVBEpDY6UWLBgAUOHDuXWW29l/PjxYbMVhEjKHVjmnqWtznuiKKJ27docccQRnHPOOWyxxRZrUn6VYXBEkiRJkiRJkiRJkiRVRFqCI2W9+uqrDB06lFdffXVJt5AVBURWdtyq3rPxxhtz9NFHc8IJJ1S7kTQrYnBEkiRJkiRJkiRJkiRVRNqDIyVmzZrFCy+8wKuvvsqIESOYPXt2+cNW0m2kxNLldOrUiX322YcDDzyQLl26JKvUKsPgiCRJkiRJkiRJkiRJqojYgiNlFRYW8sUXX/Dpp5/y2WefMX78eH799VemTJlCcXHxMvc3atSINm3asMEGG9CxY0e6dOnCdtttR8uWLVNRXpVhcESSJEmSJEmSJEmSJFVERbIGOakqIicnhy5duizTJaS4uJg5c+Ywb948ioqKqFevHg0aNKBOnTqpKkWSJEmSJEmSJEmSJEnLkbLgyIpkZWWRm5tr9wxJkiRJkiRJkiRJkqSYZcVdgCRJkiRJkiRJkiRJkuJhcESSJEmSJEmSJEmSJKmGMjgiSZIkSZIkSZIkSZJUQxkckSRJkiRJkiRJkiRJqqEMjkiSJEmSJEmSJEmSJNVQOek66K+//mLYsGGMHj2aL774gunTpzNjxgwWLFhAIpGgsLAwXaVIkiRJkiRJkiRJkiSJNARHJk2axODBgxk6dCgLFy4EIIqiCu1x5JFH8vLLLy953bdvXwYPHpzUOiVJkiRJkiRJkiRJkmqaRFTRFEcFvPrqqxxzzDHMmjWrXFgkkUgsuY6iiEQiQVFR0Qr3+fDDD9lxxx2XvF5rrbWYPHkyWVnVf9JOQUEBeXl55Ofnk5ubG3c5kiRJkiRJkiRJkiQpw1Uka5Cy5MX999/PAQccwN9//70kHFISGImiqEJdR3bYYQd22GGHJe+fNm0aw4cPT0ndkiRJkiRJkiRJkiRJNUVKgiNvv/02p59+OsXFxUsCI1EU0bBhQ/bff3/OPPNM1lprrQrt+a9//WtJAAXg9ddfT0XpkiRJkiRJkiRJkiRJNUbSgyOLFy+mT58+FBYWLgmM5OTkcNVVVzF16lRefPFFbr75Zlq1alWhfXv16rVkNE0URYwYMSLZpUuSJEmSJEmSJEmSJNUoOcne8P7772fixIlLQiO1a9fmlVdeoUePHpXat1WrVrRv357vv/8egO+++4558+ZRv379ZJQtSZIkSZIkSZIkSZJU4yS948gDDzwAsGSszBVXXFHp0EiJrbfemiiKlrwuCZFIkiRJkiRJkiRJkiSp4pIaHJk5cyZffPEFiUQCgBYtWnDmmWcmbf/NNtus3Osff/wxaXtLkiRJkiRJkiRJkiTVNEkNjnz00UdLOoIkEgn22Wcf6tSpk7T9mzZtWu71zJkzk7a3JEmSJEmSJEmSJElSTZPU4MjUqVMBloRHunTpksztady4McCSjiazZ89O6v6SJEmSJEmSJEmSJEk1SVKDI9OnTy/3unnz5sncnsWLF5d7XRJQkSRJkiRJkiRJkiRJUsUlNTiSnZ1d7nVhYWEyt18ymqYkMNKsWbOk7i9JkiRJkiRJkiRJklSTJDU40qJFi3KvS4IeyfLNN9+Ue21wRJIkSZIkSZIkSZIkac0lNTjSsmVLABKJBADjxo1L5vaMGjVqyd4Abdu2Ter+kiRJkiRJkiRJkiRJNUlSgyPbbLPNkmBHFEW8/fbbSdv73Xff5YcffljyOi8vj06dOiVtf0mSJEmSJEmSJEmSpJomqcGRZs2asfXWWy95PWHCBN56661K7xtFEZdccsmS14lEgm7dupXrPiJJkiRJkiRJkiRJkqSKSWpwBODAAw8kiiISiQRRFHHWWWdRWFhYqT0vvvhi3nnnnSV7Ahx99NHJKFeSJEmSJEmSJEmSJKnGSnpwpH///jRr1mzJ62+++YbDDz+coqKiCu9VWFhI3759ufbaa5d0F0kkEmy88cb06tUraTVLkiRJkiRJkiRJkiTVREkPjjRq1IgBAwaU6zry4osv0qVLF0aPHr1ae8ydO5ehQ4fSoUMH7r777iVdRkp+HTRoULLLliRJkiRJkiRJkiRJqnFyUrHpmWeeyQcffMCzzz67JDwyduxYunfvTtu2benatSt//vnnkiAIwG233cYvv/zCuHHjeP/991m0aNGS75fskUgk6NevHwcffHAqypYkSZIkSZIkSZIkSapRElHZ9EYSLVy4kD322IP33ntvyZiZskGQsq/Lri3vvpK1vffem5dffpns7OxUlJyRCgoKyMvLIz8/n9zc3LjLkSRJkiRJkiRJkiRJGa4iWYOkj6opUadOHUaOHEn//v3LBUFKuocsnVcpWSvpLFI2XBJFEf379+eVV16pUaERSZIkSZIkSZIkSZKkVEpZcAQgJyeHW2+9lWHDhrH99tuXC4yUhEOW9wWlgZEtt9ySl19+mVtvvZWsrJSWK0mSJEmSJEmSJEmSVKOkbFTN8rz//vs899xzjB49mnHjxlFcXLzc+9Zff3169OjBAQccwL777puu8jKSo2okSZIkSZIkSZIkSVJFVCRrkNbgSFlz5szhzz//ZMaMGfz999/Uq1eP5s2bs9Zaa9GiRYs4SspIBkckZZTffoPp01N7RvPm0Lp1as+QJEmSJEmSJEmSqrGKZA1y0lTTMho2bMhGG23ERhttFFcJkqSK+O03aN8eFixI7Tl168IPPxgekSRJkiRJkiRJktIgK+4CJElVxPTpqQ+NQDgj1V1NJEmSJEmSJEmSJAEGRyRJkiRJkiRJkiRJkmosgyOSJEmSJEmSJEmSJEk1lMERSZIkSZIkSZIkSZKkGsrgiCRJkiRJkiRJkiRJUg2Vk66DfvnlF8aMGcMPP/zArFmzyM/PZ/HixWu8XyKR4IEHHkhihZIkSZIkSZIkSZIkSTVLSoMjc+bM4Y477mDo0KH8+OOPSds3iiKDI5IkSZIkSZIkSZIkSZWUsuDIK6+8wqmnnsqff/5JFEVJ2zeRSCRtL0mSJEmSJEmSJEmSpJosJcGRxx57jOOPP56ioiLAsIckSZIkSZIkSZIkSVImSnpw5Ntvv6VPnz4UFRWVC4yU7TrSqFEjGjVqRK1atZJ9vCRJkiRJkiRJkiRJklZT0oMj55xzDoWFhUtCI1EUUadOHY4//nh69erFVlttRZMmTZJ9rCRJkiRJkiRJkiRJkiooqcGRGTNmMGLECBKJBFEUkUgkaN++Pa+++iobbLBBMo+SJEmSJEmSJEmSJElSJWUlc7PRo0dTVFS05HWdOnUMjUiSJEmSJEmSJEmSJGWopAZH/vzzzyXXiUSCXr16GRqRJEmSJEmSJEmSJEnKUEkNjhQUFAAQRREAO+20UzK3lyTVRF27Qq9e8PvvcVciSZIkSZIkSZIkVTtJDY40atSo3OumTZsmc3tJUk0zeTJ8+CH897/QuHHp+n//C5deCmPGxFaaJEmSJEmSJEmSVB3kJHOzDTfcsNzrWbNmJXN7SVJN06IFvPsufP89lA0nPvEEPPcc1KkDnTuHtYUL4aWXYKed4B//iKdeSZIkSZIkSZIkqYpJanBk2223JTs7m+LiYgB+/PHHZG4vSappatcOQZClR58dfDDUrQs9epSuffYZHH44tGwJU6ZAIhHW//oLmjWDrKQ22ZIkSZIkSZIkSZKqhaQ+RWvatCk9evQgiiKiKOKVV15J5vaSJAX/+hc8+ihsu23p2rx5sNVWsPPOpaERgH32gebNYfTo9NcpSZIkSZIkSZIkZbikf/z6oosuAiCRSPD999/zwgsvJPsISZKWtcceMGYMPP106drChTB+PPz9N2ywQen600/DjjvCXXelv05JkiRJkiRJkiQpgyQ9ONKtWzdOPfVUoigC4PTTT+fnn39O9jGSpDRbuDDuClZT2ZE0derA9Onw+eew3nql62+/DR98ABMmlK5FEZx5JjzyCCxYkL56JUmSJEmSJEmSpBglPTgCcOutt7L33nsTRRF//fUXO++8M6NGjUrFUZKkNKldO31nLVqUxM1q1YLOncuvXXABPPQQ9O5duvbDDzBkCJxySvnwySefhOBJYWESi5IkSZIkSZIkSZIyQ0qCI7Vq1eKll17ihBNOIIoi/vjjD3bffXd69uzJs88+y5QpU1JxrCQphRKJ9J1Vq1aKD1h/fTj22PKBkrp14bzz4IQTyqdkBg6EbbaBe+4pXVu4EObMSXGRkiRJkiRJkiRJUurlpGrjWrVqcd9997HPPvtwyimnMH36dIYPH87w4cMBqFevHk2aNKHWGj4dTCQSTCg7YkCSVG2kM6SyxPrrw3XXLbvepAnk5cGOO5aujRwJ//wnHHAAPP982kqUJEmSJEmSJEmSki1lwRGAzz77jHvvvZcZM2aQSCSIomjJ9+bNm8e8efPWeO9ELE8VJakGa948dOVYsCC159StG87KFE8+CcXF5de+/BKKiiA3t/z6nntCq1YwaBCst176apQkSZIkSZIkSZLWUCIqm+ZIogEDBnDNNdcQRdGSwEiywh5RFJFIJCgqKkrKfpmsoKCAvLw88vPzyV36AaUkpdOYMdCsGfMnzWDvvWF2Cia1PPoIbLZLc2jdOvmbJ9vvv8PixbDBBuH1tGmw1lrheubM0KkEYNgwGDcO9tkHttginlolSZIkSZIkSZJUo1Qka5CSjiNnn302t95663IDIynKqUiSUmn4cNh7bzjqKOo9+CDdz83hiiuWbcSxpnJyQq5is6OTs19aLN1RJDcXXn8dvv++NDQC8Nhj8MQTsHBhaXBk8WJ44w3o2hWaNk1fzZIkSZIkSZIkSdJSkh4cGTZsGLfccguJRGJJYKQkLFKnTh3at29PmzZtaNSoEbVq1Ur28ZKkVJgwAbKywhiZnBz69oXBg0MWIhmKisJ0lyqtbl3Ya6/wVdYee4TxPrvvXrr2xRfwz39Cs2bw119QErDMzw8BFMexSZIkSZIkSZIkKU2SHhy55JJLllyXBEY233xzBg4cyH777UfdunWTfaQkKdVOOw222gq23BKA5s3h5JPhzjtD6KMycnLg0ENh880rX2ZGOu648FXWrFnQvj1svHH5kEjPnjBxYuhQsssuaSxSkiRJkiRJkiRJNVUiSuLsmPHjx9OhQwcSiQRRFJFIJDj44IN58sknyclJyVScaq8ic4ckKemKi0OnkeX49Vdo167y42qysuCHH2DDDSu3T5W0aBHUrl163bQpzJ0bOrxssEFYf+kluOMOOPxwOOGE+GqVJEmSJEmSJElSlVGRrMHynwauoU8++aTc67XWWouhQ4caGpGkquiRR8KYlWnTlvvt9deHww4LHUPWVHY2HH98DQ2NQGlopOR62jR45x1o27Z0/a234M03Ydy40rUogosugueeC2NwJEmSJEmSJEmSpDWU1ETHlClTllwnEgkOO+wwGjZsmMwjJEnpMHcunHsu/PVXCJCce+5yb/vPf+Cpp9b8mEQCLr10zd9f7dSvD926lV/r2xc22SSMCirx888weHAIm+Tnl65/+WVY69Ch/AgcSZIkSZIkSZIkaQWS2nGksLAQgJLpN506dUrm9pKkdGnQAEaPhn794OyzV3jbVltB9+6hc0hFZWeHTMR661WizpqgfXs47TTYfvvStays8Devd2+oW7d0fcAA2HRTuP320rXFi2HhwvTVK0mSJEmSJEmSpColqcGRJk2alHvdqFGjZG4vSUqnTTaB224LIYWVuPBCKCqq+Pa1aoX3ag20bRvCIUOHll+vVQvq1SsfMnnnHcjLg3/9K701SpIkSZIkSZIkqUpIanCkffv2QBhTAzB9+vRkbi9JSrUHHoDx4yv0lt13hy22WGW+pJysLNh/f2jRooL1aeVeeAFmzYLOnUvXPvkkdBxZui3MwQfDqafC77+ntURJkiRJkiRJkiRllqQGR7bbbjvqlmmZP2bMmGRuL0lKpbfegpNOgi5d4LffVvttiQRcfDEUF6/+UVEEzzwTprDccgvk51e8XK1A7drlQyIXXAA//BDG2JSYORP++1+4557yo27eeit0mfnhh/TVK0mSJEmSJEmSpFglNThSr149DjnkEKIoIooiXnnlFRYtWpTMIyRJqbLpprDTTnDoodC6dYXeesghsN56IUSyKllZsMMOYXrKTz/BWWfBOuvA6afDt9+uYe1asUQCNt4YOnQoXatXLwRHBg0q3/blkUfgjDPg0UdL14qKYORImDs3fTVLkiRJkiRJkiQpbRJRFEXJ3HD8+PF06tRpSWDkyiuv5KKLLkrmEWk3b948fvrpJ37//XcmT57M7NmzmT9/PvXq1SMvL48WLVqw5ZZb0qZNm6SfXVBQQF5eHvn5+eTm5iZ9f0kqZ/Hi0DqkTp0Kv/WOO6B//9BNZGWaNIGJE0OA5LHHQoOLb74p/f4ll8AVV1T4eCXDPffAiy/CeedB9+5hbexY2GoraNYMpk0rnUm0YEH5biWSJEmSJEmSJEnKGBXJGiQ9OAJw55130q9fPxKJBNnZ2Tz33HPsv//+yT4mJYqKivj88895//33+eCDD/jyyy+ZMGECxasxg6F58+b06tWL448/nm233TYp9RgckZRyEyZAu3aV2uK338LXfvutfOxMIgE33ABnn126FkUwalQIkLz0Erz+OuyxR/jejBnhPU2bVqo8VcYbb4QRRpttBsOGla7vsgv88Qc88ADsvHN89UmSJEmSJEmSJGkZsQdHAK6++moGDBgAQHZ2NhdeeCEXXngh9erVS8VxSfP999+zySabVHqfgw8+mFtvvZV11123UvsYHJGUUg8/DCeeCDfdFNqFrIEogr32CtNM9t0XXnklNC1ZWiIBLVvCL7+ESSnL8/vvsO66pSNvzj8/BEqOPDKU17HjGpWoZJg7Fxo0CNeFhWHW0Lx58P330L59WB82LHQtOeQQOPro+GqVJEmSJEmSJEmq4SqSNchJ9uG//fYbAEcddRQNGjTgggsuYOHChQwaNIg77riDww8/nJ133pkNN9yQJk2aUKtWrTU+q3Xr1skqO+leeOEFRo0axRtvvME222wTdzmStHyjRoUQwIwZa7zFgw/Cm2+GqSUXXRQaVCxcuOx9UQSXX77i0AjAeuuVf/3ZZzB/Ptx/f/jaeecQIDnwQMhJ+r/BtFIloREIf/MnT4aPPoKNNy5df/PN0DZm7bXLB0euvhq23BJ2332NxiBJkiRJkiRJkiQpdZLecSQrK4tEyUfFyyg5ZnnfWxOJRILCwsKk7FXW0h1HEokEm2yyCZtvvjkbbrghrVu3plGjRtSuXZs5c+YwefJkvvjiC9544w3mzJmzzH65ubl88skntC/5NHYF2XFEUkpFEbzwAhx0EGRlVfjtkyaFCSYFBWEEzTnnwBlnwJ13QlFR6X2JRAiF/PQTVCQvGEXw3nuh68gLL5Tuue66cN554SxlkHHjYPhw6NIljLKBMMOoTRvIzg5zjEoCKN9/H1JErVuXtpiRJEmSJEmSJElSUsTacQRKQyIlEonEksBIiibjJE0ikaB9+/b07NmTvfbaix122IG8vLxVvm/+/PkMGTKEyy67jAULFixZLygo4IQTTuDdd99NWmhGkpImkQhjRdZAFMHJJ4fQyPbbw7//HdbPPhvuuGPZe6+6qmKhkZLyunULX5Mmwd13w733husJE9aobKVSx47LzhNavBiOPx7mzCnfteSii+C//4UhQ0rHJJUkg7Kz01OvJEmSJEmSJEmS0tdxJJmiKCKRSFBU9uPsGeLdd9+lR48eLFq0qNz6qFGj2KXk09cVYMcRSUk3eHAYTXPNNZWa9/LQQyEPUKcOjB0LHTqUfu9f/4LnngtTcLKyYMMN4dtvk5MHWLAAnnkGdtwR2rULa++8A+efH/IHvXpB7dqVP0cptt9+Ya7R6NHQtWtYGz0a9t8/zCJ6+OFYy5MkSZIkSZIkSarKMq7jSE3SrVs3zjrrLK699tpy688+++waBUckKakmTIABA6C4OLTxOOCANdpm6tTSDiNXXFE+NALwn//AU0+F6+JiuPrq5DWRqFsXjjmm/Nqdd8JHH4Wvc86BU0+FU06BVq2Sc6ZS4JVXYO7ckDwq8cEHoYVNmc5dQPgfvEWL0M5mnXXSW6ekzPPbbzB9emrPaN48jNKSJEmSJEmSpBog6R1HHk7jJ4SPPfbYtJ1VEV9//TVbbLFFubXddtuNkSNHVngvO45ISroXXoB334Wbb17jLYqLw9iY558PTSOW17hk991h5Ejo1Am++CKMnUmVKVPCCJu774Y//wxrtWrBoYeGLiTbbZfa85UkRUXw1Vfhf6xOncJafj40bRr+oZs8Gf7xj7D+3nvwww/QvTu0bRtfzZLS67ffoH37ZQNmyVa3bvgzxvCIJEmSJEmSpCqqIlmDpAdHBPPnz6d+/frl1jp06MB3331X4b0MjkjKZFG04kDGqFHQrx/cdBPsuWd66lm0KORibrstNK+AMCbnhx/CyBxVQXPnwosvwjffhNY1JU46Ce6/P8wouuaasFZcDJ9+Cltt5bwiqboaMwa23jo9Z33+OXTunJ6zJEmSJEmSJCnJYh9VU9MtWM4nIGv7AEtSnIYOhV69oFGjSm0zfXr4EHbDhuH1yrp47LorfP11pY6rsNq14YgjwteYMSFAsu22paGRBQvguuugTx9Yd9301qY11KABHHnksutbbBHGLe26a+nat9/C9tuHERNTp5b+D19UlLxZScngmA1JkiRJkiRJkpRBDI6kwKeffrrMWrt27WKoRJKARx4JSYkbbgifnq5bd422iSI48UT48kt44gnYYYck15lknTuHvExZTz8Nl14KV1wBBx0Uxth06+YYmyrpjDPCV1m//w7NmoUxN2VbzPTsGYIkt98e/gePk2M2JEmSJEmSJElShrFxfwpcf/31y6ztma45DZK0tA03hH/8Aw49dI1DIwBPPQUvvQSTJ4cmEFXReuvBLruEBhTPPReut9oqTDyZNy/u6lRpPXvCX3/Bs8+WrhUWhrlF48ZBkyal6yNHQu/eIU2UTtOnpz40AuGMVHc1kSRJkiRJkiRJ1YLBkSRavHgxffv2ZcSIEeXWW7RowdFHHx1TVZJqvK5dw0PzgQPXeIupU0N3DoABA6BjxyTVlmbdu8OoUaFrykknQb16pdfrrQczZsRdoSotkSgfEMnJgZ9+CkmhTTctXR8+HJ58Et58s/z7hwyB0aNh8eL01CtJkiRJkiRJkhQzR9Ukwa+//sqrr77KkCFDGD9+fLnvJRIJ7rvvPhpU1Y/nS6qaioth5kxo3jy8btasUtv17RtCFZ06wYUXJqG+mHXsCPfeC9dcAw8+CHfcAe3alf/b9O23sMkmjrGpFlq1gkMOKb/WqxfUrw/bb1+69scfcOaZYczN339DrVph/ZdfoGFDaNEifTVLkiRJkiRJkiSlicGR1dS1a1fmlZljEEURc+fOZdq0acyePXu576lduzZ33303BxxwQLrKlKTg2mvh1lvhmWdg550rtdWzz8Lzz4fGDQ89VPosvTpo2hTOPRfOOqv8VI8pU2DLLWHjjaFfPzjqqJAbUDWyzTbhq6x58+Cww2D2bMjNLV2/4ILwe+m228I/EBDCWYmEySJJkiRJkiRJklTlGRxZTePGjWPu3LmrfX/37t258cYb2XLLLSt0zsKFC1m4cOGS1wUFBRV6vySxaBE8/XSYLzN+fKWCI3/9BaefHq4vvDCEKaqj7GxYa63S12PGQO3a8M03cNppITfQp0/ovNKuXXx1KsU23DD83lna33+HX7fYonTto4/gwAPD1733pqM6SZIkSZIkSZKklFit4Mgjjzyy3PVjjjlmte9NheWdH7eOHTty++23061btzV6/+DBg7n88suTXJWkGqV2bXj/fXjqKTjhhEptFUWw004wYQIMGJCk+qqAffaByZNDh5Xbb4effoKbb4Zbbgnfu/VWAyQ1yvDhYfRT2bYz778fklV//VX+3tNPDzOPTjsN/vGP9NYpSZIkSZIkSZK0BhJRFEWruikrK4vEclqxFxUVrfa9qbC881OlYcOGq91xJDs7m4MPPpiLL76YTp06Veic5XUcWW+99cjPzye3bNt8SUqTKIJZs6BJk7griUdxMbzxRphSMmwY1K0LkyaFbACEvz9OK6mBFi6Ezz8PM5y23TaszZ0LeXlQVAQTJ0Lr1mH9009D+miXXcIcpK23Tk+Nn38OnTun5ywp1aIo/IH85Zf+HpIkSZIkSZKk1VBQUEBeXt5qZQ2yKrJxFEVLvipybyq+0m3OnDnlzl+8eDF//fUXY8eO5b777mPPPfdcEpgpKiri2WefZZtttmHQoEEVOqdOnTrk5uaW+5Kk1XLeefDkk0nZavHi0utEouaGRgCysqBnT3jtNfjxRxg6tDQ0AuF7/frB99/HV6NiUKcOdO1aGhqB8GD7rrugf//S0AiEf2h694Ybbkh/naoelv7Z9++/Q7ebsiHqv/+G776D338vf+9HH8GoUTBnTunar7/Cc8/Be++Vv/fxx0ObpalTS9e+/houvxwefrj8vYMGhc46P/xQuvbpp3DYYWG2WVmnnRbGpn3wQenahx/CppvCAQeUv/fgg6F5c3jxxdK1Dz4Ifxh36IAkSZIkSZIkKfkqFBxJJBKr3U2k5N5UfGWCnJwcmjdvTqdOnTjxxBN54403GDNmTLkOI4WFhQwYMICzzz47xkol1Qivvx4eSh95JHz7baW3O+64sNWMGZUvrTrZcEM44ojS119+GbqR3HEHbLIJ7LUXvPJK+We5qkEaNoSTToIhQ8qvt2sXOiTsvHM8dVUXRUWQnx8CEmVNmQLjx5dfnz8/hA0+/LD8vWPGwAsvhPtLzJkD990H995b/t5hw+DKK2H06NK1uXPh3/8OabHi4tL1xx4Lfzg8/njp2sKF0KMH7LYbzJtXun7nndCxI1x9dfnz1l0XWraEadNK1667LgQmTjyx/L2tW4d7J04sXXv00RDEOO+88vcecECo4ZdfStdGjoRDD4Vrry1/78CBIfhU9t6vv4bLLoOlx1E+/TTcfXdowVRiyhR49tmwf1ljx8K778L06aVr8+eHoMuECeXvLSgI//KZP790LTs7/OofrpIkSZIkSZKUEqsdHKnJ3UZW15Zbbsl7773HdtttV2795ptv5tlnn42pKkk1wh57hE94DxwYHhxWwv/+B088AU89tezzPJXXsSO8+Sbsv3/ozDJ8OPzzn7DxxnDTTcs+31YNdc458NlncOCB8dUwciS89FL5fyh//hkefDC00ynrgQdCqKFsKOHrr+Hss+GWW8rfe+mlIWX2xRela59/HlJUp55a/t6TT4Yttwy/UUp8+imstx7stFP5ew84AGrVKh9WGDcOGjeGLbYof2+/ftC+ffmOS7/9BjvuCPvsU/7eW2+FQw4Jfy9K5OeH2vr1K3/vyy+HP1NHjSpdW7Qo7HHHHeVDDF9+GYIUY8eWrmVlwVtvhfcvWlS6Pm0afPVV+cBFyfpffy3b8imKlg1MlAQpyt5bvz40bQoNGpS/t3378O+FnJzStbXXDkGmzTYrf2/PniFQ0rhx6dpGG4WOIfvvX/7eU08NgZL11y9d22KLMNdr6fDKVVeFQMk225SubbUVvP32sp1M7rsvBCD33bd0rXPn8PdnzBgkSZIkSZIkScmXs+pb4JeynzpM4r3VUcOGDXn66afZZJNNmF/mk5LnnXceBx10EDk5q/W3XJIqJjt72U+vr4GZM+GUU8L1ueeWn8KhZSUSoaFAjx7hA/p33gn33x+ex59zTngefuihcVcpASecEMaTfPQRlARcP/44rO++e/mAxc03wzffwA47QJs2YW3ChLC+/fah40aJ11+HTz4J3Ta22iqszZoVwiFLBzx++ikELGbOLF0rKgoBitq1y99bXAyFheGrRElYouwahE4vjRuXD0bUqxc6vSw98m/jjUOgZO21S9fq1y8NqpS1006hvs6dy+970UWltZQ44IDwG77svTk5oRNJTk54X4mjj4Zu3UKHkbI++yzs27Jl6dqpp4b769cvf+/06eHesp34Tjxx2c4kAO+8s+xaz57ha2m3377s2tZbh6+lnX76smvrr79sAAfCP2NLa9IEdt112fW2bZddq1ULWrRYdl2SJEmSJEmSlBSJKJNbeFRhp5xyCvcu1fL8lVdeYd+yn55cDQUFBeTl5ZGfn0/u0g8/JNVsxcVh5MIhh5R/eFgJxx4bPuDfvn344HzduknZtkaZNy9Mq3j++dCwoORZ9FNPhWfj++9f/vm2apgxY5b/ED4VPv+8NMhwyCHw559wzz2lgY533w2jUDp1Ch0hSgwcCH/8ETqMlHQw+u670BmiTZvQfaLE44+HThD77x+CGhDGlbz5Zuh+Ufbnnk8+Cd09ttgCWrUKa3Pnwg8/hGDFJpuU3lvSeaNx49LQRHFxWMvO9jdRTRbX7yFJkiRJkiRJqmIqkjWoUHCke/fuS6433HDDZYIRKvXiiy9y0EEHlVs799xzuf766yu0j8ERSSs0eHD45Pu//hUe3lYyPPLqq7DffmGb998PzQaUHIWF4UP0kyZB69bhufuJJ0Lz5nFXprTzobdUOf4ekiRJkiRJkqTVUpGsQVZFNh41ahSjR49m9OjRfPbZZ5Uqsrpbv+y89//3888/p78QSdVXs2ahhUX37pUOjcyaBSefHK7POsvQSLItWBCmTTRvDr/9BhdeGKZa9OkDX3wRd3WSJEmSJEmSJEmqySoUHCnhdJtVq7uc+Q6zZ8+OoRJJ1dbJJ4fxESeeWOmtSnJtG20EV15Z6e20lIYN4eqr4fffYejQ8AH2BQtKr8tOCZEkSZIkSZIkSZLSaY2CI1q1adOmLbPW3JkEkipr0aLwVWKDDZKybefO8M038OKLUL9+UrbUctStC8cdB599FsYBHXEE5OTA3nuX3jN5MiznXyGSJEmSJEmSJElSShgcSZGPPvpombVWrVrFUImkauWss2CXXWDSpKRv3bgxbLpp0rfVciQS0LUrPPkk/PEHbLNN6fcuuyyMsTnmGPj009hKlCRJkiRJkiRJUg1hcCQFoijiqaeeWmZ9hx12iKEaSdXGH3/AE0/ARx/BV18lZcvzzoOHHgInkMWnRYvS6yiCCRNCU5lHH4Vtt4Xtt4fHHy/faEaSJEmSJEmSJElKFoMjKXDffffxxRdflFurU6cOPXv2jKkiSdXCP/4Bn38O994LSfjzZMQIuOEGOP54GDu28uWp8hIJGDkSPvkEjj4aateGjz+Go46C1q3h1lvjrlCSJEmSJEmSJEnVjcGRMr744guuu+465s2bt8Z7PPvss/Tr12+Z9T59+tCwYcPKlCdJsMEGcNJJld5m9mw48cRw3bcvbLVVpbdUEnXpAo88Ar//DldeGTJDU6fC33+X3hNFdoqRJEmSJEmSJElS5RkcKSM/P5/zzz+ftm3bct555/HZZ5+t9nu//vprevfuzWGHHcbixYvLfW+ttdbi6quvTna5kmqC4mI480wYNy6p255/PkycCOuvD9dck9StlUQtW8KAAfDrr/DMM3DqqaXfe/ll2GYbGDoUFiyIrURJkiRJkiRJkiRVcTlxF5CJpk2bxg033MANN9zAWmutRefOndlyyy1Ze+21ady4MfXr12fOnDn8/ffffP3113z88cd8/fXXy90rLy+PF198kcaNG6f3L0JS9XDHHTBkCDz6aEgP5OZWesu334a77grXDzwANkPKfLVqwaGHll+75x4YMwb69IHzzguNaE47LYy0kaRqq3lzqFs39Ym5unXDWZIkSZIkSZJUAxgcWYWpU6cybNgwhg0bVuH3rrvuurzwwgt06dIlBZVJqhF694ZXX4VDDklKaGTuXDjhhHB9yinQvXult1RMHnkE7r8f7rwTfvstdI657jo48EDo3x922QUSibirlKQka90afvgBpk9P7r6//hrCmpdcEv5927y5STxJkiRJkiRJNYbBkTLq1q1LdnY2RUVFldqnVq1a9O3blyuvvJKGfpRfUmU0awavvZa0BMAbb4RnY61bh5CBqq5mzcLIoXPOCWNrbrstdJN54YXwv3EFpq1JUtXSunVyQx1RFFKVY8fCxhuXtuWSJEmSJEmSpBrC4EgZ22+/PdOmTWP48OGMGDGCjz76iO+++47i4uJVvrdevXp07tyZww8/nN69e9OsWbM0VCypWlq4MDz133HH8DorK2lbH3wwvPsuFBYmpYGJMkBODhx0UPj6+mu4/fby3Uby8+Hqq0OHmQ02iLdW4ZgNKRMlEuEPz0GD4IIL4q5GkiRJkiRJktIuEUVRtLo3Z2VlkUgkiKKIhg0bss0226SytpVKJBK89dZbKT9n7ty5/Pjjj/zyyy9MmTKFOXPmsGDBAho0aEBubi6NGzemQ4cObLLJJmRnZyf9/IKCAvLy8sjPzyfXp7xSzdC3b/i08003wb//HXc1quJuvTX8Y5RIwH77hTE2PXo4xiZWv/2W/DEbS3PMhiRJkiRJkiRJNVpFsgZr3HFk7ty5jB49ek3fXilRFJFI0xOvBg0asOWWW7Llllum5TxJNVxxceg4EkWw0UZJ2/buu2H33ZO6paqITp1gzz1h+PAw0ubll6FDB+jXD445Bho1irvCGijZYzYkJd/06XbtkSRJkiRJklRjrHHHkbiUnJ9IJCgqKoqtjnSx44hUQ40ZA507J2Wr99+Hbt3C5Irvv/d5dU31ww9hEsNDD8GcOWGtaVOYOBEaNoy1NEnKHFEU5nsNGgQjR8L228ddkSRJkiRJkiStkYpkDbLW9JBEIhHLlyRVS4sXl3+dpNDI/PnQp094Dnb44YZGarL27eG222DyZBgyBDbeGLp3Lx8a+eST0PRGkmqsRALGjw//An3qqbirkSRJkiRJkqS0qHIdR0rYcURStVFcDAcfDK1awa23Qp06Sdv6vPPghhtg7bXhm2+gSZOkba0qrrgYCgqgcePw+qefQphkgw2gb184/vjS70lSjTJjBrz5ZkhcGlyXJEmSJEmSVEVVJGuwxsGRDTfckPvuu6/SxVbGLrvsEuv56WBwRKoBSmbJ1KoVWj506pSUbT/+GLp2DQGB//0P/vnPpGyrauqll+DYYyE/P7xu0ACOOQb69YNNN423NkmSJEmSJEmSJFVMWoIjW265JWPGjKl0sVo5gyNSDfHGGzB1anhSnwQLFoRpN999B0cdBY8+mpRtVc3NnQuPPRZG2nzzTen67rvD/ffD+uvHVpokxWPRInjwQTjxRMjJibsaSZIkSZIkSVptFckaZKWpJknSyuy1V9JCIwB33RVCI2utFabfSKujQQM45RT46it46y048EDIyoIxY6Bly9L7iotjK1GS0ieKQnLutNP8l6kkSZIkSZKkas2PzUlSHBYtgoED4fzzoUmTpG/fty/Mnh2m3jRtmvTtVc0lEtC9e/iaODF0H6lfP3wvimDbbUNHm379oGPHeGuVpJRJJOC44+CHH6BNm7irkSRJkiRJkqSUcVRNhnNUjVRNnXUW3HJLePr+6aehrYNUBbz3HnTrVvp6552hf//QncQpDpKqnSiCWbNSEvKUJEmSJEmSpFRyVI0kZbpjjoF27eCKK5IaGnn77dDMREqVHXeEd9+Fww6D7Gx45x049FBo2xauvhqmT4+7QklKokTC0IgkSZIkSZKkas/giCTFYaut4NtvYd99k7blmDGwxx7QpQvk5ydtW6mcRAJ22gmefjqMsRkwAFq0gEmT4OKLYezYuCuUpBT54APo2hUmT467EkmSJEmSJElKKoMjkpQu+fnhSXuJ2rWTtvWiRXD88VBUBO3bQ15e0raWVmiddeDKK+H33+GRR+Bf/4Lddy/9/j33wJNP2gVHUjUQRXDuufDhhyExJ0mSJEmSJEnViMERSUqHKILjjoPOneGtt5K+/eDBMG4cNG8Ot9+e9O2llapTB44+Gp54InQkAZg3Dy68EHr3hjZt4PLLYcqUeOuUpDWWSMC998IJJ8CNN8ZdjSRJkiRJkiQllcERSUqH/PzQ2n7OHMjNTerWX34JV10Vrm+/HVq2TOr20hopKoIzz4RWrUJg5LLLoHVrOPJI+OijkKWSpCpl883h/vuhadO4K5EkSZIkSZKkpDI4Iknp0LgxvPsuvPkmdOmStG0XLw4jagoL4eCD4bDDkra1VCmNGsGll4bpTE88ATvsEP55Lbm+/vq4K5SkSho/Pu4KJEmSJEmSJCkp1ig4kijpQy9JWrmybRXq1IGdd07q9tdfD198ET78fOedpWNCpExRuzb861/wwQfw2Wdw7LFQty4ceGDpPRMmwKRJsZUoSRUTRXDGGdChA7z2WtzVSJIkSZIkSVKlVTg4EkURkf3lJWnVFi2C7t1DW/sUOeww6NYNbrsN1lorZcdISbH11vDQQzB1Kmy8cen6BRfA+uvDoYeGxjz+mCEpoyUSkJMT/rD64IO4q5EkSZIkSZKkSktEFUiBTJw4ccl17dq1WXvttVNSlEoVFBSQl5dHfn4+ubm5cZcjqSLuvRdOOSWMqfnhB2jZMiXHFBeHZ1h2G1FVVFQEe+0Fb71VutapE/TvD717Q7168dUmSSs0dy58+insumvclUiSJEmSJEnSclUka1Ch4IjSz+CIVIUVF8O118IWW8B++yV16ylToFWrpG4pxWrcOLj9dnjsMZg/P6w1bQoDB8KZZ8ZbmyRJkiRJkiRJUlVTkaxBhUfVSJJWU1YWXHhh0kMj334LG2wQHqYvXpzUraXYdOwYmvRMmgTXXx9G18ycWf6eoiLH2EjKQPn5IeW2YEHclUiSJEmSJEnSGjE4IknJlJ8PN98cnnCnQFER9OkTOjL89BPk5KTkGCk2TZvCueeGf75fegmOPbb0e48/Hhr43H13mBIhSbGLIthzT7jySrj88rirkSRJkiRJkqQ1YnBEkpIliuC44+Dss+Hkk1NyxM03w8cfQ15e6M6QSKTkGCl22dmw//7QuHHp2gMPwDffwGmnwTrrhN9qEybEVqIkhX8RX3ghbLgh7LVX3NVIkiRJkiRJ0hoxOCJJyZJIQK9e0KQJnHpq0rf//nsYMCBc33RTeHAu1ST/+x/cckt4PlvS3GejjcI0qOHD465OUo114IEh1bbrrnFXIkmSJEmSJElrJBFFURR3EVqxgoIC8vLyyM/PJzc3N+5yJK2OggJI8u/XoiLo1g0+/DB8oHnYMLuNqOYqLoY33oDbbgu/FwB23x1GjIi3LkkCwr+0s7PjrkKSJEmSJElSDVeRrIEdRySpsqZNg/nzS1+nIOQ1ZEgIjTRq5IgaKSsLevaE116D8ePhzDPh3HNLv//nn3DGGfDDD/HVKKmGeukl2Hjj8IeTJEmSJEmSJFURBkckqTIWLYIDDoAddoCff07ZMS1bQl4e3HADtG6dsmOkKmejjcL4mr33Ll27557QjaRDh9Ch55VXQpcSSUqpKIK77w4/DwwaFHc1kiRJkiRJkrTaDI5IUmVMmBC+Jk5M6TFHHhk+vHzSSSk9RqoWuneHf/4zdOYZPjxcb7QR3HQTzJoVd3WSqq1EIgRHBgwICTZJkiRJkiRJqiISURRFcRehFavI3CFJMZk8GX76CXbZJelbFxVBdnbSt5VqhJ9/hjvvhAceKA2MNG8OkyZBnTqxliZJkiRJkiRJkpRSFcka2HFEkiprnXVSEhqZMAE22SSM2ZBUcRtsEMY7TZoUPvy/+eZw4IHlQyNvvQWFhbGVKKm6e+edMMJGkiRJkiRJkjKYwRFJqqiCAthjD/jkk5QdUVwMJ5wAP/4IN97oMyepMho0gJNPhnHj4JZbStc/+wx69IB27eDaa2HGjNhKlFTdRFGYM7fLLvDEE3FXI0mSJEmSJEkrZXBEkipq4EAYMSI8EEpRq4K774bRo6F+/TBmI5FIyTFSjZJIhBBJiV9/hWbN4Lff4IILYN11Q2Driy9iK1FSdZFIwGabQU4O/PFH3NVIkiRJkiRJ0kolosjPsWeyiswdkpQmBQVwyilw1lmw7bZJ3/7XX8NIjblzYcgQ6N8/6UdI+n/z58PTT8Ntt8GYMaXrO+4ITz0VwiSStEYWL4bx40OARJIkSZIkSZLSrCJZA4MjGc7giFSzRFGYgvPWW9CtG4waBVn2hpJSLorgww9DgOS552CtteCXX6BWrfD9xYtLryVJkiRJkiRJkjJdRbIGPo6UpNUxaRK8/HLKj7nvvhAaqVcvjKgxNCKlRyIBXbvCk0/CxInwxBOlQZHCQthkEzj6aPjkk8qfNXkyfPddGJEzfTrMmwfFxZXfV1IG++OPMAtr1qy4K5EkSZIkSZKkZeTEXYAkZbxFi+DQQ+Gjj+DOO+G001J21BdfhF8HDYKNNkrZMZJW4h//CF8lRo6ECRPC12OPhQlV/fuHPxbq1KnY3gsWwNZbw9Spy36vbt3wVa9e+GrYEBo0gEaNwq/165f+WvK1otetW0ObNpX7+yApSaIIDjwQPv00JNLuvjvuiiRJkiRJkiSpHEfVZDhH1UgZYPFi+M9/4KGH4LPPoF27lB43ciTssgtkZ6f0GEkV8OmnYYzN00+HLBmEcTYnnwx9+4br1RFF0KkTfP11uF5diUToQJRIhK+SvaIIioqWvb9ly9DRpKLBFkkp8s47cP75obXY5pvHXY0kSZIkSZKkGqAiWQODIxnO4IiUQaZMgVat4q5CUoymTYN774W77gqTJyDkybbeevX3ePppOOKI1NQHIWCy3Xbw/vulIROpOpk8GQoKynfcqVu3Cox3iyJ/U0qSJEmSJElKG4Mj1YjBESlGM2ZA06Ypf8gzaRJccAFcfz2svXZKj5KUJIsXw3//C6NHwx13lK5fe23oPnLEEeFB9vIUFsIGG4Tf+6n6KWz0aNh559TsLcVpwQJYf/1qMO5p9uxQmCRJkiRJkiSliMGRasTgiBST/HzYdlvo0gXuuSc8SUqBKIL99oPXXoO994Zhw1JyjKQ0mDkT1l0X5s+H5s3hpJPgtNNgvfWWvfeOO6B//+QHR3JyYNdd4c03k7uvlCmq/LinKAo/V1x4IbzxRvhZQ5IkSZIkSZJSoCJZg0xv6CxJ8XjnHZgwIfw6f37KjnnkkRAaqVMHbropZcdISoOcHLj00tCpYPp0GDwY2raFXr1CB5CyD7mPPx5SkQctLISrr07+vlKmSCTg4osrHroqCYgUFoaOQYsXh+vlhUaysqBdO6hdOzk1l5NIwHvvwaxZcPfdKThAkiRJkiRJkirOjiMZzo4jUozeeSf0uu/SJSXb//EHbLZZeHY0eHAYVyOp6isshJdfhttug7ffLl0fMiR0GSlx+eVwxRVQXJycc3NyYJ994KWXkrOflKmq/Lin6dPhmWfglFMgOztFh0iSJEmSJEmq6RxVU40YHJGqpyiCAw4ID5e32QY+/DA89JVUvXz9Ndx+Ozz9NHz3HbRqFda/+goWLYIdd4SFC5NzViIB48bB5psnZz8pkznuSZIkSZIkSZJWzlE1krQmJk+Gww+HqVNTftQTT4TQSK1aMHSooRGputp88zCN4s8/S0MjAGedFZoZ/eMfYSxGZeXkwBFHGBpRzVFtxj0VF8OTTy5/Zo4kSZIkSZIkpYnBEUkqccIJoXV8nz4pPSaK4JZbwvXAgT7olWqCunVLrxcuDNMpogh++SU5o2qKi8PYG6mmqF8/BLCSEbwqkZMD+++fsgl1y4oi+Oc/oXfvMNtKkiRJkiRJkmJicESSStx8M+ywAwwZktJjEgl4++3wiebzz0/pUZIyUJ068MYbYXRNv34hRFIZ2dmh+8KGGyanPqmq6Ns3dO5KlqIiGDQoefutUiIRkioNG4YvSZIkSZIkSYpJIoqSPRlcyVSRuUOSkiCKwoMcSUqTd9+FnXde8/fn5MDPP8N66yWvJqmqOOMMuPPOyk96ycmBQw8No+TSqrgYpkwJc6skSZIkSZIkKYkqkjUwOJLhDI5IKfbdd6HPffv2KT9q2jR44QU4+eTkttaXVPXtvjuMHl3xh99ZWdC/fxh/9Z//wI03hg4k2dnhQXjZX0ePhg4dwvtuvz18LX1vyfW998Kmm4Z7n38ehg5d9r6S1xdcULrve++F+1d07+GHl3ZG+e47GDly+bVmZ0PXrqVhmClTYNy45deanQ3rrw9Nm4Z7584Nf96u6N66dZPbpULx+vVXaNeu8iOfsrLghx/s3CNJkiRJkiSp+qhI1iAnTTVJUuYpKIADD4Q//4T//Q923TWlx/XrB88+C19+CXfdldKjJFUxF14YQhQVVatWeC9AYWF4eF5cDIsXL3tv2ajwtGnhIfmKzJtXev3jj/Dqqyu+t0+f0uDI2LEhxLIiW21V+mD+ww/Dn4sr8uyzpcGR0aPhiCNWfO/QoXDcceH67bfhn/9c8b133AGnn1567x57LBtwKbm+7DI47bRw77hxcNhhyw/EZGfDCSeEkUEAEyeGMSrLC8Tk5MC++0KvXuHemTPhyiuXH3LJyYFttoE99wz3zpsHDz20/Huzs2GDDcL9EP55ePvtFQdzmjaFNm3CvVEUal7R34fatcOIpUy0/vrhf5fnngt/zWsiOzv88xN7aOTbb+Gcc+DBB2HttWMuRpIkSZIkSVJNYnBEUs21YAG0agXz58Nmm6X0qOeeCw9Bs7NDxxFJKmv33WGLLeCbb1a/c0JWFpx1Fqy1Vnh9+eWh60hhYehcUlRUel1YCG3blr73hBNCYGJ59xYVhQ4OJfbZB1q2XHa/knvL7tu5c+hAsvQ9JdetW5fe26YNHHLI8s8vKgpnlsjNhU6dlv/XVVQEDRuW3ptIQP365e8tKzu79Lrsmcszf37p9dy5Kw/b7LVX6fWsWSsP27RqVRoc+fvvlYdt+vUrDY7k54dAyor06QMPPBCu580rfd/yHHYYPP10uC4uLv+/49L22w9efrn0dcOGIZy0vFDKzjvDM8+U3rvDDjB79vIDNFtsEcbMlK3/77+Xf2/r1iHIU+Laa2HGjPD9Bg3WPDQC4Z+ZSy9d8/cnRRSFHxDefx/OOw8eeyzmgiRJkiRJkiTVJAZHJNVcLVvCiBEwaRK0aJGyY6ZPL/10+4UXhk/cS1JZiQRcfPHKu2osrX79EBQp0ahR+FodbdqUdptYlY4dw9fq6No1fK2O3XcPX6ujZ8/wtTr23TeEPMoqLi4NkeSU+el3553hjz+WH4gpLCzf9GGzzULnkxUFc0pG+wCsuy7cf//yAzGFhbD99qX35uWtPGxT9u9nnTqlYZvl3bv01LWOHVcctmnWrPS+oiKoV698nWWVDdtAyF2uKGzz99/lX3/3XQi8LM/Se7z+emgCtjydOpUPjjzwQOiGU1nZ2SGMU9LdJjaJRGiHc9llcM01MRcjSZIkSZIkqaZJRFHZxuXKNBWZOyRpNc2bF564pknv3vDkk+Gh4+efZ267f0nxKiwMo0YmTSo/VmZ5srJCh5EBA9JTm2qWKCoftkkkQrCkxOTJ5UMmZQMp9euXH/ny7ruwaNHy723SBLp3L733iSdCd5LldaFp3jx0yilx3XXw11+l9/z6a/muKKurbt3w3pLOPZIkSZIkSZJUXVQka2BwJMMZHJGSbPJk2G670Ab+jDPC07AUevFFOOig8Inmjz6CbbZJ6XGSqrg77oD+/VcdHGnSBCZOXP0OI1J1F0WhK0lFxz2dfz5cfXVqa1tjkyfDOuvEXYUkSZIkSZKkKqoiWYOsNNUkSZnhoYfCg5gHH4SFC1N61KJF4QEwhJyKoRFJq3L88bCqnGgiETqNGBqRSpWMe1rd0AiE7ijnnZe6mirliiugbVsYPjzuSiRJkiRJkiTVAAZHJNUsF10Et98Ozz8f+tOnUO3aoeNIr15w6aUpPUpSNVG/Ppx1VuiEsDyJBLRsCaedlt66pKrgkENgvfVWr5lYSbeRJk1SX9camTEDFi9es/k7kiRJkiRJklRBjqrJcI6qkSSpZpk+HdZdd8VNke6+G045Jb01SVXF6o57ysuD33/P4M49c+bAm2/CgQemfKyeJEmSJEmSpOrJUTWSVNY334SPFS9enJbj/v4bvv46LUdJqoaaN4eTT4bs7PLriQS0bg19+sRTl1QVrM64J4Bjjsng0AhAw4Zw0EGGRiRJkiRJkiSlhcERSdXbokWhd/1118HFF6flyLPPhs6d4d5703KcpGro7LOX7ZgQRXDVVVCrVjw1SVXB6ox7atECrr02vXVVyoIFcOONK25DJEmSJEmSJEmVZHBEUvVWuzYMHgybbw7nnZfy44YNg4cegsJC2GyzlB8nqZpaf3047DDIyQmvs7Jg442hd+9Yy5KqhL59VxywiiK48kqoV6/0dcbbZx8491wYNCjuSiRJkiRJkiRVUwZHJFV/Bx0EY8eGjxinUH4+nHRSuD7zTNhxx5QeJ6ma+89/QggNoLgYrr562fE1kpa1uuOenn8euncPDT0yWt++sNZasNVWcVciSZIkSZIkqZoyOCKpevryS5g9u/R1Gp62nnsuTJ4M7dr5oWBJlbfVVuGhNkCnTnDwwfHWI1Ulqxr3NHs2nH46jBoFF1wQS4mr75BD4McfQxBWkiRJkiRJklLA4Iik6uePP2CvvaBLF/j117QcOXw43H9/uH7wQahfPy3HSqrmLrkkjL267rrQLUHS6lnVuKdGjWDo0HB9661h1FxGa9So9LpKzNeRJEmSJEmSVJUYHJFU/UybFp4U1akDLVum/LjZs0tH1PTvDzvvnPIjJdUQu+4KX38Ne+4ZdyVS1bOqcU/77ANnnBGujzsOpk5Ne4kV9847oR3Rjz/GXYkkSZIkSZKkasTgiKTqZ8stYcwYePHFtLT+qF8/PHjabDMYPDjlx0mSpNWwOuOerr0WttgiZE6POy4ETDLaoEFhHN+AAXFXIkmSJEmSJKkaMTgiqfoo+VgxhE4jbdum5djsbDjnHBg7Fho0SMuRkiRpNaxq3FPduvDkk+HX11+H225Lf40VcvfdcNppcM89cVciSZIkSZIkqRoxOCKpevjmG+jQAUaPTtuRc+fC/Pmlr3Ny0na0JElaDasz7mmzzeDGG8P1xIlpKWvNtW0Ld94JjRvHXYkkSZIkSZKkasTgiKTq4dJLYcKEMCsmitJy5Pnnh6k4H3+cluMkSVKKnHYafPAB3HRT3JVU0Nixafu5R5IkSZIkSVL1ZXBEUvXwyCPw73/Do48uvxd9ko0aBXfcAePHw+zZKT9OkiSlUCIBO+xQ+rpKZDHOOAO22gqeeiruSiRJkiRJkiRVcQZHJFUP9evDzTdDixYpP2ruXDjhhHB98snQo0fKj5QkSWkyaRLsvjv8739xV7IKJT/zfP11vHVIkiRJkiRJqvJy4i5AktbY6NEweTL07p3WYy++GH7+GdZbD66/Pq1HS5KkFLv7bnj7bRg3Lnz94x9xV7QC558f0qtlW6VIkiRJkiRJ0hqw44ikqmnqVDj8cDjySHj88bQd+957MGRIuL7vPsjNTdvRkiQpDS65JEyAmTEDjjkGiovjrmgFatc2NCJJkiRJkiQpKQyOSKqamjeHE0+Ejh3hoIPScuS8edCnD0RRGFWz115pOVaSJKVRnTrwxBNQrx689RbcdFPcFa2Gv/+Gc86BgoK4K5EkSZIkSZJUBRkckVQ1ZWfDVVfBxx9D/fppOXLuXNhgA1hnHbjxxrQcKUmSYtChA9x6a7i+6CL4/PN461mlAw4ICZfzz4+7EkmSJEmSJElVkMERSVXLt9+Glh8l6tZN29EtWsCwYfDRR5CXl7ZjJUlSDE48MTQ1W7wYevcOAdKMdfnlsMkmcNRRcVciSZIkSZIkqQoyOCKp6vj2W9h22/AUJ41Pb8rmVBIJWHfdtB0tSZJikkjAffeFTmM5OTB1atwVrcRuu8FXX8GOO8ZdiSRJkiRJkqQqKCfuAiRptX39dfjY75w5ae00cuGFMH16GE9jpxFJkmqOZs1g+HBo2xbq1Yu7mlXIzi69XrQIateOrxZJkiRJkiRJVYodRyRVHYcdBu+/D08+Wf7hSAp98glcfz088AC8915ajpQkSRlk003Lh0aKi+OrZbU891xIunz2WdyVSJIkSZIkSaoiDI5IynxlZ8Vssw20aJGWYxcuhOOPDw+IjjwS9t03LcdKkqQMVFQE11wDe+0VrjPWc8/BH3+E5KskSZIkSZIkrQaDI5Iy2zvvwM47w++/p/3oK66Ab7+FtdaCW29N+/GSJCmDTJ4MgwbBiBFw7bVxV7MSQ4bAlVfCI4/EXYkkSZIkSZKkKsLgiKTMVVwMp54aZsSk+QnN55+XHnnXXdCsWVqPlyRJGaZ1a7j99nA9cCB8/HG89axQy5YwYADUqRN3JZIkSZIkSZKqCIMjkjJXVha8+iocdRRcd13ajl20KIyoKSqCI46Agw5K29GSJCmDHXMMHH54+Bmhd2+YPTvuilYhiuD110MYV5IkSZIkSZJWwOCIpMzWti08+ijUr5+2I8ePhylToEULuO22tB0rSZIyXCIBd98duo/8/DP07x93Ratw9NHQsyfceWfclUiSJEmSJEnKYAZHJGWeV16BL7+M7fjNN4dvv4UXX4TmzWMrQ5IkZaDGjeHxx0NjtIcfhqeeiruilejaFWrVggUL4q5EkiRJkiRJUgYzOCIps3z3XZgPs/328PnnsZXRvHl41iJJkrS0nXaCAQOgdm0oKIi7mpU49VT45hs499y4K5EkSZIkSZKUwXLiLkCSymnZErp1g0WLoFOntB59yy2w9tpw2GGhFb0kSdKKXHJJyLpusknclaxEVhZstFHcVUiSJEmSJEnKcHYckZRZmjWDV1+F//4XctKXbRs3Ds47LzwAevfdtB0rSZKqqJyc8qGRoqL4alktv/0G//oXTJ0adyWSJEmSJEmSMozBEUmZYdKk0uusLMjNTdvRixfD8cdDYSEceGBoeCJJkrS6Pv0UNt8c3n8/7kpW4phj4Kmn4Kyz4q5EkiRJkiRJUoYxOCIpfu+8A+3awVVXQRSl/fjrroMxY6BJE7jrLsfUSJKkirnzTvj+ezjySJg1K+5qVuDmm2GXXWDgwLgrkSRJkiRJkpRhDI5Iit/rr8OiReGJS5p9/TVcfnm4HjIEWrVKewmSJKmKu/VWaNsWJk6E006LJQe7alttBaNGQYcOcVciSZIkSZIkKcMYHJEUv6uvhmeegXvuSWu7j8LCMKJm8WL45z/Dp4QlSZIqKjcXnngCsrPDNJhHH427otUwc2bcFUiSJEmSJEnKEAZHJGWGQw+FBg3SeuSIEfDZZ9C4Mdx9tyNqJEnSmtt+e7jssnDdty9MmBBrOSt3xx3Qpg289VbclUiSJEmSJEnKAAZHJMXjmWfg5JNhwYLYSth7b3jzTbj/fvjHP2IrQ5IkVRMXXgjdusGcOdC7d+hqlpG++y4U+fDDcVciSZIkSZIkKQPkxF2ApBro77/hpJOgoAC22AL694+tlB49YjtakiRVM9nZ8Nhj0LEjNG0ashlNmsRd1XIMHgxbbRVm9kmSJEmSJEmq8RJRFEVxF6EVKygoIC8vj/z8fHJzc+MuR0qe4cPhgQfg8cchJ70ZthdegK23Dh3aJUmSkm38eNhwQ8iyv6MkSZIkSZKkmFQka+B/ypQUjz33hKefTntoZPx4OPJI2Hxz+P77tB4tSZJqiI03Lh8aydiRNQBFRSHMu3Bh3JVIkiRJkiRJionBEUnp8+KLMHNmbMcXFUGfPrBgAXTtCu3bx1aKJEmqAebMCT979O4NGdvn8aCD4MQTw/gaSZIkSZIkSTWSwRFJ6fHOO9CrV5gRM21aLCXcdhu8/z40agT33QeJRCxlSJKkGmL8eHj0UXjuOXjwwbirWYGjjoLcXGjdOu5KJEmSJEmSJMXE4Iik9MjLgzZtYMcdoUWLtB//009w0UXh+vrrfTYiSZJSr3NnGDQoXJ9xBvzwQ7z1LNehh8KECaE1iiRJkiRJkqQaKRFFGds0WUBBQQF5eXnk5+eTm5sbdzlS5cyaBbVqQYMGaT22uBh22y00PeneHUaMsNuIJElKj+Ji2GMPGDkyNF774AOoXTvuqiRJkiRJkiRVdxXJGthxRFJqzZpVet24cdpDIwCPPBJCIw0awP33GxqRJEnpk5UVfhZp2hQ+/xwuuSTuilZi3DjYZZfQgUSSJEmSJElSjWFwRFLqPPMMtGsHw4bFWsYRR8AFF8ANN0DbtrGWIkmSaqB11oEHHgjX110Hb70Vbz0r9J//hLTtuefGXYkkSZIkSZKkNDI4Iik1ogjuvRdmzoTRo2MtpW5dGDwYTj011jIkSVINduCBcMop0KIFFBXFXc0K3HFHSNzecUfclUiSJEmSJElKo0QURVHcRWjFKjJ3SMo4CxfC3XdD376Qk5P248eOhS22gOzstB8tSZK0jHnzoKAAWrWKuxJJkiRJkiRJ1V1FsgZ2HJGUOnXqwJlnxhIamTgRunWDrl3hr7/SfrwkSdIy6tcvHxpZuDC+WlbLhAmhi5wkSZIkSZKkas3giKTkuu02uO++WB8yRBGceCLMmQO1a0OzZrGVIkmStFzPPAMbbADffht3JStw2WXQvj08+2zclUiSJEmSJElKMYMjkpJn3Dg46yw4+WR4663Yyrj/fhgxAurWhQcfhCz/pJMkSRkkiuCBB+CPP6B3b1iwIO6KliOKoKgI3n477kokSZIkSZIkpVgiiuw9nMkqMndIil1xMVx3HXz3HTz0ECQSaS/ht99g881h9my48UY4++y0lyBJkrRKU6ZAx45hpN6//w033xx3RUtZuDAEgffZJ+5KJEmSJEmSJK2BimQNDI5kOIMjqpKiKJbQSBRBz57wxhuwww7w7ruQnZ32MiRJklbLK6/AP/8ZrocNg733jrceSZIkSZIkSdVHRbIGDnCQVHnDhoVW5iViCI1AaHLyxhtQp04YUWNoRJIkZbL99oN+/cL1scfC1Knx1rNC8+fDVVeFlm6SJEmSJEmSqh2DI5Iq55lnQgvzffaBwsJYS9l2W+jSBa64Ajp0iLUUSZKk1XLddWHM3rRp0KdP6KCWcQ46CC65BC66KO5KJEmSJEmSJKVATtwFSKriogjq14ettoKceP9I2Wwz+OCDWEuQJEmqkHr14IknQgB2gw1g8WKoXTvuqpZy7rnw9dewxx5xVyJJkiRJkiQpBRJRlJGfadP/q8jcISk2P/4IbdvGFhwpKAB/e0iSpKrs999hvfXirmIlFiyAunXjrkKSJEmSJEnSaqpI1sBRNZIqLorCw4MSG20UW2jkzz+hXTu44AJYuDCWEiRJkiqtbGikqCgDf64pGxopKoqvDkmSJEmSJElJZ3BEUsXdcgtstx389FOsZUQRnHoqTJ8OI0ZAdnas5UiSJFXa779D9+5wzjlxV7ICI0eG+YBjx8ZdiSRJkiRJkqQkMTgiqWLmzoUbboBx42D48FhLefJJ+N//oFYtGDo0tqYnkiRJSfPdd/DOO3DHHfDyy3FXsxx33w0//ACXXhp3JZIkSZIkSZKSxOCIpIpp0AA++QQGDYLTToutjKlToX//cH3JJbDFFrGVIkmSlDR77glnnx2u+/QJY/kyypAhocBHH427EkmSJEmSJElJkoiiKIq7CK1YQUEBeXl55Ofnk5ubG3c5UkaIIujVC154AbbcMuRYatWKuypJkqTkWLgQtt8+TIPZYw94/XXIMvIvSZIkSZIkqQIqkjXwPz9KWj2DB8PHH8ddBQDPPhtCIzk5YUSNoRFJklSd1KkDTzwB9erBm2/CLbfEXdFKfPghFBfHXYUkSZIkSZKkSjA4ImnVXn4ZLroIdt4ZJk6MuxoWLoSGDUNJW24ZdzWSJEnJt8kmcPPN4fqCC+CLL+KtZ7nOOAO6doV77om7EkmSJEmSJEmVkBN3AZKqgF12gYMPhg03hDZt4q6Go48OJbVqFXclkiRJqXPyyWFMzU8/Qe3acVezHBttBIkE/P573JVIkiRJkiRJqoREFEVR3EVoxSoyd0hKqSgKbcizs2MtIZGI7XhJkqS0mzUrjK6pVy/uSpajuBjGjoXOneOuRJIkSZIkSdJSKpI1cFSNpOWLIvj449LXiUSsoZEZM2CHHWDEiNhKkCRJSrvGjcuHRmbPjq2UZWVlGRqRJEmSJEmSqgGDI5KW75ZbYPvt4ZJL4q4EgDPOCDmWf/8biorirkaSJCm9iopg0KAwOXDSpLirWY4ZM+D002HatLgrkSRJkiRJklRBBkckLd+ff4ZfW7aMtw7gpZfgiSfCh1qHDo218YkkSVIsiorgv/8NuYxjjsnAIO2//gV33RVSvpIkSZIkSZKqFIMjkpbvuuvg/fehX79Yy5g5E049NVyfey506RJrOZIkSbGoXTsEaRs0gLffhhtuiLuipQweDJ06wZlnxl2JJEmSJEmSpApKRFEUxV2EVqygoIC8vDzy8/PJzc2NuxxVd0VFoa1HIhF3JUsceyw88gh06ABffAF168ZdkSRJUnwefBBOOAFycuCDDzIsVBtFGfVzpCRJkiRJklSTVSRrkJOmmqq833//nW+++YZJkyYxa9YsFi1aRJMmTWjSpAkdOnRgiy22INv5Garq/vOfMKLmvvvCx1lj9uqrITSSSISHJIZGJElSTXf88fD66/Dss9C7dwjWNmwYd1X/r2xoZN48qF8/vlokSZIkSZIkrTaDIyvw/fff88YbbzBy5EjeeecdZs2atdL7GzRowK677sqpp57KPvvsQ1aWU4BUxUyYAEOGQGEhHH009OwZd0W89lr49eyzYYcd4q1FkiQpEyQScM898NFH8NNPcMYZIWCbUZ58Moysefpp2G23uKuRJEmSJEmStAoGR8qYP38+N9xwA8888wxff/11hd47d+5cXn31VV599VU222wzHnroIbbZZpsUVSqlQLt28Pbb8N57GREaAbj9dthjD9hrr7grkSRJyhxNmsBjj4Uf2Tp3zsAJMe+8A3/9FULJBkckSZIkSZKkjJeIoiiKu4hM8euvv9K2bduk7JWTk8PNN99Mv379KrVPReYOSZIkSao5pk+H5s3jrmI5CgrC6MP+/aF27birkSRJkiRJkmqkimQN7DiymjbccEN22WUXNtpoI1q2bEmDBg2YOXMmY8eO5bXXXuP3338vd39hYSH9+/endu3anHzyyTFVLa1CFMHgwdCnD7RqFXc1AOTnw4ABcOmlGfogRJIkKUOU/Vlp9myoVw9yMuH/4eXmwjnnxF2FJEmSJEmSpNVkx5Eylu44summm3LcccfRu3dv1llnnRW+r7CwkKFDh3L22WczZ86cct+rXbs2X331FRtvvPEa1WTHEaXUkCFh/nybNvDdd+FpQ8xOPjl8QHWHHeD99zOs7bokSVIG+vhj6N0bjjsOLrkk7mqWEkXw3//CfvvZfUSSJEmSJElKo4pkDbLSVFOVsttuuzF69Gi++eYbzjvvvJWGRiCMpTnppJN4//33ady4cbnvLVq0iHP8tJ0y1Z57wiabhE+EZkBoZMSIEBqB0AjF0IgkSdKqjR8PP/8Ml18OH34YdzVLOfZYOOQQuPbauCuRJEmSJEmStAIGR8rIy8tj1KhRjBw5kp133rnC7+/YsSP333//MuvDhg1j+vTpyShRSq4OHeDzz6Ffv7grYfZsOOGEcN2vH+yyS7z1SJIkVRVHHRU6jhQVhV/z8+OuqIyePaFOnYwIKUuSJEmSJElaPoMjZTRp0oRdKvm0+pBDDqFjx47l1oqKihg2bFil9pWSZvHi8JHUEvXqZURrj/PPh99+g7ZtQ7cRSZIkrZ5EAu68E9ZfH379Ffr2jbuiMo44IrREOffcuCuRJEmSJEmStAIGR1KgZ8+ey6z9XPZBvRSnCy+ETp3CrPkM8fbbcNdd4fr++6Fhw3jrkSRJqmry8uDxxyErK/z62GNxV/T/Eglo3TruKiRJkiRJkiSthMGRFGi9nP8wOmXKlBgqkZayeHEYTTNnDkRR3NUsceml4ddTT4Xu3eOtRZIkqarq2rX056rTTy/fZC4j/PorHHRQ+FWSJEmSJElSxsiJu4DqaN68ecus1XOmtzJBrVrw5pswfDjss0/c1Szxv//BoEEwcGDclUiSJFVtF10UftTLy8vALm59+8Jrr0FRUfgBUJIkSZIkSVJGMDiSAj/99NMya2uvvXYMlUj/L4pCm3CAnJyMCo0ANG4M118fdxWSJElVX04OvPJKCI6U/PiXMW65JYRGbrwx7kokSZIkSZIkleGomiQrLCzkpZdeWma9S5cuMVQjEUIjRx8NN92UUeNp5s2DJ5/MqJIkSZKqhcaNy4dGZsyIrZTyNtoIXn89/CpJkiRJkiQpYxgcSbL//e9/TJkypdxa06ZN2WmnnWKqSDXesGHw+ONw/vnw3XdxV7PExRdD795w0klxVyJJklQ9zZkDxx0HW20Ff/8ddzXL8eefcVcgSZIkSZIkCYMjSbVgwQIuvPDCZdaPP/54cnKcCqSY9OwJt90WWoNvumnc1QDw/vtw663huleveGuRJEmqrqII3nsPfv8dTj01wzq9DRkC7drB88/HXYkkSZIkSZJU4xkcSaILL7yQ8ePHl1tr0qQJ559//mrvsXDhQgoKCsp9SZWSSEC/ftC3b9yVADB/PvTpEx5cHH887L133BVJkiRVT40awRNPQE4OPPMMPPxw3BWVMW1a+MHQ4IgkSZIkSZIUO4MjSfL8889zyy23LLN+ww030KJFi9XeZ/DgweTl5S35Wm+99ZJYpWqMxYtDl5HFi+OuZBkDB8L48fCPf8BNN8VdjSRJUvW27bZwxRXhul8/+PHHeOtZ4pJLwjjFxx+PuxJJkiRJkiSpxktEUUY1LK6SxowZw84778zcuXPLrR9yyCE899xzFdpr4cKFLFy4cMnrgoIC1ltvPfLz88nNzU1KvaoBzjsPbrgB9tkHXnkldB3JAB99BDvuCMXFoax99427IkmSpOqvqAh69IBRo2CbbcLYwNq1465KkiRJkiRJUioVFBSQl5e3WlkDO45U0s8//8y+++67TGikQ4cODB06tML71alTh9zc3HJfUoXttBPk5YWZMBkSGikuhhNPDL8efbShEUmSpHTJzoZHH4UmTeCzz+DSS+OuaCmFhXD77TBnTtyVSJIkSZIkSTWSwZFKmDx5Mj169GDKlCnl1tddd11ef/11GjVqFFNlqvEOOAB+/hkOOSTuSpbIyoJ77oFddoHlTHWSJElSCq27Ltx/P6y1Vvh5LKMcfjj07w8DBsRdiSRJkiRJklQjGRxZQ9OmTaNHjx788ssv5dbXWmst3nrrLdq0aRNTZaqx5syBgoLS102bxlfLCuy4Y2iRnoGlSZIkVXsHHww//gh77x13JUs55ZTQDmWrreKuRJIkSZIkSaqRDI6sgRkzZtCjRw++//77cuvNmzfnrbfeYuONN46pMtVYURTmwHTpAt98E3c15SxcCD/9FHcVkiRJAijbFHHq1PBjZOz23BN+/RWOPTbuSiRJkiRJkqQayeBIBf3999/ssccefPXVV+XWmzZtyogRI9hss81iqkw12pQp8P77YTzNrFlxV1POlVfCFlvAfffFXYkkSZJKPPMMtG+fQT+j5eaWXmdEmkWSJEmSJEmqOQyOVEB+fj577LEHX3zxRbn1xo0bM3z4cDp16hRTZarx1l4bxowJTwB23DHuapYYMwauuQYWLHA8jSRJUib57TfIz4d//xu++y7uasoYMwa23x7GjYu7EkmSJEmSJKnGMDiymgoKCthzzz35/PPPy63n5ubyxhtvsPXWW8dUmfT/WrSAgw6Ku4olFi2C446DoiI47DA45JC4K5IkSVKJs8+GHj1g/nzo3TuMF8wIgwfDJ5/AeefFXYkkSZIkSZJUYxgcWQ2zZ89mr7324pNPPim33qhRI9544w223XbbmCpTjVZYCIcfDm+/HXcly3X11fDVV9C8Odx+e9zVSJIkqaysLHj4YWjWDMaOhYsuirui/zdkCBx/PDzySNyVSJIkSZIkSTWGwZFVmDNnDnvvvTcfffRRufWGDRsybNgwtt9++5gqU403ZEgYTXPwwVBQEHc15YwdC4MGhes77gjNUCRJkpRZ/vEPePDBcH3TTTB8eLz1AGEE44MPwlprxV2JJEmSJEmSVGMYHFmJuXPnss8++/DBBx+UW2/QoAGvvfYaO+64Y0yVScCpp8Kxx8J990FubtzVLLF4cfiQaGFhyLQcemjcFUmSJGlF9t8fTj89XB9zDPz1V7z1LOObb6C4OO4qJEmSJEmSpGrN4MgKzJs3j/32249333233Hr9+vV59dVX6datW0yVSf+vfn146CHo1SvuSpZx8MHhw6J33gmJRNzVSJIkaWVuuAE22wyOOAIaNYq7mjIuvRQ6doT774+7EkmSJEmSJKlaMziyHAsWLOCAAw5g1KhR5dbr1avHyy+/zC677BJPYdKcOfDf/8ZdxUrVqgWXXAI//WSHcUmSpKqgXj345BO45RaoWzfuaspo0iR0GxkzJu5KJEmSJEmSpGrN4MhSFi1axMEHH8yIESPKrZeERrp37x5TZarxoghOPDG087jssrirWUZhISxaVPq6fv34apEkSVLFlP3ZrbAQ/vwzvlqW6N8fRo6Eu++OuxJJkiRJkiSpWjM4UkZhYSGHHXYYw4YNK7det25dXnzxRXbfffeYKpMIwZGNNw4tPXr0iLuaZVx3HXTp4gdCJUmSqrJJk2C33WDPPWH+/JiLyc4OxUiSJEmSJElKqUQURVHcRWSKxx9/nKOOOmqZ9caNG9OmTZtK7b3NNttw/xrM5i4oKCAvL4/8/Hxyc3MrVYOqid9+g9at466inG++gc6dQ8eRhx+GY46JuyJJkiStiWnTYIstwq/9+8OQIXFX9P/mzoWrr4azzoLmzeOuRpIkSZIkScp4Fcka5KSppiph8eLFy12fNWsWs2bNqtTejRs3rtT7VYPNng0NGkDW/zcIyrDQSGEh9OkTQiP77gtHHx13RZIkSVpTLVuGIHDPnnDbbbDXXuFnvNj961/w8sswcSI89ljc1UiSJEmSJEnViqNqpExWWAj77w8HHQSVDC+lyk03wSefQF4e3HMPJBJxVyRJkqTK2HtvOPPMcH388TBlSrz1ADBgAKy/Phx5ZNyVSJIkSZIkSdWOwREpk33+OXz4IYwcCVOnxl3NMr7/HgYODNc33wzrrBNvPZIkSUqOa66Bjh3hr79CeKS4OOaCtt0Wxo8PrVAkSZIkSZIkJVUiiqIo7iK0YhWZO6Rq6vPP4c8/Yb/94q6knKIi6NYt5Fr22guGDbPbiCRJUnXy7bew9dawYEEICf/733FXVMbixVCrVtxVSJIkSZIkSRmrIlkDO45ImW7rrTMuNAJhck6tWtCoEdx3n6ERSZKk6mbTTcNYwi22gD32iLuaMoYPh/bt4Z134q5EkiRJkiRJqhYMjkiZZs4cOPZY+O23uCtZqWbN4O234aOPYL314q5GkiRJqXDqqfDpp7DZZnFXUsZzz8Evv8BVV8VdiSRJkiRJklQt5MRdgKSlnHMOPPIIjB0LX3wBWZmb78rKCp9ElSRJUvWUSECdOqWvf/kF2raNrx4ArrsOWrSACy+MuRBJkiRJkiSpesjcJ9JSTXXBBbDddnDnnRkZGrntNujfPzRGkSRJUs0xaBBstBG89FLMhTRuHIpp2DDmQiRJkiRJkqTqIfOeSks1Xdu28OGHsOOOcVeyjAkT4Pzz4fbb4dln465GkiRJ6ZSfD0VF0KcPTJ4cdzVlvP02LF4cdxWSJEmSJElSlWVwRMoEU6fCl1+Wvk4k4qtlBYqL4YQTYP582G03OPbYuCuSJElSOl11FXTuDDNnhp8Fi4vjrgg480zo3h1uuCHuSiRJkiRJkqQqy+CIFLfCQjjiCNh+e/jvf+OuZoXuugtGj4b69eH++zNyio4kSZJSqHZteOKJ8PPgW2/BjTfGXRGwzTbhB9PZs+OuRJIkSZIkSaqyfPQrxW3+/PBf33NyYJNN4q5muX75JYyoAbj2Wthgg3jrkSRJUjzat4chQ8L1RRfBZ5/FWw9HHQVffQVXXx1zIZIkSZIkSVLVlYiiKIq7CK1YQUEBeXl55Ofnk5ubG3c5SpXiYvjuO9hss7grWUYUQY8eMHIk7LxzGCFvtxFJkqSaK4rg0EPh+edho41g7NiQg5YkSZIkSZKUOSqSNfDxrxSXhQtLr7OyMjI0AvDTTzBmDNSrBw88YGhEkiSppksk4N57Q2jk3/8OPydmhL/+guOPh4kT465EkiRJkiRJqlJy4i5AqpHmzIGuXcNHNS++OKPTGBttBN9+C59/DhtuGHc1kiRJygRNm8I330CtWnFXUsZJJ8FLL4UAySuvxF2NJEmSJEmSVGVk7tNqqTp79tkwi/3OO2HmzLirWaW114b99ou7CkmSJGWSsqGRggL488/4agHg2mthu+3g8stjLkSSJEmSJEmqWuw4IsXh+ONDj+927aB587irWa6nnw6z6v/5z7grkSRJUib74gs45BBYbz0YORKys2MqpH17+PDD8HO2JEmSJEmSpNVmxxEpLscdB926xV3Fck2aBCefDPvvb5dvSZIkrVxubpgO8847cM01MRdTNjSSnx9fHZIkSZIkSVIVYnBESpepU+G882DBgrgrWakoCqGRggLYfnvo2TPuiiRJkpTJ2rWDO+4I15deCh9/HG89ADz2GGywAbz4YtyVSJIkSZIkSRnP4IiUDlEERx4JN9wAJ5wQdzUr9cgjMGwY1KkDDz4YY6txSZIkVRlHHw3/+hcUFUHv3iGEHKtvv4WZM+H++2MuRJIkSZIkScp8BkekdEgk4PzzoW1buOSSuKtZoT/+gH//O1xffjlsskms5UiSJKmKSCTgrrtg/fXh55+hf/+YCxo4MLRBseOIJEmSJEmStEqJKIqiuIvQihUUFJCXl0d+fj65ublxl6PKWrwYatWKu4rliiLYf3945RXo0gU++ABycuKuSpIkSVXJ++/DzjtDcTE8/TQcdljcFUmSJEmSJEk1U0WyBnYckVLpl19gxozS1xkaGoHwH/lfeSWU+OCDhkYkSZJUcTvuGJp9/POfsNtucVfz/6IIHn8c5s6NuxJJkiRJkiQpI/loWEqVuXNDC4/Zs0MiY/PN465opXbaCV5+GSZOzPhSJUmSlMEGDICsrDC+JiP06QMPPQRnnw033hh3NZIkSZIkSVLGseOIlCpTpsD8+bBwITRrFnc1q2W//aBv37irkCRJUlWWnV0+NPL11/HVAoR5OfXqwTrrxFyIJEmSJEmSlJkMjkip0q4dfPYZvP46rL123NWs0OjR8McfcVchSZKk6qawEI4+Gjp1CmMRY9OzZxghefbZMRYhSZIkSZIkZS6DI1KyFReXXjduHP5LeYaaNg0OOQQ22wzGjo27GkmSJFUnOTlhZE1xMRx5JMyaFWMxa60V4+GSJEmSJElSZjM4IiXT1KkhKPLqq3FXslr69oUZM6B1a9h007irkSRJUnVz++2wwQYwcSKcdhpEUcwF/fQT7L13BszPkSRJkiRJkjKHwREpmQYPDv8R+j//Cb25M9izz8Jzz4UZ9A89BLVrx12RJEmSqptGjeCJJ8LPnE89BY8+GnNBF/0fe/cd31S9/3H8nTQdFNoyCijQAgKyN7gH4saBW9ziXqjgQNyi4ryOq6L3ure/K9ct7oGKqCxFUBBkb8pogdKZ/P74kHsyWiBNk3S8no/HefTkm5NzvmlykpOcdz7fm6XPPpOuvjrBHQEAAAAAAABqDoIjQHV64AFp5EhLZHg8ie5Npdats2ojkjRmjNS3b2L7AwAAgLpr772lsWNt/sorrehHwjz6qHTiidJzzyWwEwAAAAAAAEDN4vL5El4sGDtQUFCgrKws5efnKzMzM9HdQR1xxhn2i8/u3aXp06XU1ET3CAAAAHVZebl06KHSpEkWJPnxR8nNzxgAAAAAAACAmIkka8BXdUC0/vpLevbZGjBg+6756CMLjfiHqCE0AgAAgFhLSrJharp1s+ojNSY0smRJrTmOBwAAAAAAAGKl5o6lAdQG27ZJJ58szZ4tbdok3XBDonu0U4ccYkO6N2okDRiQ6N4AAACgvsjJkX7/vQaFRh5/XLrpJunJJ6ULL0x0bwAAAAAAAICEqSlf2QG1U1qadM45UuvW0tlnJ7o3u6RhQ/uO/J57Et0TAAAA1DeBoZFFi6QNGxLXF5WVSUVF0uefJ7ATAAAAAAAAQOK5fD7q8tZkkYw7hJ1YulTKy4vNurdtkxo0kLKzpdzc2GwjSgsXSu3a1aBfeAIAAKDe+uADy18fdpg0YYLkciWgE2Vl0ocfSieckKAOAAAAAAAAALETSdaAoWpQPyxdKnXubL8ojKW0NGnevBoXHtm4UTrgAKljR+n//k/affdE9wgAAAD1WevWlr1+5x3p+eeliy5KQCc8HunEExOwYQAAAAAAAKBmofYA6oe8vNiHRiTbRqyqmkRh5Ehp1SppzRqpceNE9wYAAAD1Xf/+ztCJ11xj2euEKi2VHn5YWr8+wR0BAAAAAAAA4o/gCFDHTZwovfyyVd9+8UUbUQcAAABItOuvlwYPlgoLpTPOkIqLE9iZc8+VbrhBGjUqgZ0AAAAAAAAAEoPgCFCH5edLl1xi8yNHSvvtl9j+AAAAAH5ut/TKK1KzZtLMmdKttyawM9dcIzVvLh1+eAI7AQAAAAAAACQGwRGgDrvuOmnFCqljR+nuuxPdGwAAACBY69bS88/b/MMPS99/n6CO7LOPtHixdPbZCeoAAAAAAAAAkDieRHcAQGx8/rl9Ce9ySS+8IKWnJ7pHAAAAQLihQ6XLL7fj1b32SmBHAg+YvV4riQIAAAAAAADUAwRHgDqqRQupVy9p0CDpwAMT3RsAAACgck89ZYHnGuGXX6SLL5bGj5f23z/RvQEAAAAAAABijuAIUEf16SNNnSqVlye6JwAAAMCOBYZGysqkmTOlgQMT1Jl//1uaNUsaM0b67rsEdQIAAAAAAACIH4IjQB1TUiKlpNi8/y8AAABQG2zaJB1zjDRjhjR9utStWwI68dBDUmqqdNddCdg4AAAAAAAAEH8M2gzUIZs3Sz17SmPHSqWlie4NAAAAEJnMTJuKiqQzzrC/cdekiY2dk52dgI0DAAAAAAAA8UdwBKhDbrpJ+usv6cUXpeLiRPcGAAAAiIzbLb30ktS8uY0Wc9NNie6RrPxJWVmiewEAAAAAAADEDMERoI749ltp/Hibf/55qVGjhHYHAAAAqJKWLS08IkmPPy598kkCO3PHHdKAAdIjjySwEwAAAAAAAEBsERwB6oCtW6ULLrD5Sy+VBg9ObH8AAACAaAwZIl19tc2ff760Zk2COrLHHpLPJy1cmKAOAAAAAAAAALFHcASoA8aMkRYtknJypAcfTHRvAAAAgOg98IDUs6e0dq10xRUJ6sS550o//SQ980yCOgAAAAAAAADEHsERoJb77jvpiSds/rnnpMzMxPYHAAAAqA5padIbb0j77ivde2+COuFySXvvnaCNAwAAAAAAAPFBcASo5RYtsi/VL7xQOuKIRPcGAAAAqD49ekiTJ0tduiS6J5I2b5ZGjZKWLUt0TwAAAAAAAIBq5Ul0BwBE57zz7FeYLVsmuicAAABA9XO5nPmff7bha9LTE9CRCy+U3n5b+usv6aOPEtABAAAAAAAAIDaoOALUAXvuKWVlJboXAAAAQOw89pi0337SDTckqAN33WWlT669NkEdAAAAAAAAAGKD4AhQC23bJh1/vJXtBgAAAOqDbt0kr1caP1764IMEdKBrV2nOHOmwwxKwcQAAAAAAACB2CI4AtdAdd0gffigNGyYVFye6NwAAAEDsHXGENGqUzV9wgbRyZQI64Q74CL1tWwI6AAAAAAAAAFQ/giNALfPzz9I//mHz48dLqamJ7Q8AAAAQL+PGSX36SOvXS+edZxVIEmLiRBsv8sMPE9QBAAAAAAAAoPoQHAFqkaIiafhw+4L87LOl445LdI8AAACA+ElNld58U2rQQPryS+mRRxLUkW+/lZYvlx5+OEEdAAAAAAAAAKoPwRGgFhk7VvrzT6llS+nxxxPdGwAAACD+unSRHnvM5m++WZo/PwGduPNO6Z57pE8+ScDGAQAAAAAAgOrlSXQHAOyaadOkBx+0+WeekZo2TWx/AAAAgES5+GLp+++lAw+UOnZMQAfS06VbbknAhgEAAAAAAIDqR3AEqCVefVUqL5eGDZNOOCHRvQEAAAASx+Wy4+Ma45NPpIMPtkAJAAAAAAAAUMswVA3qh+xsKS0t9ttJS7NtxcBjj0kvvyw98URMVg8AAADUWvn50k8/JWjj114rDRliw9cAAAAAAAAAtRAVR1A/5OZK8+ZJeXmx3U52tm0rBlwu6dxzY7JqAAAAoNb6+2/p0EOlggJp1iypTZs4d+DQQ6Unn5SSk+O8YQAAAAAAAKB6EBxB/ZGbG7NQR6yUlEj33iuNHCk1bpzo3gAAAAA1T26u1KKFtGSJdM450pdfSklJcezAccdJ8+dL7dvHcaMAAAAAAABA9WGoGqAGu+8+aexYadAgyedLdG8AAACAmic5WXrjDalhQ+nbb6UHH0xAJwiNAAAAAAAAoBYjOALUUL/9Jt1zj83fdJMNVQMAAAAgXMeONlqMJN1+u/TLLwnqyOrV0hlnSH/8kaAOAAAAAAAAAJEjOALUQKWl0vDhUlmZdMIJ0umnJ7pHAAAAQM123nl23FxWJp15prR5cwI6MWqU9NZb0mWXUTIQAAAAAAAAtQbBEaAGevBBaeZMqUkT6emnqTYCAAAA7IzLJT3zjJSbK/39t1UeibsHHrBxJv/5Tw7iAQAAAAAAUGt4Et0BAMFmz5buusvm//lPabfdEtsfAAAAoLZo3Fh6/XXpscekW29NQAdycqRvvknAhgEAAAAAAICqIzgC1DCjR9tQNccdJ511VqJ7AwAAANQuBxxgU42wbp2UnU31EQAAAAAAANRoDFUD1DAvvyxddJGV2eb7ZQAAAKDqfD7po4+ksrIEbPyVV6ROnewvAAAAAAAAUIMRHAFqmOxs6dlnpVatEt0TAAAAoHa7/HKr5DduXAI2vnq1lJ8vvfmmJVgAAAAAAACAGorgCFADlJdLEyfyfTIAAABQnQ480P6OHSv9+GOcNz5qlPTii9LHH1NKEAAAAAAAADUawRGgBnj0UemYY6QLLkh0TwAAAIC646yzbCovt7/5+XHcuMcjnX++lJQUx40CAAAAAAAAkSM4AiTYvHnSrbfa/AEHJLYvAAAAQF3z1FNS+/bS4sU2dE1Cqvx5vdILL0gbNyZg4wAAAAAAAMCOERwBEqi83KqMFBdLRxxBxREAAACgumVlSa+/boU/3nxTeu21BHTissukCy+Urr8+ARsHAAAAAAAAdozgCJBATzxhY61nZEjPPsvQ5wAAAEAs7LuvdMcdNn/VVdKmTXHuwHnnSY0aSb16JajkCQAAAAAAAFA5T6I7ANRXCxZIN99s8w89JOXmJrY/AAAAQF12883SnDnSxRdLjRvHeeP77y8tW5aADQMAAAAAAAA7R3AESACfT7roImnbNmnwYOmSSxLdIwAAAKBuS0qS3norgR0IDI34fJQbBAAAAAAAQI3BUDVAArhc0m23ST16SM8/z3fGAAAAQLwtXCj98ksCNjxvnnTIIdJPPyVg4wAAAAAAAEA4giNAghx6qDRrltSuXaJ7AgAAANQvkydLffpIJ58sbdwY540/+KA0aZJ07bVWeQQAAAAAAABIMIIjQBx5vdKKFc5lKo0AAAAA8de7t7TbbtLy5TZsZFzzGw8+KJ15pvR//8cHAgAAAAAAANQIBEeAOPrXv6TOnW14GgAAAACJ0aiR9PrrkscjTZggvfhiHDferJltvG3bOG4UAAAAAAAAqBzBESBOFi+WbrxR2rrVJgAAAACJM3CgdM89Nn/11dJffyWoI/PnS2VlCdo4AAAAAAAAQHAEiAufT7r4YmnLFumAA6Srrkp0jwAAAADccIM0eLAFu888UyopiXMHHntM6tFDevzxOG8YAAAAAAAAcBAcAeLgueekL7+U0tKkF16Q3Ox5AAAAQMK53dIrr0hNm0rTp0vjx8e5AxkZllb5+WdLmwMAAAAAAAAJ4El0B4C6bulS6brrbP7ee6VOnRLbHwAAAACO1q0t6D1linTFFXHe+AUXSG3aSEccIblccd44AAAAAAAAYFw+Hz9rqskKCgqUlZWl/Px8ZWZmJro7iJDPJx19tPTZZ9K++0rffy8lJSW6VwAAAAAAAAAAAACAuiySrAEDZgAxVF4u9esnNWxoQ9QQGgEAAABqttJS6bXXEjByTEmJdM890ooVcd4wAAAAAAAA6juCI0AMeTzSuHHS4sVSly6J7g0AAACAHfF6pcMPl845R/r3v+O88Ysvlm67Tbr88gSkVgAAAAAAAFCfERwBYsDnk8rKnMvZ2YnrCwAAAIBd43ZLxx9v8yNHSn/+GceN33CD1Lq1dNZZcdwoAAAAAAAAQHAEiIlXX5X23VeaPTvRPQEAAAAQiWuvlY44Qtq2TTrjDKm4OE4b7tFDWrhQOv10yeWK00YBAAAAAAAAgiNAtVu1SrrmGmnaNOnDDxPdGwAAAACRcLull16yqoG//SaNGRPHjaekOPOBJQwBAAAAAACAGCI4AlQjn0+67DJp0yapf3+rNg0AAACgdtl9d+nFF23+0Uelzz6LcwemTJF69ZImTozzhgEAAAAAAFAfERwBqtGbb0offCAlJ9sXzR5PonsEAAAAoCqOPVa68kqbv/LKOBcAmTBB+vNP6c47LZ0OAAAAAAAAxBCntYFqsnq1NGKEzd9+u9SzZ2L7AwAAACA6Dz1k1QRvuy3OofCxY23MnDFjJJcrjhsGAAAAAABAfeTy+fj5Uk1WUFCgrKws5efnKzMzM9HdQSV8PumUU6R33pH69pV+/tmqjgAAAAAAAAAAAAAAEG+RZA0YqgaoBlu2SMuX268QX3yR0AgAAABQF33/vTR7dgI2PGWKVFSUgA0DAAAAAACgPiA4AlSDjAxp8mRp0iSpd+9E9wYAAABAdXvjDWnQIGnYMGnbtjhu+M47pf32s+FrAAAAAAAAgBggOAJUE4/Hvs8FAAAAUPccdpjUvLk0Z450441x3HDfvvZ340YbIxMAAAAAAACoZgRHgCi88440ejRVowEAAIC6rkUL6aWXbP7JJ6WPPorThocOlX77TXr6acnlitNGAQAAAAAAUJ8QHAGqKC9Puvxy6cEHpfHjE90bAAAAALF21FHStdfa/PDh0qpVcdpwr15x2hAAAAAAAADqI4IjqDdWrJD+/FNautRCH4WFktdb9fVdc420dq3Uvbt05ZXV108AAAAANdf990u9e9tnivPPj+4zRcTy8+3Dx7x5cdwoAAAAAAAA6jpPojsAxENRkdS/v7RmTfh1aWk2NWhgU6NGUsOGUkaG/U1Pd/76p4ULpTfesErR554rffuttefmSm3bxv3uAQAAAIiT1FT7LNC/v/T559IHH0gnnBCnjV9zjfTyy9Lvv0uTJjF0DQAAAAAAAKoFwRHUC6mpNib52rWSzxd8XVGRTZs2hd/O5ZLcbvvr/07W55PKypz50aOd5Vu0sIomqakxuRsAAAAAaoBu3aQnn7T5oUPjuOG77pJmzZLGjiU0AgAAAAAAgGpDcAT1gssl3XKLNGxYZLfz+aTy8l1b1u2WOnSQUlIi7x8AAACA2uXCCxOw0bZtpenTCY0AAAAAAACgWrkT3QEgXk4+WcrJid13rF6vjXfOd7gAAABA/bJxo/TCC3HaWOAHjs2bw0sqAgAAAAAAABEiOIJ6w+MJHlamutd92GHSQQfFZv0AAAAAaqYtW6R+/awCybvvxnHDH3wgde4svf56HDcKAAAAAACAuojgCOqV4cOlzMzqX29ZmTRuXPWvFwAAAEDN1qiRdNppNn/RRdKKFXHa8Jw50qpV0vjxVB0BAAAAAABAVAiOoF5JT5dGjpTc1fjM93ik44+XBg6svnUCAAAAqD3uvlvq31/asEE65xypvDwOG73+eumRR6SvvmK8TAAAAAAAAESF4AjqnSuvlJKTq2995eXSvfdW3/oAAAAA1C4pKdIbb1hQ/ZtvpIcfjsNGk5MtFd+gQRw2BgAAAAAAgLqM4Ajqnexs6ZJLpKSk6Nfl8UjDhkk9ekS/LgAAAAC11557Sk88YfO33ipNmxbnDrz3nrRpU5w3CgAAAAAAgLqA4AjqpVGjqmcYcK9XGjs2+vUAAAAAqP2GD5dOPVUqK5NuvDGOG77uOunEE+O8UQAAAAAAANQVBEdQL7VrJ512mlUMqaqkJPtiuGPHausWAAAAgFrM5ZL+9S/pssukCRPiuOGhQ23omt12q56EPAAAAAAAAOoVl8/Ht0o1WUFBgbKyspSfn6/MzMxEd6dOmTlT6tev6rf3eKSFC6WcnOrrEwAAAABUycqVUqtWie4FAAAAAAAAaohIsgZUHEG91bevNHiwVQ6JVFKSdOWVhEYAAAAAVM7nk15+WVqyJA4bIzQCAAAAAACAKopioA6g9hszRvr668hvl5xstwUAAACAyowdK915p3TggdI331QttB6xFSukESOkm26S9torDhsEAKAKli6V8vJiu43sbCk3N7bbAAAAAOoIgiOo1w49VOrZU5ozR/J6d+02brc0cqTUsmVs+wYAAACgdjv7bOnhh6Xvv5fuu0+69dY4bPTOO6V337UyJ9OmSS5XHDYKAEAEli6VOneWiopiu520NGnePMIjAAAAwC5gqBrUay6XdMstux4akaT0dOmGG2LXJwAAAAB1Q4cO0vjxNn/nndKUKXHY6H33SUOG2Bg5hEYAADVRXl7sQyOSbSPWVU0AAACAOoLgCOq9k0+WcnJ27TtVt1saPVpq0iT2/QIAAABQ+519tnTGGVJ5uXTWWVJBQYw3mJ0tffyx1KNHjDcEAAAAAACAuoLgCOo9j8fCILsiK0u65prY9gcAAABA3eFySU8/LbVrJy1aJF15ZZw7sHKlpVYAAAAAAACAShAcASQNHy5lZu54GZfLxiTPyIhPnwAAAADUDVlZ0uuvWwXD11+Xfv01Tht+6SWpSxfpiSfitEEAAAAAAADURgRHAEnp6dLIkfZFbkVcLqlFC+nyy+PbLwAAAAB1w377SY89Jn31ldSnT5w2WlIibd5sQ9f4fHHaKAAAAAAAAGobT6I7ANQUV14p3XefVFwcfp3PJ911l9SgQfz7BQAAAKBuGDEizhu86CIrd3LKKZaGBwAAAAAAACpAxRFgu+xs6ZJLpKSk4HaXS8rNlS64IDH9AgAAAFD3LFggPf98jDfidkunnx7+IQcAAAAAAAAIQHAECDBqVHgFZ59PuuceKTk5MX0CAAAAULcsWWLD1VxyifT993HaqNcrPf20tGpVnDYIAAAAAACA2oLgCBCgXTvptNMkz/ZBnNxuac89pTPPTGi3AAAAANQhbdva6DFer3T22dKmTXHY6FVXSVdcYWN0hqblAQAAAAAAUK8RHAFC3HijVFZm816vNG4clZ0BAAAAVK8nnpA6dJCWLpUuvTQOWY7LLpOaNpUOOyzGGwIAAAAAAEBtQ3AECNG3rzR4sM337i2ddFJi+wMAAACg7snIkN54w6od/uc/0ssvx3iDvXpZSuWKKySXK8YbA+q2FSukP/+0XSovTyostB+eANiJsjJp7Vpp3bpE9wQAAABACE+iOwDURLfdJq1ZIz34IN+pAgAAAIiNvfaSxo6Vbr7ZRpI54ACpY8cYbrBhQ2fe5+PDDlAFRUVS//72nUGotDSbGjSwqVEj2+0yMuxverrz1z9Vdjk314a1AmoUr1favNmepMnJ1rZokfTtt1J2tnTccc6yF14o/fWX9PTTUo8e1vb22zYe9MCBce86AAAAgB0jOAJUYNAgafbsRPcCAAAAQF13443S55/bObcHHpCefTYOG/3jDzuhd9dd0hFHxGGDQN2Rmir1arxU69fkKWyEqaLt06bwpjxJbvf2vJY/s+WzDFd5RdVKmmVryopcpaZW8x0AysuDx2T+4gurAHL00VKTJtb27bfSk09KPXtKd9zhLNuhg7R4sfTLL07446efpAsusPK9gcGRqVOl33+XVq50giONG9tf/xjR8TB1qtSli4VdAAAAAFSK4AgAAAAAAAmSlCS9+qoFRm65JU4bfe45O9F3ww3S4YdTeQSIgGvZUn2ysLOSVBT5jSMYzqZ4Q5pSVs+T2uZGvh3UH6tW2bhJjRtL/fo57TfeaIGNBx6QWre2thdftOHKjjlGmjDBWfbCC6Vly4LDICtXSv/9r7RxY/D2MjPt76ZNTlu7dhY66ds3eNlx46TiYhsH2u+IIyw08ttvVronHi67TDroIKlrV7s8a5Y0f77d11z2LwAAAMCP4Mgu2LBhg6ZNm/a/afr06Vq6dGnYcj5f2G9NAAAAAADYoTZtrPhH3IwdK23ZIt1+O6ERIFJ5eUoqrUJoJEKpviJpfR7Bkbrujz8snDFggP5XXuaHH6R337UqHcOHO8v26iUtXSpNm+aMa/buu9KVV0onnWRBD7+33rIwyDXXOMGR1FQbayk0DLLfftLatVJKitO2115WcaRDh+Blv/nGKnekpTlt++4rTZwYft+OPTa8LbDSSby0ayd16uRcfvNN6f77LVDy9NPW5vNJL78sde9uARgPX5kDAACg/uEouAKzZ8/Wxx9/rOnTp2vatGlatGhRorsEAAAAAKgHSkulBx+081nNmsVoI40aSf/+d4xWDgD1xJYt0po1Fsho08bafD7p4YctnHHTTU6FjpdesrDCMcdI//iHs4599pE2b7YKGP4wyKxZ0iOPWBgkMDiyaZOUnx8c/GjVSurWzQmH+N14o1RSYtf7HXustGiR1LRp8LJvvRV+3zp2dPoTKPS2tcF//xscBNltN6t2stdeTtuqVfa/drvtcfUvP2WKVFBgwZ6YvSkDAAAANQPBkQo899xzevzxxxPdDQAAAABAPXP++dIbb0gzZthIAjEpCLJ0qZSX51xeuNBOOvp/7V4dsrMZAgBAzeXzSVu3WhijVSsLDEjS9OlW8aNrVxtWRZK8XmnwYAtsfPONE5745z9tjLELL7QhwCR70fZXdRo+3AmOFBZK8+ZZRYtAe+xhy5aUOG0DBthQYn36BC/70Uf2Ot22rdN2wgk2hbrqqvC2zEynP/XZNdfYFGjzZhu6rbhYatDAaf/HPyx48vDD0nXXOct+9JE9Pv7hbwAAAIA6gOAIAAAAAAA1xHXXSW+/Lb3zjp2HvPjiat7A0qVS5842XEEspaXZSVLCIwBipbRUKitzTvSXldlJ/k2bLMzhrxrx2mvSK69YxY2rr7a28nIpI8Pm162zsJskffqpdOutdnt/cMTttkDJli3S+vVOcKRxY6vg5A+d+F14oQVT0tOdtuOPt9CIvzKJ36+/ht+vvfYKrobh16vXLvxTUCWdO0uffx7enptr1/Xt67TNnCmdeaZdt2SJ0/7VV/Zc7NMn+LEHAAAAagn3zheBX0pKivr166dLLrlEjRs3TnR3AAAAAAB1TL9+0rhxNn/ttdLcudW8gby82IdGJNtGYFUTAAjl8wVfnjdPeu89G6rFr7BQOvdcC16UlTntN98spaRIt90WvI5hw2ysr02bnLYlS6Qvvgher8djoQ+Px4Yi8evVSzrtNGngwOD1vv669Nln0u67O22XX27VJ0KH/nrsMenxx4OHj2nTRjr4YKlDh0r+GaiRHnnE3ogHD3baysttiKH99w9e9rrrrO2LL5y2FSusOsmKFfHpLwAAABAFKo5UwuPxqFu3bhowYMD/pt69eyslJUWS9Nlnn2lT4IdQAAAAAACqwahRdn7yyy/tR81TplTvKDIAUO1KSmyMrYICp1KHZGNuffaZdNRR0sknW9umTVLHjlJ+vrRtm1MZ5NlnbWiQ666zoUEkC4e8+qpzO39lkIYN7e/Gjc62PB7bTmqqDS/jd9xxUk5O+LAia9ZYhYjAMcGOO86mUMcfH94Wk7HEUOMdcoi9MQfy+aT27a16Te/eTvtnn1kFmsGDrSKJ3yefWLCoa1cpOTk+/QYAAAB2guBIBUaPHq377rtPDQLHtAQAAAAAIA7cbunll+2H7zNnSrfc4pxDBYCYWLNGWrVKat7cqZSRn28vPoWFFujwu/12G0tr5EjphhusraBA2ndfmy8tdcIgP/1ky2ZlOcGRRo1syBf/Npo1s/lOnaySQ2ClDo/Hqj40amRDYPmNGGEVPzIzg+/HJ5+E37devSoe5oXhRFBdXC7p3XfD2z0eqUcPacAAp83rtao2W7ZIs2fbEEaS9Ndf0sqVNtQNla4BAACQAAxVU4Hdd9+d0AgAAAAAIGFatZJeeMHm//1vO6cLABUqL7fQx/z5we2ffirdc480ebLTtnKljYnVo0fwsrfcIvXtK730ktNWWmq3f+SR4GFitm2z7a1d67Q1biy1a2frKCx02o86Sho7VhoyxGnzeKQ//rDhO5o0cdovvdQqOYwcGdy3kSOliy+28IhfZqbUtKkTUAFqonPPlX7/Xbr/fqdt0ybbB1u2lDp3dtpfesmqmYweHbyODz+UFi0KH9oJAAAAqGZ8ugIAAAAAoAY6/nj7kf9xx9n5JQD1zLvvSr/8Il12mdN2773SRx9JV18tnXGGtS1cKO25pwUrNm92lp0wQXr+eQt/7L+/taWkWCkjycIg/uDFbrtJu+8ePGxG48bSlVfa38Blr7rKxtEKrQyyaFH4fTjsMJtChQ4bA9RlgcMaNW0qTZpkQZDA9vR0C1/16eO0rV5tBwNut+3b/io5v/1mwa4ePYIr8QAAAABRIDgCAAAAAEANNWpUonsA1ENlZTaEis8nZWc77QsXWqWMeLnnHguDDfrwtAAA8DRJREFUBAZHFi2y4V+OO85pa9LETiynpFj1kaQkaz/4YDsx3bt38LITJ1oYJPCk9T332BTI45GefDK8X23b2gSg6gL3P0m69VabAiuL5OVZdZLy8uChle69V3r7benBB53hogoLrbpQ795Sixax7z8AAADqHIIjAAAAAADUAt9+Ky1dapXvgRrL57OTnG63TZK0dau0bp2UmmpVLfymTbNf0ffvb0OPSNLixdIPP0jNm0tHHuks+9xzNjzKOefYr/Il+9X9+PF2ecwYZ9lrr7WAx913S3vvbW0//ihddJHUqZP0/vvOskOGSN98I732mnTyydb288/SAQfYsn/95Sx71VXSJ59E/z/aRbMaH6j8xu307kifWrR02cgWPS/Vfu8eGzzUTLNmVn3AHTIi9Tnn2BQoKUk6+ujYdx7Ykexsq5RRVBTb7aSlBYe/aoPAQEmPHtL06eHD1DRqZPt9YHWSGTOkI46Q2rSRli1z2n/5RcrKkjp2dEJlAAAAQAUIjgAAAAAAUMP9+KM0eLCdd+/XL/icMeown89+RV5SElwhYu1am5o2lVq1srbycumLLyxAcPTRzrAi06ZJU6dK3bpZBQq/226Tiovtb0aGtX34ofTmm9JBBwVXuTjqKKvAMWGCMzzJSy/ZbY89Vnr6aWfZVq1seIVZs6SePa3trbcstHHccdIHHzjLnn66VfGYMkXaZx9r++knCzscckhwcOSf/5R+/13abz8nOLJsmfTvf0t77RUcHPn5Z1vPlVc6bcXF0p9/hocrSkvt5HVxsdPmH66ltPR/TVu3SoVJLdW8ZUtpzRrFw/mbHtPMTf2kx5y25s0Hau3agf+7fMIJ0h9/uNSypUstWtiwVv6/u+9u1wM1Tm6uNG+eVdSIpexs21ZtF1qd5IUX7P0hMFCyebOF3UKHgbr0UunXX6V33pFOPNHa1q61196ePaWGDWPadQAAANQeBEcAAAAAAKjh9t3Xzt1/8ol0xhmWA0hLS3SvaqHSUmn9ejvZFlj5Yv58O4G5xx52xl2SNm2yIIbH45xsk6SPPrJqFoceapUyJKumcc89tuw//uEs+89/2jrOO0865RRrW7vWHkyfT5o501n2xhstBHHjjdLNNzt9aNrU5ktKnEDDQw9JDz8sXX+9zUuS1+tUkti40YIm/v7edZd0+eXBwZEHHrD/x9VXO8GRefMsOJKcHBwc+eUXW+eWLU7btm3S8uV2fwL5AysBoQulpUkNGjjX+XXqZNf575dkwZTDDw/+Jb1k1UD22y/4cevSRRo71n5hH+i226y//fo5bX37WmURf2UTv5dftr42b/6/pq1dB+jXSWWaNjNJ08+1H/zPnSt5vS+q4NsZyhjUX/Fwz93Snw3sX7xmjf1t1Ch4mQUL7Ok7f3747Vu0CA6OHHWUNGdOcLgkMGRyxhnOsj5f+LlqoFrl5taNUEeiuFzBO+nRR9tUXu60+Xz2+t6gQfBr6sSJ0vDh0qBB9rroN2WKPSatWvECAAAAUA8RHAEAAAAAoIZzuaQXX5R69ZJmz5ZGj5YefzzRvdqJKVMsiOEPMCxaZCeoWrSwKhV+zzwjrVghnX++1KGDtf32m93B3FzpzjudZa++2ipZ3HuvtP/+znbOPde29dlnzrJHH22hjddek4YNs7bp0y2Fs8ce0t9/O8uOGmUBi+eeky680NqWLZNOO836Gxgcef11q6Dx+ONOcGTzZguJNGwYHByZNcvWu+++wf8bf2Ak8Ox8SYlV9di61VkuJcWZDwyOZGVZ0KFBA+d6j8fCESkpwb9C795dOukkqXfv4D5cc439Dfy1+SGHSI8+atVJAr38sq3TX91EsiDHXnvZcAmBZsyw4RACAxpnnWVTqE8/DW878EDp88/D2++4I7ytY0cLiYQaMiS8rXFjO0kaYktmK6WlOZmW22+X7r3XLa83fBW7727FVDLCr4qJIUOkIf12vMx770krVwaHS9assSk0ZLJsmWV9li8PX0/LlsHBkUMPtQIvlYVMhg93li0rC88EAUiQwOFoXC7pu++c4cP8iopsRw4Mk3i9VuVp82bb+f2lzZYssbbOnYNDfgAAAKhz+FgHAAAAAEAt0LKljQ4yZIhlFI48suLz4zXGVVfZSSl/wGPaNAtlHHRQcHDkX/+yMvoHHOAER1autKRM//7BwZEZM6TJk4OHCikttbILgSfLJAs6lJcHV75ITq74V9StWlmYJD3dacvMtL6GBiMOPtjGDOrc2Wlr2lS65ZbgIIdklUb23VcaMMBpa9zYAhOhJ+Buukm64org7aWnW5WPlJTgM/O33mpTIJfL/j+hTj3VplD+SiWB+vd3wjCBjjsuvK1FC5tCBVTuqGk2b7an2vTpzjR3rlXw8d/tVq3s/GmrVs6/wz/tvrukCv7FidSxo0274tNPpVWrKg6ZhI5WsXq1FeHJy7MqJYFatgwOjhx2mP0vKwqZtGoVXLxm61Z7WlPMAIij0PfHyy6zKfD9ccMGKSdHWrw4+P3t2WctrHnJJfZ+7Td5soVLsrJi2nUAAADED8GRGqa4uFjFAePqFhQUJLA3AAAAAICa5OijrVDE44/bidtZs5yRVWqcTp0sYOHXurV0zDHOr5j9Tj/dQiOBw4106SLdf39whQvJqk5s3GiVLvx697YTWKHlFV55xUohNGnitPXrpwpLSQSeDPNr21aaNCm83X/CLVDjxjZUTagDD7QpUEqKpX5C7babTYFcrvAz+ojYhx9KN9wg/fVXcDEWv9mzneDIsGHS0KHBI+LUFTk5Nu2KSZMsPFJRyCQwXyVZ25YtNgUW8pHs/xi4uwwZIv34o5M7CgyZtG4tXXuts+ymTfb0p8hB3bRihVRQYI9xerpNaWnBhTEQY4E7V3a2pcQCq1tJdjkjw0qe+a1ZY+/bbrcl8vwvCvPn223btiUdBgAAUAu5fL6KPjJjZ9q1a6clS5YEtVXHv/LOO+/UXXfdFdaen5+vzNBxeAEAAAAA9U5RkbT33hYaeeAB6cYbI7jxjBkVV5SIhenTLagBxFhBgY3+E1hJ5O67nUIrX34pHX64zbdp41QQ6dfP/obmdXaIfShMQUFwuCQwZNKgQfDoTV27WpWXirRqZWECv4MOkr7/3gr6hIZM2rSxIbv81q61c9eh+THUTEVFUrt2wcWj/NLSbGrQwKZGjSxckpHhhEwCwyY7upybaxkGRMnrtSCmf/i0X3+VTjjBwqHz5jnLDRsm/d//SQ8/LF13nbVt22Y7fbduwWFSAAAAxEVBQYGysrJ2KWtAxZEaZsyYMRo1atT/LhcUFChnV38OAgAAAACo89LSpDfflH76KXi4CKA+mT/fCtBMn26VREJNneoER/beW5o40TIYNbZCTy2WmWlTp047X/bXXy3kERgu8c+npQUvm5dnfzdssCkwcNK6dXBw5KSTrPBQenrFIZM77nCWXb7cttW0KdUtEiU11R6ftWvDqwAVFdm0aVP47Vwue8xcLqeghc/njEwWqkULaelS8gpRc7ud0Ihkw9AtXmyhkED+aiU9ezptM2ZYdZLcXCnwR5hz51qVk+zsWPYcAAAAESA4UsOkpqYqlU8zAAAAAIAd6NbNJqAuy8+3c47+KiKDB0sXX2zXJSdbgMovJ8epJNK/vzRwoHNdRoYN84TES03d9SFzZs+2wEhF1UxCvzrzj/RcWGjnsxcvdq5r3To4ODJsmIVMkpKk5s2DgyY5OdJ99znLLlxoz7UWLQgfVCeXS7rlFnssIlFZQKQibrfUoUNw3gHVrEGD4MvvvGPhkcBhatats5RW6DB1Z59tL+wffCAdd5y1bdxoibEOHUh1AQAAJADBEQAAAAAAarENG6R77rEpPT3RvQGqbutWafx4JyiyYEHw9SUlTnCkbVsbqqlXLwuKNG8e//4ittxupyBB9+47Xva33+z5U1HIJDQ4UFxsf8vLpdWrbfJr0yY4OHLOOdKPP9p8VpYFTPwhk9xc6ZFHnGXnzrUwSsuWFlYKPHeOcCefbEGd5cvDq45UB69Xuv9+Hoe4C93hTjhBGjrUdlA/n8/KykjBO/cHH0jnny8dcYT02WdO+59/2os+BzkAAAAxRXAEAAAAAIBayuezSgq//GLnYMaPT3SPgJ3buNGpJJKZKV12mbWnpEi33eac2JfsXKG/isiBBzrtLpd0443x7TdqLpdLatTIpg4ddrzs1KkWQlq3Ljxk4qngm1KPRyorswo4+fnO0Eg5OcHBkQsukKZMsfm0tOBKJm3bSk895Sw7a5b1uWVLqVkzC5zUNx6PDTc0YkRs1j1okHTQQdW/blSBfwcNvDx7tpUKyshw2tevt52nSxenzeeT9t3Xlp0zR+ra1drXrLF00G67kQ4CAACoJi6fLxaZ7rqvXbt2WhI4LqOkWPwrCwoKlJWVpfz8fGVmZlb7+gEAAAAAtdsXX9iPcyXpvffsh72VmjHDzsDHw/TpUr9+8dkWarRvvrGT9dOm2dNi4ULnul69rFqE3003WWWH/v3t6ZOdHf/+7hD7UL3j9UqbNjkBE3/IJClJuvxyZ7nBg+15vmVL+Dpyc6XArxH33Vf66Seb91dWCQyZPP+8s+zUqXbu3H996OggtVlhodSqlQVyqtsvvwQPWYVaoqzMnhj+78HXrpV69rSdcPNmp6LJbbdZqbWrr5Yef9y5/dy5UseOFafAAAAA6qFIsgYcQQEAAAAAUIsdfrh0/fXSww9LF15oJ8patUp0r1AfbdhguYrVq6Wzz3baL7vMqdLg17695S/23ju4/f77Y99PIBJut9S0qU3+YgcV+fpr+1tYGF7JxO0OXrZxYwuLrF9vwRR/IEWy4EigESOkn392LmdkOCGSdu2k1193rps82Ybg8V/fuHHNLsaQni6NHCmNHWv/h+rg8UhDhhAaqbU8Hic0ItkTec0a21kCh8HJy7Mdq2NHp23tWttJ09Pten/KauVKq3jCjzIBAAB2iOAIAAAAAAC13L332knLGTOkc8+VPv88/EQlUJ3Wr3eGm/FPixbZdY0aSWee6TwHjztOWrrUGXKmXz87CQ/URenpFuho167yZT75xP6Wldn57cCQSWjQo2VLqU0bu6601IoubN4sLVhg58MDjRpllTb8UlLsvHuLFhbWmjDBue6bb2x9LVvalJ2dmCINV14p3Xdf8BBV0Sgvt/dE1DHNmgVffvpp6R//CE4cLV5sb0C77x5cmue666S33pKefNKecJKNV7V6tY05VZPTVTuzdKm9iMRSdraVTQIAAHUewREAAAAAAGq5lBTpjTfshPxXX0mPPGJVSIDqsH69DSczeLDTdu650sSJ4ct26GDPw82bbcgZyarh1BnZ2VJamlRUFNvtpKXVwHF6UN08Hmm33WyqzPvv21+fz4Z0CQyZhI6a3battHGjXVdQYOfGly+3aePG4GVHj7ZhcPxcLjs336KFtMce0ocfOtd9+qmtq0ULp5pJw4bR3Xe/7Gzpkkuk8eMt9BENj0c69VSpR4/q6RtquPT04Mt77WU7ybp1we1r1tjfPfZw2qZPl/bbT+rWTZozx2lfvtye4IHVTWqqpUulzp3j8340bx7hEdRNhK8AIAjBEQAAAAAA6oDOnaXHH5cuvlh65hkb3iA1NdG9Qm2TlxdcRWT6dGnJErtu5Ur7IbckDRhgw8/4q4j07y/17Ss1aZK4vsdFbq6dQOMkA+LM5bKhZxo3ttf7ivznP858UZEzBM6aNeFDwey5py2zZo09nb1e+5uXF34e+rbbpGnTgtsaNrTz6x06SF984bR/+KG0bVtwyKRJkx1XwRo1SnrqqZ39B3bO67Vhb1CPud32xAv09deWgAwMmixZYkmj0LGhTjzRkpIffigdeaS1bdliyamaViqrop01FoqKbFu8J6GuIXwFAGEIjgAAAAAAUEdceKGd3zjvPEIj2Ll166wqiP+H1bffLt19d8XLduokrVrlBEfuvFO66664dLPmyc3ly3/UeGlpO36qvvaaM19ebufV/SGTsrLgZXv1suDKmjU2FRdLW7fa8FShgZCxY8NDJh6P1Ly51LGj9N13Tvt//2vradFCOvxw6csvq151JClJOv982wYQJnSom2HDLCQSWIrH65VWrLAxnDp0cNrffdfKbJ10kj1p/VatspAKYwMCtRPhKwAIQ3AEAAAAAIA6wuWSrr020b1ATbR2bXglkWXLpO+/lw44wJbxn3Dt1MkqiAwY4FQS8Q874+dyxbf/AGInKcnCGy1aVDzMy/PPO/M+nw1F5Q+ZlJYGL7vXXlbYwT+kzsaNFkRZtSp8eJtx46QZM6rnPrhc0h13VM+6UE+kpgaPE+V2W3Bk6VIpJ8dpX7zY/rZu7bT5fDbMTVmZPYk7dbL2TZssjRk6jA4AAEAtQHAEAAAAAIA6yOezk31Nm9qPZCXZ8BdpafEpyZydHdttoFJer/MD6I8+ki6/XFq+vOJl5893giMnnywNHRoeEgEAP5dLysy0qaLqHqFDzpSUWHWjNWtsPtBBB9lbhT9ksmpV1fqUlCRdeWXwuX6gSlyu8OFrbrtNuvpqK7Xjt2aNjcnk9QYv/+ij0j33SKNHWzLKb906K7sDAABQgxEcAQAAAACgDnrjDenii6XGjaWBA7efUMvNtTG28/Jiu/HsbMoxx8nq1eGVRO65x4ZskCw4tHy5nQvbc0+rIOKf+va1k79+odUAACBaKSlWqCGwWIPfo48GX/78c+nIIyPfhtcrjRnjXJ4yRWrXzhlaC4haaKJyt91sbMDFi53x3iTp77/tCRlYySQvz8r57L67tHChhWslq06SkWHJJwAAgBqA4AgAAAAAAHXQaadJjz8uTZ0qnX229PXX289N5OYS6qjl/v5bGjVKmjZNWrky/Prp053gSN++0qRJ9jcjI67dBICIHH641LOnNGeOnXvfVZ07Sy1b2rzPJx19tJSfb+fu+/WzqX9/+5uTw1BbqCYeT3jZnVdflR56yIbB8Zs3z5506elOaESyMjnvvis9+aR0wQXWVlZmlUx4wwYAAAlAcAQAAAAAgDooOdmqjvTpI333nfTAA9LNNye6V9hVK1cGVxEZNEi67jq7rlEj6YMPbN7lkrp0Ca4k0qePs54GDWw4CACo6Vwu6ZZbpGHDdv02jRpJ33/vXF6/3qqbbN5sFZkmTrTJ7+STpQkTnMsLF1p1Ev/wXkBUXK7wUjf7729PyNCk57x5FhIJrE4yfbq0zz7SfvtJkyc77fn5ViKM1BMAAIghgiOVGDJkiFZW9LOd7Sq6rk/gNzMVmDhxolq1ahVt1wAAAAAA2CUdO0pPPWXVJ26/XTr0UGnvvRPdK1Rk2zbp/vudoMjq1cHXl5U5wZGWLaVnnpG6d7eQSKNGce8uAMTEySdbVZDly616yI643dLo0TY6ml92tlUs2bpVmjXLXk9nzLBpzhypUydn2XXrpA4d7Hx8375OVZJ+/WxoL0YQQbVp2DD4ySdJP/9sJcQCzxfMnWt/QyuOHHGEtGCBpZ4OOcTaiotj118AAFAvERypxB9//KElS5ZEdJvffvtth9eXlJRE0yUAAAAAACJ27rnSJ59I//d/0plnSjNn2kkyxJ/PF1xJpFEj6YYb7LrUVOnRR+1HyZKdEO3a1akiss8+weu69NL49h0A4sHjsTDIiBE7XzYrS7rmmoqva9hQ2ndfm/yKimzyW7DAXnsLCmxIr0mTnOvS06W77pKuv94ul5fb8DnJyZHfJ6BCSUmWUAp03nnSkCFWYcTP65X+/NMOEFq3dtq/+io+/QQAAPUGwREAAAAAAOowl8uqU0yZIi1aJH35pXTSSYnuVf3x8cf2o2J/WGTNGue6jh2d4IjbLY0ZY2GS/v2l3r3txCcA1DfDh9uQNYHnzkO5XNKtt4YXZtiRtDSb/Pbd187F//GHU5Vkxgzp11+lwkKpSRNn2alTbciwXr2cqiT9+kk9egSvE4ha8+Y2+bnd0tq19kTt0MFpX7gw/n0DAAB1GqM3AgAAAABQxzVuLL31lvTNN4RGYsHnk5Ytk959Vxo/Pvi6W26R7r5bmjjRQiNut51oPO886dprg4diGDPGfmW/336ERgDUX+np0siR9npZEZdLatFCuvzy6LeVnGxBveHDpSeekCZPtgokf/whnXCCs9yvv9rIIFOnSv/6l1V9GjjQgit9+kiffx59X4BKpaVZUilw/KQrr4zf9ktKbAypnBynNJokPfKI1K6ddMcdwct36iTtsYcFXvz+9S9rHzMmeNkBA6QuXaSlS52211+38fj8JX/8Bg+29Na8eU7b++/bWFOh5YdOOMHW/fvvTtsXX9iYjVdcEbzsOefYwdfUqU7b5MnSgQeGl3i74gpLkU2e7LTNnGnjQV50UfCyo0fbMEPffOO0zZ0rHX20dMEFwcuOHSsde2zwi8mSJdLQoXbQGOgf/5BOPNHSyX6rV0unnGL3JdAzz0inny69957TtmmTlSE8++zgZV95xW4/YYLTVlRkY16ef749D/wmTJAuvNBKGvp5vdIll9i0ZYvTPnGivWC/8Ubw9q69VrrqKmnjRqftm2/ssXz11eBlb71VGjUqOIE9ZYolsF95JXjZ++6TbrrJxjzzmznTDspfekkAgMpRcaQSixcvTnQXAAAAAACoNoHl+hGd5cvt3IK/isj06dK6dXZdSoqdN0hJscsnnWTnM/xDzvTubSdFAQCVu/JKO/dXXBx+nc9nw8g0aBCbbScl2VBhgS65RDrssODKJNOnSxs2SL/9ZkPe+L35pnTPPcGVSfr0saF1gGrjcsVvWz6fcxI+MPG6caOFGzZsCF5+4UILEXi9wcsuWBB84l+yEMiWLVJpqdO2YYOlt3r2DF72jz/s9oEvDHl5luxq0yZ42d9/t35s3eq0rV8v/fJLeDr311+l2bMtNRbYhx9+CO6XZDv/zz/bugKX/fprSwYHmjbN2gNDIps2SZ9+asGaQFOnWhDkxBOdtoIC6YMPpJYtw5d97z0L0vht3Sr9979Wui502f/8xw5G/YqK7IXK7ZZeey142ddeszDQKadYW2mp9PLLNv/MM8H37YUXLJ1++unW5vNJzz5r8/fd5/Rl+nS7rc9ngRW/Z56xx3L0aKfE04wZ0j//aaGWwBDM00/b//mSS5z/x2+/SQ8/bAfb557rLDt+vD1fTz3VeV7Mni2NGycdeaSFYAAAFSI4AgAAAABAPfPXX/Yj0SeflDx8M1Apn89+ADtzpv3g03+O5tpr7bv5QB6P/Ti2f387/9G0qbXffntcuwwAdUJ2tp0fHD9eKi932l0uK3oQ+mP9WHO7bXixjh2l006zNn+1qRkz7LXfb+pUO7/9xx/B52Q7drQQybhxwSOOADVecrKd/JeCQxeXXiodf7yVAArkr8bhPxiSLAhw4IHhy376qe3krVo5bSeeaCGM0GX/8x+retG+vdN25JG2jsDhfSTp+edtzKnOnZ22Aw+UPvxQatYseNnHH7dKKr16OW0DBtjBXuCYVZJ0770WYBgwwGnr3t2CGKHpsDFj7MVqn32ctg4dLIgRGvC45hoLQOy/v9PWurUFMULHw7roIumQQ6xKil92tvTUU+EH9meeacm1wAR5Rob06KMKc8IJFhrZe2+nLTVVeuABmw9c91FH2f3day+nzeWy1JwUnOw7+GBL+/XrF7y9W26RysqkzEynbe+9rb137+Blr73WHs/A51Tv3lZxJDSwc/HFNtZZ4POnSxf7H3fpEn6/42XGDOn+++25c+ONTvvGjfY/CKwoBAAJ4vL5AiOiqGkKCgqUlZWl/Px8ZQa+gQIAAAAAUAULF9r31+vW2Xetd95p30dXNiRAfeEPiUyb5lQRmTHDfsgqSX//7fw49OGHrYq6v4pI//52riH0e30AQNUtXmznWAOLFkjOaAo11Zo19l4SWJ0kcBSO5cvtfLBkw+N8801wdZLddktMv1HLhCaWYmn69PCT/kBtF+996I8/7M1r8GDpq6+c6/r1swo5n3xipa0kq87z8cdSt27S4YfHp48A6qxIsgb8rggAAAAAgHqiqMh+nOgfVuWhh2ySLPSQlmY/EGzQwH4I2bCh/SixYUMbXsX/1z9Vdjk3V2rbNnH3c2d8Pjsh2bKlM2zMnXfa8PKhPB77IeOGDU5w5PrrbQIAxE67dlbdY8IE+1G6v+pH4EgHNVHLltIxx9jkl5dn1atmzw4urPDFF1YA4d13nbbdd7dzmf362Y/SQ0fVAADUQgMGWKWX0KGHVq2yN7nAqjlTpliVlUMPDQ6OHHecVSh54gln+KF16+yDTdu24VV6ACBCBEcAAAAAAKgnUlPt+8S1a4OHqJcsVFJUZEOvh3K57ISdy+UM1+Lz2RQ4hIBfixb26+rU1Gq/CxHz+aRFi5wqIv5KIhs2SJ99Jh1xhC3Xo4eFRHr2DK4k0rMnlUQAIFFuvFF66y2b93ptmJfaWM0/O9vO/YX+cPzmm6VBg5zKJHPn2jnEjz6Svv46eLizhx6y9y5/ZZI99nDekwEANVyXLhUPlbN8ubR6dXDoo1Ur6dRTw4fs+eknSyIGvhF++ql07rkWMvnyS6f95pvtg9oVVziJfn8Ks76XmgRQKYIjAAAAAADUEy6XDRs+bFhkt6ssIFIRt9uGFkhJibx/0fL57PvQ5GS7PHGidPbZ9sO8UMnJ0rJlzuXjj5e2bKkZYRcAgOnb16r6f/21nT876aRE96h67bOPTX5btkizZlnIMT8/+Nzgiy9Kf/7pXM7KckIkAwdKp58ev34DAKpJUpIzfpnfoYfaFOrDD+0DTIcOTlt5ud2+XbvgZZ991kImZ53ltL35pnTRRVbO69VXnfa33rIyjAcfbG8uAOotgiMAAAAAANQjJ58s5eTYj9tCq45UB69Xuv/+2P8K2ueTFi4MryRyzz32wzrJyv1v3GghltBKIj16BIdECIwAQM10223SmjXSgw/W/QobjRrZkHL77Rd+3ciR0rRp9l43a5YFS775xqYePYKDIw8/bFVO+vWTunWziloAgFouNG0oSeefb1PgBzufT7rpJguZBI4fumyZVFIS/qZw1VXS+vX25tKzp7W9/74NrXP00dLo0c6yc+faG0yzZnX/TRmohzhkBAAAAACgHvF47Lu/ESNis+5Bg6SDDqr+dfstWmQ/lJsxo+JhdWbMcOZ79LBASY8eiamAAgCI3qBB0uzZie5F4l18sU2Snff74w9niJvddnOWKyuzsE1RkV1OS5N69XKqk+yzj3NeEABQRwSGOFwu6brrwpe5/nqrQBK4bHm5fXhbtkxq08ZpnzNHmjRJat8+eB0HHBAeMpk82Uo97ruvdOyx1XefAMQdwREAAAAAAOqZ4cNtyJr8/Opdb1mZNG5cdOvweqW//7bAx7Rp9vegg6S77rLrmza1IQskC4P07h1cSaR7d2ddycl2kgwAgLokJUXq08emCy4Ivq6wULr8cnv/nDlT2rxZ+uUXmyTphBOkd9+1eZ/PRjPo1cum9PQ43gkAQHylpARXIJFsqJx33glf9tRTbfibnBynLbBaSWD7pEn2IfD884ODI7m5ll787DMngPLXX9L8+VKXLsFD7gCoEQiOAAAAAABQz6SnW8n7sWMtqFEdPB5pyBBp4MDIb1tSIt18szPcTEFB8PWBfczKsuG5O3e2kAiVRAAAcGRmSo88YvP+MKa/MsmMGdLBBzvLLlsmXXqpzbvdUteuTmWSfv0smJKZGfe7AABItE6dbAqUkiKtXi0VFwd/CBswQLryyuBx1goL7U1Gkpo0cdrfflu69Vb7JcMLLzjtJ54oNW4sPfCA1KKFteXnW8IxK4thcYA4ITgCAAAAAEA9dOWV0n332fd+1aG8XLr33sqv93rtx2XTp9uUni7dfbddl5wsvfqqtHatXU5LC64kstdewesaNqx6+gwAQF3mdjvn/k4/Pfz6rVulo4+29+W1a21kgjlz7D1ZslENHnrI5rdskX7+Werb16p/AQDqqdTU4MtHHGFToLQ0acECaflyC374NWlibyRduzpthYXSe+/Z/KOPOu1PPGFjr116qfTMM077ffdJzZvbh8JGjarlLgEwBEcAAAAAAKiHsrOlSy6Rxo+30Ec0PB6rZtyjR3D7hAnSjz8Gl8v3a93aCY64XNIdd9j3iwMG2PeIycnR9QkAAOxY167SxIn2g+5Vq4Irk8yYETzc2y+/SIcdZvPt2tl1/fs71Un8PxAHAEButw1FEzoczRVX2BTI5ZJeeUVauTI4ZLJ+vf1t2dJpKyy0UpWSfQD1e+QR6fnnbfy2665z2r/8UmrVyspVJiVFf78QbulSKS8vttvIzrahjxBzBEcAAAAAAKinRo2Snnoq+vV4vXby6L77pDFjnPZHHpGmTHEup6VZ2Xt/JRGv175TlMK/PwQAAPHhctl5tVatpGOPddp9Pmd+82Zpjz2khQulxYtteucd5/oXX5TOP9/mN260aiatWzO6AABgJxo0kM45J7z90UetpGVZmdNWXGwVSNauDR5Lbd486Y8/gsc83bpVOvxwm9+0yQmlvPWW9NVX0nHHSccf7yy/ZQsVTCK1dKmFcoqKYrudtDR7jAmPxBzBEQAAAAAA6ql27aTTTrPKIIHfx0XK67Vy9m63NGKE833baac5IZH+/e2XzR6+iQAAoFYIDH0MHWrTxo3Sr78GVyaZN0/q3t1Z9u237bxe8+bhlUnatSNMUi2ys+1EWjxO1mVnx3YbAFCZ9PTgy02aBA9b43fLLVaBJDBYsGmTlcQMDI1I0rffSs89Z2lJf3Bk61YpI8OWW7FCatjQ2r//3obc2Wuv4Dc6mLy82L8PSbaNvDyCI3HA1zUAAAAAANRjN95oP7qKRlqac2Jo2zYnOHLttVF3DwAA1CBNmkiHHGKT35Ytdizgt2qVjQiwbp302Wc2Bd7+yy+dYXC2brUfm/srkGEX5eZaYofhAYCqIXxVt+Tmhr9WtW4t/f57+LKnnGKhkcA3shUr7K/X64RGJOm116R//9vGVfUHR7ZulfbdV8rJsdJbqanWvnixVFJi7Q0aVNtdA+KJ4AgAAAAAAPVY377S4MHSpElSeXlkt3W7pTPPlF56iSGjAQCor0Ir+99xhwVTf/89uDLJ779bxZJ27Zxl77pLevppZyg7f2WSLl2oUrZTFZ0oBbBrCF/VX4cdZlOgPfe0YW7Wrg1u795dOvJIqVcvp23ZMntDW7zYCY1INm6rP2Ry553WVlgoXXedhUlGj3Y+NAeO2QrUIBx6AQAAAABQz40ZI339deS3S0mRHn6Y0AgAAAjWoIFV9t9rL6etpMTO0zZt6rT9/rtVLPnhB5sCb9+7t/TJJ1Ljxtbm8zHMDYBqRPgKgTIybAp09dU2BWrTxt6cNm8OX0fDhhYS8Vu2zIbWyciQbr7Zab/8cqtWcvfd0mWXWVtRkY0h26aNdPDBvOEhIQiOAAAAAABQzx16qNSzpzRnjv34aVe43dLIkVLLlrHtGwAAqBtSUux4I9CHH1qYZMYMafp0+ztzpoVJ/vpLyspylj3zTGvzD4/Xr5+tjxEBAABx06iRdNRR4e3/+peFRHy+4GVvu00qKwtedtkyq3aTnOy0LV4snXOOlJkp5ec77ePGST//LF16qTRkiLWVlto6WrcOrnoCRIngCAAAAAAA9ZzLJd1yizRs2K7fJj1duuGG2PUJAADUfR6PjQTQvbudL5MsxLpggbR8efAPrqdMkZYssXDJc89ZW1KS1K2btN9+dr4OAICEcbmC37hat5bGjg1f7o03pKVLpd13d9rKy20M2bS04GW//1769FPp+OOdtgUL7M2vcWMbA87vzTdtvUOGhCc1gV1AcAQAAAAAAOjkk62q7vLlwT+SqojbbUM0N2kSn74BAID6w+2W9tzTpkDffGOhEf80fbq0bp0NdxNadeTEE63NX5mkb19nyBsAABKqcePwN6Xu3aWvvgpfdswYC40ceKDTtn69BUxatw5e9pVXLGTSvLkTHJk7VzrkEFv/l186y06dKhUXWwAlcAw51GsERwAAAAAAgDweC4OMGLHzZbOypGuuiX2fAAAA/Nq3t+nkk+2yzyetXGkhksAfeG/bZkPglJfbj6/99tjDQiRHHilddFF8+x4LK1ZIBQVSw4ZWCS493c4jut2J7hkAoNocdJBNgQ44QCostHHdAg0ZEhwakawCyerVUnZ28LK3324hk+efly64wNoWLZKuv17q0kW6915n2U2bbNgdD7GCuo5HGAAAAAAASJKGD7chawKHVA7lckm33iplZMSvXwAAAKFcLvuxdegPrpOSpI8+Cq5OsmiRtHChTcnJTnDE67Wh+nr0sFBJv342ckBgEKUmKiqyaipr1oRfl5ZmU4MGNjVqZOGSjAwnZBIYNtnR5dxcqW3b+N8/AMBOuFzhH8or+hXI/vtbia7i4uD23XazRGW7dk7b/PnSO+9YdZLA4MiwYdIXX0ivviqdeaa1rVolvfZatdwV1BwERwAAAAAAgCQ7QTBypA3D7PWGX+9ySS1aSJdfHv++AQAA7IqUFOmoo2zy27BB+vVXC5F07eq0//WX9PbbNvm1bOmESIYMkfbbL25d32WpqXZMtnZt+BCDRUU2bdoUfjuXyyqSuFxOOMbns6m8PHz5Fi3sx+qpqdV+FwAA8dCwob2hhXrxxfC2zp2lJ54IH/9t9Wr7gqB5c6ft99+lRx+t3r4i4Vw+385GLkYiFRQUKCsrS/n5+crMzEx0dwAAAAAAdVxentSmTfgPkvyeeUa69NL49gkAACAW1qyR3nrLqUzyxx/B4dnbbrNArWQhjX/8wwmVdOiQ2GFh/u//7EfgseJ2S3vvLU2eXPMrsAAAYsjrtTfBrCwnVDJ1qpUi/fzz+PRh+vSKAzDYqUiyBgRHajiCIwAAAACAeLv6amn8+OBfnrpcUk6OtGCBlXgHAACoawoL7UfU/iDJWWdJgwbZdR9/LB17rLNsRobUt68TJBk8OHzYnFgqK7NRBpYvD686Ul0mTZIOOig26wYA1HIzZti4afFAcKTKIskaJDAPCwAAAAAAaqJRo8JPQPh80j33EBoBAAB1V3q6Vdm4/HLp2Wed0IgktWpl7XvvLaWlSZs3S999Jz32mHTuudJXXznLzp8vvfCCDY9TUhKbvno80ujRsVv3YYcRGgEAoD7xJLoDAAAAAACgZmnXTjrtNGnCBPs1q9stdewonXlmonsGAACQGH37WkU2yY6P5s61H1tPn25/Bwxwlp04Ubr2WptPSZF69rQfZfurk/TqJaWmRt+n4cOlW26R8vOjX1egsjJp3LjqXScAAKjZCI4AAAAAAIAwN94ovfWWzXu9dvIgKSmxfQIAAKgJPB6pRw+bzj03/PrddrOha2bMkDZtsnDJ9OnO9ZMnS/vtZ/N//CFt3Cj17i01ahRZP9LTpZEjpbFj7XitOng80pAh0sCB1bM+AABQO7h8vliNfofqEMm4QwAAAAAAVKdDD5W+/tpOZMycKblcie4RAABA7eHzSYsXO1VJZsyw4Wv+/ltq2NCWGTFCevJJO87q0sWpStKvn9Snj9S48Y63kZcntWkjFRdXT59dLmnWLAvFAABQqRkzrJxWPEyfbm+MiFgkWQMqjgAAAAAAgArddpu0Zo304IOERgAAACLlcknt29t0yikVL9OwodSqlbRypfTnnza9/rpz/bp1Una2zf/9t5SV5VyWbP6SS2wYnfLy6Prr8UinnkpoBACA+oiKIzUcFUcAAAAAAAAAAKjbVq+2Cm/+yiQzZkilpdLy5c4yRx8tffqplJsbXJmkeXNp332jH67G7ZbmzZM6doxuPQCAeoCKI7UCFUcAAAAAAAAAAABqid12s2DI0Uc7bYWFwcts3mx/ly616b33nOsaNZKKiqSysqptPylJOv98QiMAANRXBEcAAAAAAAAAAABqmPT04Ms//CAVFEi//hpcmeTPP6U997T5qnK5pDvuiKq7AACgFiM4AgAAAAAAAAAAUAtkZkoHHWSTX2GhlJcnDR8uTZoklZdHtk6XS9prL7ttbq5NrVtLycnV23cAAFBzuRPdAQAAAAAAAAAAAFRNerqFPcaMiTw0Ikk+n/Tjj9I550gHHyy1by+lplp45IorgpedOFGaPl1at85uBwAA6gYqjgAAAAAAAAAAANRyhx4q9ewpzZkjeb27dhu3W9p3X6ljR2nZMmnpUvtbXCytXClt2eIsW1IiHXusExhJS5Nyciy0kpNjoZPzz3eWLywMH24HAADUTARHAAAAAAAAAAAAajmXS7rlFmnYsF2/TXq69OGHUpMmTpvPZxVFli4NDn7k50sDB1r76tVSUZE0f75NklU78QdHSkqkRo1svf5giX8YnJwcqUcPC7kAAICageAIAAAAAAAAAABAHXDyyRbMWL5850PJuN3S6NHBoRHJAigtWtgUqHlz6eefbb64WFqxwqlQsnSphUH8Vq607W/YYNOvvwav65xzpFdesfmSEquWEli9JDBk0qSJ9QkAUINkZ1vpqaKi2G4nLc22hZgjOAIAAAAAAAAAAFAHeDwWBhkxYufLZmVJ11xTte2kpkp77GFTRdq1kzZtckIlgQGTpUulPn2cZVeskH74ofJtXXCB9PzzNl9SIt1/f3CwJCfHzisCAOIoN1eaN0/Ky4vtdrKzbVuIOYIjAAAAAAAAAAAAdcTw4TZkTX5+5cu4XNKtt0oZGbHrR1aWTYGVSCrSrJn0f/9Xcchk3Tppt92cZVeskO64I3wdLVpYgOScc5wwTFmZNH26nW9s2dIqrAAAqpE/xYc6geAIAAAAAAAAAABAHZGeLo0cKY0dK3m94df7h6K5/PL4960imZnSaadVfN22bVJpqXM5KUm68MLgkElhobR2rU1HHuksu2yZtM8+Np+cLLVpEzwUzqGHSoMH2/U+H8PhAADqN4IjAAAAAAAAAAAAdciVV0r33ScVF4df5/NJd90lNWgQ/35FqkGD4H7m5krPPedc9vmkjRudEEng0Dn5+RYSWbnSwieLFtkUyB8cWbzYhs8JDJYEznfpYlVLAACoqwiOAAAAAAAAAAAA1CHZ2dIll0jjx0vl5U67y2VhiAsuSFzfqpPLJTVtalOfPsHX9eljYZKyMmnVKidc4h8K58ADnWWXLpUKCqTZs20KdfPN0r332vyKFVbRpaKQSfPmVC4BANROBEcAAAAAAAAAAADqmFGjpKeeCm7z+aR77rGhW+oLj8dCHTk50v77V7zMPvtIf/wRPASOf37ZMqlDB2fZv/+W3n674vWkpdn/97rr7PL69dK77zrBkpwcqVGj6r1/AABUB4IjAAAAAAAAAAAAdUy7dtJpp0kTJljVDbdb6thROvPMRPes5klNlbp2tWln2rWTHnssOGSydKm0erVUVCRlZDjLzpkjXXxx8O2bNnUqlVx8sXTccda+bZuUlyftvruFXRBbK1ZYlZmGDaX0dJvS0mw/AYD6iLceAAAAAAAAAACAOujGG6W33rJ5r1caN05KSkpsn2q73FzpmmvC20tKLIyQleW0paZKRx/thEwKCqQNG2z67Tfp2GOdZX/5RRo0yB6fVq2Ch8DJzZUGD961YAt2rqhI6t9fWrMm/Lq0NJsaNLCpUSMLl2RkOCGTwLDJji7n5kpt28b//gFAVRAcAQAAAAAAAAAAqIP69rXAwddfS717SyedlOge1V0pKVL79sFte+8tTZzoXM7PDx4C5+CDnevWr7chhEpL7bply6TJk53rn3nGCY5MnixddFFwsCR0PjU1dve1tktNlVq0kNauteGbAhUV2bRpU/jtXC6rSOJy2STZ7X0+qbw8fPkWLeyx5rEAUBsQHAEAAAAAAAAAAKijbrvNKis8+KBzshuJkZVlU48e4deddJIFFtasCR4Cxx806dnTWXbhQmnuXJsq8q9/SZdcYvOzZ0vPPhseLtltt/o7LIvLJd1yizRsWGS3qywgUhG3W+rQwQJFAFAbuHy+0CwdapKCggJlZWUpPz9fmZmZie4OAAAAAAAAAAAAEigvT5o1Kzxc4p8mTLAhciTp1Velc88NX0dystSmjfTYY9Lxx1vbihU2hI4/YBI47E5dU1Ym7bGHtHx5eNWR6jJpknTQQbFZNwDsikiyBlQcAQAAAAAAAAAAAGqJ7Gwbgqgi/qFT/Lp1k0aPDg6ZrFhhQ+IsWmQBEr+vvw4OmWRmBg9/c+mlNvyRJBUXW+WO2lpRw+Ox/8uIEbFZ96BBhEYA1C4ERwAAAAAAAAAAAIA6wOUKHpKof3+bApWVSatWWYikWzenPS1N6tPHAiYbNkgFBdKcOTZJ0tChzrL/+Y903nk25E1guMQ/7b+/1KJFzO5mtRg+3Iasyc+v3vWWlUnjxlXvOgEg1giOAAAAAAAAAAAAAPWEx2Nhj5yc4PZTT7VJkrZudYbA8f/t0cNZdtkyq2yyapVNv/wSvK6JE53hcj74QHr88eCAiX8+J0dq1Ch293VH0tOlkSOlsWMlr7d61unxSEOGSAMHVs/6ACBeXD5frEbuQnWIZNwhAAAAAAAAAAAAINZ8PikvL3gInMC/L70kde5sy44bZ5U9KvPZZ9IRR9j8L79I33wTHC5p1coCGbGQlye1aWND71QHl0uaNSs4ZAMAiRJJ1oCKIwAAAAAAAAAAAAB2mcslNW9uU+hQOKFOOcUCIIHBEv98fr7UurWz7JdfhodM3G5bJidHGj9e6t3b2pcvt+BHTo7UtGnwED27KjtbuuQSW295eeS3D+TxWMUWQiMAaiMqjtRwVBwBAAAAAAAAAABAXZSfLzVs6FQUef996b//dYIly5ZJpaXO8nPmSN262fy990q33mrz6enhQ+BcdJETSvH5Kg+WLF4sdegQ/XA1brc0b57UsWN06wGA6kLFEQAAAAAAAAAAAAA1WlZW8OWhQ23y83qlNWucSiXt2zvXuVxSixbS2rVSYaE0d65Nfqec4gRHxo2THn/cCZYETjk50sknS+++K5WVVe1+JCVJ559PaARA7UXFkRqOiiMAAAAAAAAAAABAxYqKbNiawCFwli6VHnlEysiwZS69VPr3vytfx9tv2zAzVeXxSAsXWggFAGqKSLIGBEdqOIIjAAAAAAAAAAAAQNXl59uQNIHBksD533+XTjxRmjRJKi+PbN1ut3T55dKTT8ak6wBQZQRH6hCCIwAAAAAAAAAAAEBsffmldPjhVb9927Y2VE2nTs50+OFSWlr19REAIkFwpA4hOAIAAAAAAAAAAADEls8n9e4tzZkjeb27dhuXS0pOlkpKKr4+P1/yn9576inpzz+DwyXt29vtASAWIskaeOLUJwAAAAAAAAAAAACokVwu6ZZbpGHDdv02DRtKS5ZIpaXSggXS/PnOtH69ExqRpPffl774Ivj2SUlSu3YWInnvPSk11dr9tyVUAiBeCI4AAAAAAAAAAAAAqPdOPlnKyZGWL7cKJDvidkujR0tNm9rlli2l/fevfPlLLpH693eCJQsWSIWF0t9/S5s2OaERSTr7bBs6xx8q6dQpuFLJHntY0AUAqgtD1dRwDFUDAAAAAAAAAAAAxMdTT0kjRuw8ONKkiVUbycio2nZ8PmnlSguQbNwonXCCc12PHjZkTkUaN5Y2bHCCI88+axVP/KGSnByrZAIAkWQNCI7UcARHAAAAAAAAAAAAgPgoLJRatZLy8ytfxuWSHn5YGjUqNn3wei1UElidxD/ftKn03XfOsp07S3/95VxOSbGKJJ06SX37Snfd5Vzn81GpBKhPCI7UIQRHAAAAAAAAAAAAgPi56y5p7FgLcIRyuaQWLaRFi6QGDeLft9Dwx5gxVp1kwQIb9qakxLmuXz9p+nTncv/+UnFx8LA3/qlVKxt+B0DdQXCkDiE4AgAAAAAAAAAAAMRPXp7Upo2FLCryzDPSpZfGt0+7orxcWrbMqU7SqJF07rnOdenpwcGSQHvtJf38s3P57bel5s2dUAmVSoDaJ5KsgSdOfQIAAAAAAAAAAACAGi87W7rkEmn8eAtc+LlcUk6OdMEFievbjiQlSe3a2XT44cHXud3S3LlOqCRwWrRIys11lvV6pfPOk7Zts8vp6ValxF+pZJ99pBNOiNOdAhAXVByp4ag4AgAAAAAAAAAAAMTX4sVShw7hw9W88op0zjkJ6VLMlJVJW7ZIjRvb5YIC6fTTLVSyeHFweEaSTjxReucdm/f5pP33twotoUPgtGhBpRIgkag4AgAAAAAAAAAAAABV1K6ddNpp0oQJFqxwuy0YceaZie5Z9fN4nNCIJGVmSp98YvOlpRYeCaxQ0q+fs+zq1dKUKRWvNyNDuugi6ZFH7LLPZ8t27GjD4BAqAWoOgiMAAAAAAAAAAAAAEOLGG6W33rJ5r1caN86Gg6lPkpOdCiIVycqSPvwwfPibpUulzZstcOO3bp1VJ5EsnBJYnaRjR2ngQKlr19jfJwDhGKqmhmOoGgAAAAAAAAAAACAxDj1U+vprqXdvaeZMqmTsqqIiadEiKT1datvW2ubMkYYMkZYts+ojoa69Vnr0UZvfsEEaMSI8XNK0adzuAlDrMVQNAAAAAAAAAAAAAETpttukNWukBx8kNBKJtLTw6iHdu0tLllio5O+/rTLJggVOlZL+/Z1l582T3ngjfL1Nm1qI5IorpHPPtbbSUmnr1uDhdgBEhuAIAAAAAAAAAAAAAFRg0CBp9uxE96JuSUuzEEn37pUv07q1dP/9weGSlSutEsnPP0tnnuksO3OmtPfeUna2VSUJrFLSqZPUubPUqFHs7xdQmxEcAQAAAAAAAAAAAADUGLm50ujRwW1btzohkj59nPalS+1vXp5NP/0UfLtHHpFGjrT5RYuskkng8DcZGTG7G0CtQXAEAAAAAAAAAAAAAFCjNWwo9e5tU6BTTpEKCpzhbwKnBQssIOL388/SrbcG33633ZxKJZddJu21l7X7fAxPtCMrVtj/vWFDKT3dprQ0ye1OdM9QFQRHAAAAAAAAAAAAAAC1VkaGVSEJrETi5/M5823aSOee6wRL8vKk1att+uEH6YQTnGX/+1/p6quDq5MEzqenx/hO1WBFRVL//tKaNeHXpaXZ1KCBTY0aWbgkI8MJmQSGTXZ0OTdXats2/vevPiI4AgAAAAAAAAAAAACokwKrhhxwgE1+mzY5w9/Mny/16+dcN3++tGqVTd99F77ejz6SjjnG5v/6S5ozx0IlHTpYYKIuS02VWrSQ1q4NDuZIFiopKrL/bSiXyyqSuFzO4+Lz2VReHr58ixY2FFFqarXfBYQgOAIAAAAAAAAAAAAAqHcaN5YGDLAp1JVXSoce6gx5EzgEzsaNwZUw3ntPGj3a5l0uq2wSWJ3kzDOlVq3icY/iw+WSbrlFGjYssttVFhCpiNttIZyUlMj7h8i5fL7QDBBqkoKCAmVlZSk/P1+ZmZmJ7g4AAAAAAAAAAAAA1Gvr10tZWZJne5mGZ5+V/v1vC5Xk54cv/+uvUu/eNv/CC9IbbzjBEn+4ZI89aldljbIy6/Py5eFVR6rLpEnSQQfFZt31QSRZAyqOAAAAAAAAAAAAAACwi5o1C7588cU2+XxSXp5TmcRfqaRjR2fZX36RvvrKpkBut5SbK33xhbP84sVSSYnUrl3Nq7zh8ViVlREjYrPuQYMIjcQTFUdqOCqOAAAAAAAAAAAAAEDdMHu2NG1aeLhkyxa7Pj9f8p8WvvJKafx4KSnJhsYJrFLSqZN0yCFSWlri7kthoQ3BU1GVlWj98os0cGD1r7c+oeIIAAAAAAAAAAAAAAA1TI8eNgXy+aQ1a6SFC53QiCSVl0vp6RbQWLjQps8+c67fsMEJjvzrX9KcOcHBkrZtneF0YiE9XRo5Uho7VvJ6q2edHo80ZAihkXij4kgNR8URAAAAAAAAAAAAAKiffD5p1SqnQol/WrdO+v57Z7mjj5Y+/TT4th6P1L69hUj++18nZLJpk5SRYZVMopWXJ7VpIxUXR78uSXK5pFmzwsM1iFwkWQN3nPoE1C7rJks/nG5/AVQN+xEQPfYjIDrsQ0D02I+A6LAPAdFjPwKix34ERId9CAnmctlwMAcfLF10kfTAA9I77wSHRiTpggukG26QTjhB6t7dQiJlZRYy+fFHKTXVWfass6xaSNeu0vHHS6NGSU8/LX35pbRkiYVVdlV2tnTJJTsOoey352S9NeJ07bfnjvcjj0caNozQSCJQcaSGo+JInG1dJs28UVr6lixX5ZVyh0l9H5Qa5iS6d0DtwH4ERI/9CIgO+xAQPfYjIDrsQ0D02I+A6LEfAdFhH0It5/VKK1ZYcGTjRunkk53revSwYW0qkpEh5edbYEWSXnhBKi2VOna0yiVt2kjukPIUixdLHTqED1fTpukyPXjGjTpjv7dU7nUrye3Vmz8O041vPqjlG8L3I7dbmjfPtoXoRZI1IDhSwxEciZOyQunPh6Q590m+cslX5lzn8kiuJKn7zVLX6yVPeuL6CdRk7EdA9NiPgOiwDwHRYz8CosM+BESP/QiIHvsREB32IdQD5eXSsmUWKlmwIHgInCZNpClTnGW7dZP+/NO5nJZmIZFOnaTevaU777T2M86QJkywKicNUgp1w7EPaczx9ynJXa7kJGc/Ki33qNybpHHv36yHP75e20psP0pKks4/X3ruudjf//qC4EgdQnAkxnw+ael/pOkjpaI1krw7WNgtpbWU+j8q5Z7mxOyA+o79CIge+xEQHfYhIHrsR0B02IeA6LEfAdFjPwKiwz4ESLJdIfApfdNN0uzZFipZuNCCIX59+kgzZ9r8zJlSv34+nbbPf/To2SPVMmuNktyV70flXrfW5LfUyNce1X9+Ok0ej0sLF0o5FPSpNgRH6hCCIzG0Ybo0bYSUN0WSS9Ku7Arbl8veVxrwpNS0X2z7CNR07EdA9NiPgOiwDwHRYz8CosM+BESP/QiIHvsREB32IWCXlJVJS5Y4lUoaNpSGD7frvHnT9dOTI7TfnlNU7nUpyb3z/ci/3I/z99WPxU/q+nHsR9WJ4EgdQnAkBratkX67WVr4ouRyW5mxSLk8drs9hku9x0kNWlZ/P4GajP0IiB77ERAd9iEgeuxHQHTYh4DosR8B0WM/AqLDPgREb/t+5Fv4onw+t9yuyPej0nKPPEnlcrEfVSuCI3UIwZFq5PNJfz4s/X6n5C2u2pt/KFeS5E6Vet0ldbmOUmSo+9iPgOixHwHRYR8Cosd+BESHfQiIHvsRED32IyA67ENA9NiPajyCI3UIwZFq5C2V3kqJ3fqHlUju5NitH6gJ2I+A6LEfAdFhHwKix34ERId9CIge+xEQPfYjIDrsQ0D02I9qvEiyBu449QkAAAAAAAAAAAAAAAA1DMERAAAAAAAAAAAAAACAeorgCAAAAAAAAAAAAAAAQD3lSXQHAAAAAAAAAAAAACBiPp8z73IFtPkqXNy5nTdmXZIkecv1v9/vu9wBffNa/1wua5d2rb8VclV8n2O9XqmK/7/Q9fqbXQHrrUp/Ffv1AvUAwRGguny2r9S4u7Tvy07bpKHStpXSPi9KjXtY26JXpXmPR7butN2kQR85l6ecJ22aLfV/TGpxoLUt/1D6/Y7I1utOlY6c4lyedrW07nup551Sm6HWtvYHadpVka1Xko74UfKk2/ys26Xl70udr5E6XGBtm+ZIP55R8W139AZ+yCdSehubn/uo9PcL0h7nSV2vt7bCldI3R1Ry4x2sd783pSa9bP7vF6W5D0uth0p9xllbeZH0Sd/Kb1+ZgU9LLQfZ/LL3pN/GSM0PlPb+t7PMJ32lssLI1tt7nJR7ss2vmST9crGU1UM66B1nmS8PkQqXR7bebjdIHS+x+U2/S9+dKDVoJR3+XWTrqaoPOkV2IJZzktTvHzZfXiR91MXmj5kjeRra/IzrpaVvR9aPloOC9+WPutpjdPj3UsNca5szTpr/dGTrbdxLGvSxc/nz/aTCZdJBH0hNtz+/5j8jzb47svU2aC0d9Ytz+dtjpY0z7T7sdpi1LfmPNP2ayNablCYNXeRc/vEcafWXUr9HpXbDrG31V9KPZ1Wygh3sc8cvdB6jaddIS9+Sut8qdR5hbRt/lb6ubF/egaOmSg3b2vzvY6W/npA6XSH1usvati6TPq3CvnzIZ1LT/jY/70l7vW17ujRwvLWVbZPea71r66rqh5RdNSHb+tV+++Oy6gvph1OlJn2kw751lvu4p7R1SWTr7nWX1GWkzW+YIX05SGqYY/uc35eDpA3TIlvvnlc7r7dbl0ofd7Pn38l5zjLfnyKt/KSCG+/g/9nuLGnvZ22+bJv032Y2f9JaKbmRzf98ibT41cj6u9sR0sHvO5cnNJPKtkrHzpUatbO2326R/nw4svU26Rf8vvzhntLWxdJhP0jZe1nbn49Iv46ObL0Nc6Xj/3Yuf76ftH6qdNB7UutjrG3hK9LPwyNbrztNOn2rc3nS8dLKj6W9n5f2ON/aVn4ifTsksvVK0qmbncfop+HSwpekPvdL3SK871XxVoqkSt6LKnuPOvxHKXtvm/c/Ru3PtmNAyZ5/E7J2sNFK1nvgu1Lr7f+/Ra/Z+33o8++/ze35F8l6Bz4t7XGuza/6XPr+ZKlJ3+D3+x29RlT2f+h5l9TlWpvfMFP66hApPUc65ndnma8OkzZM34X1BbTteaXUa6zN+1/H3WnSiQHHOZPPlFZ/Ufk6KtpW7mnSgCdsvmyb9EF7mz/+b+c9avq10pL/i6y/LQ+R9nvNufzhnnYcccSPOzmO2Ml6G/eSBn3oXP7iQDuOOPBd5zhiwb+lOfdVsJ6Q9cX6vejDLpInLfj94eeLpDXfSH0ekHJPsbY130o/XRD5+o/53XmMZt4gLZ1grw+dLrO2jbOk746PfL2HfW/va5L9H+c/I3W8WOpxq7UVLrfX0Egd9H7Asd6/pDn3SDmnSP0ftbbyIumDjpGvd9+XnGO9pW/b8zX0+fdBJ6m8steISvR9JOBY72s71mvcSxr8mbPMp3tJhUsjW2/3W6XO2z9bbvxV+uZIqUEb6eiA14RvjrJjjEh0ukLqdafNb10mfdrPjiNOWOYsM/lMafXnka0393Rp4FM2X7ZNem/759ChS6Sk1MjWFanf75L+ejKy24Qe603sZa/jg7+Smg2wtnn/lH67NbL1hh3rHWKv4wf8R2p1lLUtel2aemlk663oWG/Vp/Ye1f4ca1v1uX0mjdRJa5zjiF8ute9het0tdb3O2jZMl744IPL1HvNn8LHe3Efse44+91vb1iX2mh+pw753jvXmPir9epPU7mxpn+etbafHEZU48N2QY70Lpd2PDP5+6e3GUtmWyNa793MBx3qfSpOOtc9KR/7sLPNBB2nLogpv7ojxe5H/mK7rdVLfh6xt6xLpgz0qP46NRLtz7HVYssfo7UybP2VjwGeNi6SFL1d480qFPUZN7HX82HlSo+3HKr/eLM39R2TrDf2s8VEXacti6bDvAp5/j9n3VpFIz5GO+8u5/MVB9nnwgAkBx7Gv23FsJJIaSKesdy5X9hrx/UmRrVeSTlwd8BpxubT4NTvWDP2sG6khs5zXiFl3SPMek/YcIfW+x9q2LpMm9oh8vUGv40/Y96xth0l7RfidVFW811Yqr+g7yx3svwOess9C0vbvI07Z/h41yVnm4x5V+D4i9DE6yJ5/x/7pLPPlIPusG4nO1wR/H/FRF3uPOmWDs8x3J0mrKvo+YgfanWWvl9L21/EmNn9yXsBrxMXSolcqWUEl/+Pdjgz+TFDha8SYHXwfUcl6w17HO9r3EYdPDvis+w879o5Ew1xp6GLn8mf7SOt/kQ7+QGp9rLUtfFn66fzI1puUJp2+zbk86bjt30e8IHXY/t3Gqk+r9n1EdfpPA2f++IUhj9GDUpfrpH7bH6vCpdL77SLfxhE/OY/R3O2PUftzne+2y4uk/6RHvt6DP3Qeo0Wv2GO0+1F2fsbv7cwdfB9RiYoeo6b9paMCvkv8YA97/kUi8DujDdOlzwZK6bnSCQGvNZ9vf/5FIvAx2rrEHqPQ59+3x0Z+HBH4GJVtcx6jir4Pi0ToY/SfRvYYBT7/Zo62518kQh+j99vbY3TET1LTfpGtCzUawRGgumycHv5d76ZZ9uIZ+OZZtCb8y/KdSc8NvlwwV9o4QyrNd9pKNtiJ4kgkpQVf3rLQvsArDjgwLtssbfotsvVKwWnTwmX2vyhe57SVb7NgQqS8pc78ttVS/mz7+7/tlkr5c8JvtzPlAW/0Jeul/D+kpgMC1uuz/3ukAr+AKc23dTRsF7zM5vmRH2CVFjjz5YW2juTM4GW2Lo78AKtkY8B6i6Utfwf/z2OtMMIPjcUBXzT6fM6HzsCTISXrI/9Su2htSL+W2WPkKw9Yb37kwZy0lsGXt62ydXhLnLayLRY4i4Qr5O28eJ2to7zIaSvfJhWtVkRCXyNKNto6AvcXb4m9rkUq8DEqK7D/eeCXEd6y4NeMXV5vwGtP2VZ7jgTtX16peH3YzXbKWxYwX2SvuaH7beD+k0hlBcHPKV+Zvf6EfiFctsVe4yMRtF6v3b40ZL3l2yJ/TQtcr3zh+5tkz+cKv7Da1fUq+Ln7v82VBu8rVVmvt9imwC9gvGXhy+2ML+T11lu6/TU48Isdrz2mkfCGLO8r376OwPX6qvBLkZDlfV7nVzO1XiX3YZfu2/bHKPT/WaX304B1+MrtuVrR87qi5/aOBO5fvnJ7PQjdv6r0GlEcvN7SfKk05ERX2WapdFNk6w0K2G5/HQ99jyotCD4u2BWBx1OS834W+DiX5kf+/hn6PrNtZTUdRzQPvly43I59Ap8TpQWRH//FwtaF4Y/RttX2eaM04HlVvk3aurMTixUIfIyK8+w+B3428pZEfjJCCn59Ldlkx5AlmwKuL7fjwkgFHetttseuJOAzl88nbVsR+XoD37/KCu25Fvr8K1oV+fty0LFese0DJSEB2eJ1kR8DBgZYvGV2/Oeu4Hgz0mPAoGMcrz0nKnyNiPAYMPTYKfAxi7XyouDn9K4I7W/pZrvfga893pLIX9vDjvUKbR2B+4uvLPLnWUXHemVbg49bfOWRH/+F8pbYczqov77Ij//shgHrLdv+vhxynBXp8V/oen3lto7Q470qHUeEHuuVhf/fK2rb6WpD11tewXq9IdtPFF/48ZvPq0qPYyNdd9DFCo7R/3fcHclqQ/+XpeGPv/95EtF6Q9ZRXsFnGF9Z5PtGeXHwZW/x9veRwOPYssiPV0P/v5W9RkT62hPKW2SvnxV91o1YQJ/Li+w1OOj/6Q0//tyl1Qa+jhfbsXS0r427qjS/Cp/DA55rvjK7z6GPU9nWyENrYY/R1vAf4pVvi/J7A9/256ovfJmIvzcI/XxfHL6MryrfG4R+vq/oNaIK3xuEvfZU8NquKlSuCPsMXdXqFwCAeHD5fHXim906q6CgQFlZWcrPz1dmZubOb4DKeUu3/9ogRg58T0ptJrUI+NXK6q/tYLP5flLK9lTxloVSwbzI1p2UZr8c81v3ox24N+0vpbWwtsIVVoUkEi63tPvhzuUNM+xLtqzuUvr2LwaL8iIPpEjWX/f2k9mb5tgXlo06Osn70oLIE+CSlL2f5Nme1N28wJLg6TlSZidrKy+S8qZUfvvKNO3vBC+2LrPARFpLKaurtXnLpXU/VH77yn55m9XdnheStG2NtHmePRca93SWWTd5B19QVLLejE5Sg+0hhOINFnRJbmQJfr8N08M/wO9Mw7bOY1+6xQI/7hTnlw2x3o8Om+w8b3ZFajMpo4PN+7zS+u2p16b9JXeSzW9ZFPmXxMmZUmbAL8U2zLD1N+7p/LqwcPlOviyv4LFLSpeyujiXN822D4iZnZ1fzW5bE3lwxJ3sVDWSpIK/7INyw/ZSyvYTdsUbqnCiw+VU4pHsf1m62ar+pDa1ttLNVTtBldnNeYwKl9tJmbSWzkmxsm32ehmpjE5S0vbn6LY1FhxKaebsL95Se+2IVMN2zmtP8Xo70ZGcJaW3sjaf1wJcu8JbKk3sufPlqmrIHNuP/Y992VarxpSU6vzSXbJfl1X6RUIlrz2pTZ33s/Iie+9xe5wqL1J4GGpXJGc5r5Xesu3PVZfzniHZ4xnpl42ehs5zyud19oH0HKe0ZvH6yL9sTEpz3n8le9+Qzyo0+V/DSjZF/kWYK9l5rkoWLvOVS6nNndee0s3BJ113ab1JwestWmfPw9Smzom1ssLIT1BJUoPdnfmSjfa+k5zpVB0rLw4+6bqr0po7j5H/C1dPQ5ti/V40dJm9rv5PRV90hUhp5rz2lG6xPnsaOPuLz7eD1/YdfBxLaea89pRusZOWYc+/pRWvY0cf81KbSckZNl9WaCeF3SlOVTdpeyChoteInaw38DVi61LbJxrtEbzeir503VF/U5o4z+HyEmnLAkku5zjNv97Qk5s7629KY+c++7zOsXRWd+c9auvSHQQDK1m3J8M5PpEsmO3z2nr/dxyxIuQ4YhceQ0+6lNUtYL2/bT+O6Or8Imnbqu2vSTvqo88e2y8PrLj/1eHQ72yf8P/yTZLy59qJjkZ7OM/hkk2RfzaSLOD9v2O9hfaZJb2N875cttWOjyPVuJfzGG1dZo9RWkunCkl5sQXXI5XZJeRYb4WU0tR5n/N57fGMVKM9Qo71llbw/JuliL+cT88JONYrsGOGpAbOZy7JHs/Qk5A7k7ZbwLFeoT127mQ7Fvbb/HfkJ2ZSm0kNdrP5Sl8jlkb+fh96rFew/Rf1mXva+3Ms34tOWFGF45PQY71Ftq83zHHe70s27uSzUQXHgBUd65UX2//c/7wu3VyF0LfL+dWjZOGy8m1SanbIe9Taim++Iw1zneOIojw7Jktp4uwv5cVVC78HHetttPudnOG893nL7HU4UmktQo718u2zo38/3OFxxA6kNHWOI8oKrc/uVCkt21mmKv1Nzgo41iuy9bqSg9dbtHbnQQxvqfR+7o6XiYb/mM6T7jynvOXOc9X/uiHZa2hFJ3V3JCkt5FhvlbNe//OvZKN9tq1QJa/NoY9R4QpbNm23gOdffuTBhtDPGoUr7bUs6PlXEPmxuyvJ+R5Jsv+Dt8Q+w/ifJ6VbIg/4SiGfByt7jajCvtywbcBrxFrb7yr6rBvxenOdzxFFeXbck9zYeTy9pfaeGqn0NgHfR2yw/2Vypj3XYv3Z6Jg/wn+stDNpLYK/j9i2yp7X/uMpaQefNVT5d6wpTe34XbLX8W0rrG+B732FK6vwfUSm83rrLbP3OZcr+L2vaG3kxyeehs73HD6v85xKbx3wfcSGyIMu7tTgQHnhStlrRMuQ14gIjyPcycHrLVprrxGhn3V3+D1HRRUf3cHrLV5v/+eUxs5rT9m2nbymVfKcCFxvSb499skZznFP+S4EZr2l0ru773iZaJy42nldSM5yPsOUbbXnVFKaczzlLY/8RxaSPYf92yjbHp5ypzqfEX2+qgWgPRnOY19eZI+/O9nZvyV7rYu4v42CH6PSAnvu+vdvyfaNSAOdnnTnfcdbas8Jl9vZvyV7X67stacySQ2c/6W33PlfVvT8i2i9qc75KJ/PeZ9MzXZeB0sLIj+/404O/l8WrZPks33Z//wrreDHQzvj8gT/L4vyJHmd985YvhcNKwn5ng6RiiRrQHCkhiM4Uo1ifSDNixfqA/YjIHrsR0B02IeA6LEfAdFhHwKix34ERI/9CIgO+xAQPfajGi+SrIE7Tn0CAAAAAAAAAAAAAABADUNwBAAAAAAAAAAAAAAAoJ4iOAIAAAAAAAAAAAAAAFBPERwBAAAAAAAAAAAAAACopwiOoP5weaS+D0lJ6ZIrqZrWmSR5Gkp9H7b1A3Ud+xEQPfYjIDrsQ0D02I+A6LAPAdFjPwKix34ERId9CIge+1Gd4vL5fL5EdwKVKygoUFZWlvLz85WZmZno7tQN29ZIs26R/n7BXnx8ZZGvw+WRfOVShwukXvdKDVpWfz+Bmoz9CIge+xEQHfYhIHrsR0B02IeA6LEfAdFjPwKiwz4ERI/9qMaKJGtAcKSGIzgSQxtmSNOukvKmSHJJ2pVdwS3JK2XvJw14UmraN7Z9BGo69iMgeuxHQHTYh4DosR8B0WEfAqLHfgREj/0IiA77EBA99qMah+BIHUJwJMZ8Pmnp29L0a6Wi1drxC5hLarC71O9RKfdUyeWKUyeBGo79CIge+xEQHfYhIHrsR0B02IeA6LEfAdFjPwKiwz4ERI/9qEYhOFKHEByJk7JC6c+HpTnjrAxSYAkll8fKKnW/Rep6veRpkLh+AjUZ+xEQPfYjIDrsQ0D02I+A6LAPAdFjPwKix34ERId9CIge+1GNQHCkDiE4Emdbl0m/jpaWvKn/lUZqe4bU5wGpYU6iewfUDuxHQPTYj4DosA8B0WM/AqLDPgREj/0IiB77ERAd9iEgeuxHCUVwpA4hOJIg6yZL856QOo+Qmu+f6N4AtRP7ERA99iMgOuxDQPTYj4DosA8B0WM/AqLHfgREh30IiB77UUIQHKlDCI4AAAAAAAAAAAAAAIBIRJI1cMepTwAAAAAAAAAAAAAAAKhhCI4AAAAAAAAAAAAAAADUUwRHAAAAAAAAAAAAAAAA6imCIwAAAAAAAAAAAAAAAPUUwREAAAAAAAAAAAAAAIB6iuAIAAAAAAAAAAAAAABAPUVwBAAAAAAAAAAAAAAAoJ4iOAIAAAAAAAAAAAAAAFBPERwBAAAAAAAAAAAAAACopwiOAAAAAAAAAAAAAAAA1FMERwAAAAAAAAAAAAAAAOopgiMAAAAAAAAAAAAAAAD1FMERAAAAAAAAAAAAAACAeorgCAAAAAAAAAAAAAAAQD3lSXQHapt169Zp6tSp+vvvv1VQUKDk5GQ1a9ZM3bp104ABA5ScnJzoLgIAAAAAAAAAAAAAAOwSgiO7aMKECXr88cc1efJk+Xy+CpfJyMjQaaedphtvvFF77rlnnHsIAAAAAAAAAAAAAAAQGYaq2YkVK1Zo0KBBOvXUU/XDDz9UGhqRpM2bN+v5559Xz549dffdd+9wWQAAAAAAAAAAAAAAgEQjOLIDf/31lwYOHKhJkyZFdLuSkhLdfvvtOuuss1ReXh6j3gEAAAAAAAAAAAAAAESHoWoqsX79eh1++OFatWpV2HX9+/fX0KFD1b59e23btk1//fWX3njjDa1cuTJouTfffFMtWrTQY489FqdeAwAAAAAAAAAAAAAA7DqXj/FUKnTyySfrnXfeCWrLyMjQq6++qqFDh4YtX1paqnHjxunOO+8Mu27ixIk6+uijq9SPgoICZWVlKT8/X5mZmVVaBwAAAAAAAAAAAAAAqD8iyRowVE0Fvvjii7DQSEpKir7++usKQyOSlJycrDvuuKPC6iIjRoxQWVlZLLoKAAAAAAAAAAAAAABQZQRHKnD33XeHtd1xxx0aMGDATm97zTXX6PDDDw9q+/vvv/XGG29UW/8AAAAAAAAAAAAAAACqA8GREH/88Ye+//77oLbs7Gxdd911u7yO++67L6zt6aefjrpvAAAAAAAAAAAAAAAA1YngSIg333wzrG348OFKTU3d5XX0799f/fv3D2r76aeftGjRoqj7BwAAAAAAAAAAAAAAUF0IjoT49NNPw9pOOeWUiNdT0W0qWjcAAAAAAAAAAAAAAECiEBwJsHXrVs2YMSOoLT09XX379o14XQceeGBYW+gQOAAAAAAAAAAAAAAAAIlEcCTAr7/+Kq/XG9Q2YMAAJScnR7yugQMHht1u+vTpUfUPAAAAAAAAAAAAAACgOhEcCTB37tywto4dO1ZpXSkpKWrTpk1Q299//62ysrIqrQ8AAAAAAAAAAAAAAKC6ERwJsHjx4rC2tm3bVnl9ubm5QZfLy8u1dOnSKq8PAAAAAAAAAAAAAACgOhEcCbB69eqwtpycnCqvr6LbrlmzpsrrAwAAAAAAAAAAAAAAqE4ERwJs2LAhrK1Ro0ZVXl9Ft12/fn2V1wcAAAAAAAAAAAAAAFCdPInuQE2ydevWsLYGDRpUeX0V3bawsHCHtykuLlZxcfH/Lufn50uSCgoKqtwPAAAAAAAAAAAAAABQf/gzBj6fb6fLEhwJUFpaGtaWlpZW5fVVFBwpKSnZ4W3uu+8+3XXXXWHt0QyZAwAAAAAAAAAAAAAA6p/NmzcrKytrh8sQHNkJl8tVrbfdWZpnzJgxGjVq1P8ue71ebdiwQc2aNYuqL4hMQUGBcnJytGzZMmVmZia6O0CtxH4ERI/9CIgO+xAQPfYjIDrsQ0D02I+A6LEfAdFhHwKix36UGD6fT5s3b1arVq12uizBkQDJyclhbdu2bavy+iq6bUpKyg5vk5qaqtTU1KC2xo0bV7kPiE5mZiYvXkCU2I+A6LEfAdFhHwKix34ERId9CIge+xEQPfYjIDrsQ0D02I/ib2eVRvzcMe5HrZKenh7WVt3BkYYNG1Z5fQAAAAAAAAAAAAAAANWJ4EiAZs2ahbVt2bKlyuur6LYVbQMAAAAAAAAAAAAAACARCI4EaNmyZVjb8uXLq7y+ZcuW7dI2UPOkpqbqjjvuCBs2CMCuYz8Cosd+BESHfQiIHvsREB32ISB67EdA9NiPgOiwDwHRYz+q+Vw+n8+X6E7UFM8//7wuuuiioLYLL7xQzz33XJXW16FDBy1cuPB/l5OSklRUVCSPxxNVPwEAAAAAAAAAAAAAAKoDFUcCdO7cOaxtwYIFVVpXSUlJWMWRDh06EBoBAAAAAAAAAAAAAAA1BsGRAH379pXbHfwvmTZtmsrKyiJe17Rp01RaWhrU1q9fv6j6BwAAAAAAAAAAAAAAUJ0IjgRo2LCh+vbtG9S2detWzZw5M+J1/fDDD2FtBx10UJX7BgAAAAAAAAAAAAAAUN0IjoQ46qijwtr++9//RryeCRMm7NK6AQAAAAAAAAAAAAAAEsXl8/l8ie5ETTJnzhz16NEjqK1FixZatmyZUlJSdmkdM2fODBuWZu+999ZPP/1Ubf0EAAAAAAAAAAAAAACIFhVHQnTv3l0HHHBAUNvatWv16KOP7vI6br755rC2yy+/POq+AQAAAAAAAAAAAAAAVCcqjlTgs88+CxtWJjU1VT/++GNYJZFQTz75pEaMGBHU1r59e82bN0/JycnV3lcAAAAAAAAAAAAAAICqouJIBY488kgNHTo0qK24uFiHHHKIPvzwwwpvU1paqrvvvltXX3112HX//Oc/CY0AAAAAAAAAAAAAAIAah4ojlcjLy1Pfvn21fPnysOsGDBigoUOHqn379tq2bZvmz5+v119/XStWrAhb9qqrrtITTzwRjy4DAAAAAAAAAAAAAABEhODIDvz5558aPHiwVq9eXaXbn3baaXrjjTeUlJRUzT0DAAAAAAAAAAAAAACIHkPV7EDXrl01depUHXjggRHdLjk5WXfeeafefPNNQiMAAAAAAAAAAAAAAKDGouLILvD5fHr77bf1+OOPa8qUKarsX9aoUSOdeuqpGj16tDp37hznXgIAAAAAAAAAAAAAAESG4EiE1q5dq19++UULFy5UQUGBPB6PsrOz1bVrVw0cOFApKSmJ7iIAAAAAAAAAAAAAAMAuITgCVKK4uFhbt25VWVmZ0tPT1bBhQ7lcrkR3C6hV2I+A6LAPAQAAAKhvFi5cqKlTp+qvv/7S4sWLtWzZMm3evDnss1GLFi3Utm1btW/fXr1791a/fv2Unp6e6O4DAOoA3ouA6LAP1U6eRHcASLTff/9dU6dODXoBW758ucrKysKWbdq0adAL2MCBAzVw4EA1bdo0AT0Hag72IyA67ENA9AoKCjRt2rQqfSgdOHAgQ00CYj8CosU+BFTNypUrNXHiRH3yySeaNGmSNm7cWOFygb9/rChQ73a71b17dx155JEaMmSIDjjgACUlJcWs30BNxHsRUDW8FwHRYR+qG6g4gnqnsLBQ77//vj7++GN9/vnnWr9+fdD1u7JLBL6YuVwu9e/fX0OGDNHQoUPVp0+f6u4yUOOwHwHRYR8CqseUKVP08ccf65NPPtFvv/0Wtu/saF8K/XCalZWlww8/XEOGDNExxxyj7OzsmPQZqGnYj4DosA8BVbNlyxa9/fbbeuWVV/T999//b1/Z1X1mV5Zr1qyZzjjjDJ1zzjkaMGBANfUcqHl4LwKqhvciIDrsQ3UPwRHUG99++61efPFFvfvuu9q6daukil+UdmUIgB3drnv37jrvvPN03nnncWCNOof9CIgO+xAQvYULF+rll1/Wq6++qiVLlkiq/IPmjvalHe1DHo9HRx55pM477zwNHTr0/9m77/ioqvz/4++bHkIPvUU6CIZiEAtC6CCIoCj2BoKguC5YQEUEVEAXaYqyIq76VRdFQASiQOgLKE0CKoHQAwQwgQAppN3fH/4yZpIASe6UZPJ6Ph55bO5l7jmfceedM3PPmXvl48OFGuFZyBFgDRkCiu7w4cOaMWOGPv3003w/Ezni1pz5tdemTRuNHj1a9913H99ahUdgLAKKjrEIsIYMeS4WjsCjpaen66uvvtL06dO1Z88eSQX741WYVdj5HWMYhvz9/fXII4/o+eefV/PmzYtSPlAskCPAGjIEOMb69ev13nvvafny5TJNs8AfSHNnqaCPzX5cjRo19Oyzz2rYsGHcEgolHjkCrCFDQNFFR0dr/Pjx+u6775SVlWV7refOQ36fg3x9fVWmTBkFBgbKx8dHKSkpSklJUXJycr59XembrIZhqHbt2nrllVc0ZMgQJsFRIjEWAUXHWARYQ4Y8HwtH4JGysrI0f/58TZo0SbGxsVd8A5375V+xYkXVqVNHNWvWzPcPWEJCgmJjYxUXF6eMjAy7Y/Nr1zAMGYahgQMHauLEiWrSpIkzni7gFOQIsIYMAY6xevVqvfbaa9q2bZsk5fuhNL+PNGXLlr1qjs6cOaOsrCy7Y670QdcwDAUGBurZZ5/Vyy+/rEqVKjn0OQLORo4Aa8gQUHSxsbF6/fXX9X//93/KzMzMk5+c2bnuuuvUrl07tWrVSjfccINCQkJUp06dK05Sp6WlKTY2VidOnNC+ffu0e/du7d69W9u3b9fly5ft+snZl2EYuu666zRx4kQ99NBDTnnegKMxFgFFx1gEWEOGSg8WjsDjLF68WGPGjFFMTMxV/3iFhISoc+fOdn/AypUrV6A+TNNUTEyM7Q/Yxo0b9fPPP+f5I5azf29vbz322GN66623VK1aNYc9X8AZyBFgDRkCrNuxY4defPFFrV+/XtJfr+X8Pij6+/vrlltuyfOhtHz58ldtPzMzUydPnrT7ULpx40YdO3bM9pj8clS+fHm98MILeuGFF+Tv7+/Q5ww4GjkCrCFDQNGlp6fr3Xff1eTJk5WcnGyXn+zXc2BgoHr16qU777xTnTt3VkhIiEP6vnz5sjZv3qzVq1dr0aJFio6OlpR/nm6++WZ98MEHat26tUP6BhyNsQgoOsYiwBoyVAqZgIfYt2+f2aNHD9PLy8s0DMM0DMP08vKybXt7e5sdO3Y0Z82aZR4+fNjh/aekpJgrV640hw0bZlavXj3fGry8vMyKFSuas2bNMjMzMx1eA2AVOQKsIUOAdfHx8eZTTz1lent7271uc+YqJCTEHDVqlLl27VozNTXVof0fOnTI/Pe//2327NnT9PPzs8tRzt/r169vLl261KF9A45CjgBryBBgXZMmTfLNj5eXl9mjRw9zwYIFZlJSkktq2bt3rzl27FizZs2a+ebJx8fH/Pzzz11SC1BQjEWAdYxFgDVkqPRh4Qg8hp+fn90frew/Fg0bNjTffvtt89SpUy6rJSsry1y5cqV5zz332N5Y5/6jOnnyZJfVAxQUOQKsIUOAdZUrV873Q2m5cuXMoUOHmj///LPLajl37pw5d+5cMyws7IonSmfNmuWyeoCCIkeANWQIsC53fipWrGiOGTPGPHLkiNtqysjIMBctWmR27NgxzyL7CRMmuK0uID+MRYB1jEWANWSo9PFy9xVPAEdJT0+3/W6apsLDwxUREaGYmBiNHTtWNWrUcFkthmGoe/fuWrhwoY4fP67XXntNFStWtLuMU1pamsvqAQqKHAHWkCHAunPnzkn66zVsmqYaNGigDz/8UKdOndLcuXN10003uayWihUraujQodq2bZt27typhx9+WN7e3rb6ctYLFCfkCLCGDAGOYZqmqlatqsmTJ+vYsWOaPHmywy5fXhTe3t4aMGCA1q9fr40bN+qOO+6wu5UoUJwwFgGOwVgEWEOGShcWjsCjmKap3r17a8uWLVqzZo169uzp7pJUrVo1TZw4UceOHdM777yj4OBgd5cEXBU5AqwhQ4B1pmmqRYsW+vrrrxUdHa1hw4YpKCjIrTW1bt1an3/+uWJiYjRixAj5+vq6tR7gWsgRYA0ZAqwpW7asxo8fr4MHD+rll19WuXLl3F2Sndtuu03Lli3Tpk2bdOutt7q7HCBfjEWANYxFgDVkqPQxTJbhwEO0b99e77zzjjp16uTuUq7q4sWLmjp1qipVqqTRo0e7uxzADjkCrCFDgHUhISGaOHGiHn30Udu314qjw4cPa9y4cWrWrJlee+01d5cD2CFHgDVkCLDuzJkzqlatmrvLKLCzZ8+qatWq7i4DsGEsAqxjLAKsIUOlDwtHAAAAABQbly9flr+/v7vLKLCSVi9Kh5L2uixp9cLzlbTXZEmrFwBwbSXtb3tJqxcAAOTFwhEAAAAAAAAAAAAAAIBSysvdBQAAAAAAAAAAAAAAAMA9WDgCAAAAAAAAAAAAAABQSrFwBAAAAAAAAAAAAAAAoJRi4QgAAAAAAAAAAAAAAEAp5ePuAgAAAAAAAAAAyCk5OVnJyclKS0uTaZry8/NTUFCQypQp4+7SAAClBGMRYA0ZKllYOAIAAAAAACRJmZmZ+vPPPxUfH5/vyZ3g4GBVqVJF3t7e7i4VKJbIEFB40dHR2rhxo3bs2KHo6GgdOnRIp0+fVlpaWr6P9/PzU/Xq1VW/fn01a9ZMbdu2VceOHdW0aVMXVw4UT4xFQOExFgHWkCHPYJimabq7CAAAAAAA4Fqpqalav3693cmd2NhYZWZmXvU4Ly8v1alTx+7kTqdOnRQQEOCiyoHigQwBRXfkyBF9/PHH+vrrr3X06FG7fyvo6WrDMOy269WrpwcffFBDhgxR/fr1HVYrUJwxFgFFx1gEWEOGPA8LR1BqJCQkKCIiQocOHVJcXJwCAwNVs2ZNtWvXTh06dJCXl5dD+hk6dKhiYmIk/fUHLzIy0iHtAsUBOQKsIUOAdVlZWdqyZUueHIWFhSkkJMRh/bzxxhs6duyYpL9y9MknnzisbcDdNm3apA8//FDff/+9UlJSbPsLe3og5wmegIAA9e/fX08//bRuv/12h9UKFEdkCCi6M2fO6OWXX9aXX36pzMzMfHOTewLhSq50rLe3tx588EFNmTJFNWrUsFwzUBwxFgFFx1gEWEOGPBcLR+DxYmJiNHr0aEVERFxxpXXlypX15JNP6qWXXlJwcLCl/tq0aaOoqCiZpinDMK65uhsoCcgRYA0ZAqw7d+6c3njjDX311VdKSEjI9zGhoaEaOnSohgwZIl9fX0v9kSN4or1792rkyJHasGGDpLwnaAp6YifblY6//fbbNXv2bN1www0WqgWKHzIEWPP999/riSeeUGJiou31f63cFDZnOdstX7685s+frwEDBlioGiheGIsAaxiLAGvIkGdj4Qg82rx58zRy5EjbfRyvxjAMVapUSdOmTdNjjz1W5D6ZZICnIUeANWQIsC4iIkKPPfaY4uPjC5SjRo0aae7cuQoPDy9yn23atNHu3bttbZIjlHSzZs3SSy+9pPT09Gue3ClIzq51nK+vr6ZOnarnn3++aAUDxQwZAqz58MMPNXLkSGVlZUmyz0HuzHh7e6tmzZoqW7asAgMDFRgYKMMwlJKSopSUFF26dEmnTp1SRkaG3XH5tWkYhmbNmqVnnnnGWU8NcBnGIsAaxiLAGjLk+Vg4Ao/1wQcf6Lnnniv0ijfDMDRw4EDNnz9fQUFBhe6XyTp4EnIEWEOGAOsWL16sBx54QGlpaZKunqOcH228vLw0evRoTZ48uUi3gSJH8CRjx47VO++8k+94lDM3Pj4+ql27turWrXvVkzvHjx/XiRMnlJ6ebjv2Sid3XnjhBU2dOtXZTxFwKjIEWPPDDz+of//+tvdV2UzTlL+/v8LDw3X77bfr1ltvVcOGDVW7du1rvn/LysrSyZMndfDgQW3evFmbNm3S2rVrlZqamqcPLy8vLV68WHfeeafTniPgbIxFgDWMRYA1ZKh0YOEIPNKOHTt0yy23KCMj46or3qS8kw/Zf/SaN2+uH3/8UXXq1ClU30wywFOQI8AaMgRYFxMTo9atWys5OTnfnOR0pRyFh4dr0aJFqlChQqH6JkfwFPPmzdPQoUMl/Z2T7PzUqFFDd911l+3kTr169Qq80Mo0TR07dsx2cuf777/XyZMn84x5hmFo7ty5GjJkiIOfGeAaZAiwJjExUU2aNNHZs2ftMlS9enW9+OKLevzxx1W5cmWH9HXu3Dn95z//0b/+9S+dOnXKrr+qVatq//79hX5PCBQHjEWANYxFgDVkqPRg4Qg8jmmaCg0N1W+//ZbnTW5oaKh69+6tevXqKTk5WTExMfr+++8VFxeX76RevXr1FBkZqYYNGxa4fyYZ4AnIEWANGQIco2PHjtq0aVOebAQHB6tbt252OVq3bp0uX76c70nOVq1aaeXKlapSpUqB+yZH8AQnT55Us2bNlJSUZNtnmqZatGihCRMm6K677pK3t7dD+srMzNTSpUv1xhtvaM+ePXYnd8qWLavo6GjVrFnTIX0BrkKGAOsmTJigCRMmyDAM22ece+65R3PnznXYBENu58+f19ChQ7Vw4UJbv4Zh6PXXX9f48eOd0ifgLIxFgHWMRYA1ZKgUMQEPs2zZMtMwDNPLy8v08vIyDcMwK1WqZH733Xf5Pj4jI8P87rvvzKZNm9odl31srVq1zD/++KPA/bdu3dp2rJeXl6OeFuBS5AiwhgwB1q1fvz5Pjvz9/c1p06aZ6enpeR6fkJBgTps2zaxSpUqe4wzDMFu0aGHGxcUVuH9yBE8watQo22s4+39HjRplpqWlOa3PtLQ0c/To0fn2C5Q0ZAiwrm7dunav5f79+5tZWVlO7zcrK8u866677LJUt25dp/cLOBpjEWAdYxFgDRkqPbjiCDzOnXfeqeXLl9tWoJUrV06bNm3SDTfccNXjLl++rDFjxmjmzJl5vqlatWpVRUZGqmXLltfsn2+nwhOQI8AaMgRY98ADD2jBggW2HPn5+Wn58uXq2rXrVY+Lj4/XkCFD9P333+e5jHPjxo21Zs0a1a5d+5r9kyOUdKZpqlq1akpISLC9jocNG6Y5c+a4pP/hw4dr7ty5tgxXqVJFZ86ccUnfgCOQIcC633//XS1btrS9joOCgnT8+HFVrFjRJf2fP39edevWVXJysi3HUVFRatGihUv6B6xiLAKsYywCrCFDpUvBbnYHlBBZWVlat26d3WWL3nvvvWtO1EmSv7+/pk+frm+//VZlypSx7TcMQ2fPnlXnzp3166+/OrF6oHggR4A1ZAhwjJ9++skuRxMmTLjmohFJCg4O1uLFi/Wvf/3Ldm/v7AUkBw4cUKdOnXTs2DGn1g4UB7/++qvi4+Nt25UqVdK0adNc1v97771nd8na+Ph47dy502X9A1aRIcC6qKgo2++GYeiBBx5w2SSDJFWsWFEPPPCAcn5vMmdNQHHHWARYx1gEWEOGShcWjsCj7Nmzx+5+j3Xr1tUTTzxRqDbuuecerV+/XtWrV7ftMwxD8fHx6tq1q3bs2OGweoHiiBwB1pAhwLp9+/bp/Pnztu2qVavq+eefL1Qbo0aN0pIlS2yLsAzDkGEYOnTokDp16qQjR444rmCgGNq7d6/td8Mw9NBDDykwMNBl/QcGBurhhx+2O7mTsyaguCNDgHUnT56U9PfV31q1auXyGnL3mV0TUBIwFgHWMRYB1pCh0oWFI/Ao+/bts/1uGIbuuOMO2zdNC6Nt27batGmTQkJC7No7d+6cunXrpm3btjmkXqA4IkeANWQIsG7Pnj2237Nz5O/vX+h2+vTpo8jISLtvyRmGoaNHj6pTp046dOiQQ+oFiqPTp09L+vvkzvXXX+/yGpo3b55vTUBJQIYA61JSUuy2q1at6vIaqlSpIunvK9Clpqa6vAagqBiLAOsYiwBryFDpwsIReJRz585J+vvNdOvWrYvcVoMGDbRx40Y1adLE1p5hGEpMTFT37t21detWy/UCxRE5AqwhQ4B1uXMUFhZW5LZuuukmrV27Ns8VfI4fP67w8HDFxMRYKxYopi5fvmy3XaFCBZfXkN1n9smd9PR0l9cAFBUZAqwLCgqy2z5+/LjLazhx4oSkv99X5rwlKFDcMRYB1jEWAdaQodKFhSPwKNmTDNlyfru0KGrXrq3169erZcuWdhN2Fy5cUM+ePbV582ZL7QPFETkCrCFDgHW5c2T12wwtW7bUunXrVLNmTds+wzAUGxur8PBw7d+/31L7QHFUtmxZu+2jR4+6vIZjx45J+vvkTu4TTkBxRoYA6+rWrSvp7wnnTZs2ubyGjRs35lsTUBIwFgHWMRYB1pCh0oWFI/Aofn5+dttJSUmW26xWrZrWrVun1q1b203YXbx4Ub169XLLH0nAmcgRYA0ZAqzLfXsnR1yCskmTJtqwYYPdh0vDMHTy5El17tzZ7jZTgCeoX7++pL9P7qxatcrlNaxcudJu+7rrrnN5DUBRkSHAupxXXzRNU8uWLXPpgt3o6Gj98MMPthxLUps2bVzWP2AVYxFgHWMRYA0ZKl1YOAKPUrFiRbvtM2fOOKTdypUra82aNWrbtq3dhN2lS5fUu3dvrV+/3iH9AMUBOQKsIUOAdblzdPbsWYe026BBA61fv14hISG2fYZh6NSpUwoPD9cff/zhkH6A4uDGG2+0/W6aptauXauff/7ZZf1v3bpVa9assTu5k7MmoLgjQ4B1DRs2VOPGjSX99Z4rMzNTAwYMUGJiotP7Pn/+vAYMGKCsrCzbvkaNGqlhw4ZO7xtwFMYiwDrGIsAaMlS6sHAEHqVOnTqS/l6FfeDAAYe1XbFiRa1Zs0bt2rWzm7BLSkpSnz59tG7dOof1BbgTOQKsIUOAddm3lMnO0eHDhx3WdkhIiNavX2/79l52P2fOnFF4eLh+++03h/UFuFPt2rVt3wwyDEOmaeruu+92yf2Ijx07pnvuucdukqFVq1a2MRIoCcgQ4BjDhg2z++zyxx9/6Oabb9aWLVuc1ufWrVt1yy23aN++fbb8GoahYcOGOa1PwBkYiwDHYCwCrCFDpQcLR+BRWrRoYfvdNE2Hf/u6fPnyWr16tdq3b2/3RzI5OVl9+/bV6tWrbX0DJRU5AqwhQ4B1uXO0YcMGh7Zft25drV+/3u4bCoZh6OzZs+rSpYuioqJsfQMl2YgRI+zGilOnTqlt27ZasGCB0/r89ttv1a5dO506dUqSbCd3nnnmGaf1CTgLGQKsGzFihOrVq2fbNgxD0dHR6tixowYMGKCffvrJIe+5TNPUypUrdffdd+v2229XdHS0XZ/16tXTiBEjLPcDuBpjEWAdYxFgDRkqPQyTs6HwMJUrV1ZiYqLtDW1sbKztW6uOcunSJfXs2VNbtmyxrbo2TVOBgYEKCAjQuXPnJP192SagpCFHgDVkCLCuXLlySk5Olmma8vLy0tmzZ1WpUiWH9nHy5El16dJF+/fvt317QZKCg4Pl4+Oj06dPSyJHKLmysrLUunVruyvpZI9NN9xwg4YPH667775bVatWtdTPn3/+qUWLFumjjz7S7t27bX1ka9mypXbt2iUvL767gpKFDAGO8b///U9dunRRRkaGJNlNgktS2bJldcstt+iWW25Ro0aNFBISorp166ps2bK2zzeGYSglJUUpKSm6dOmSYmNjdfToUcXExGjLli3asmWLLl68mKd90zTl6+urNWvW6LbbbnPDswesYSwCHIOxCLCGDJUOLByBx+nfv7+WLl0q6a8/KO+++65GjRrl8H6SkpLUu3dvbdq0yW7CLvfvTDKgJCJHgDVkCLCuV69eWrlypaS/cvThhx9q6NChDu8nLi5OXbp0sV36UiJH8CzZl5C9dOmSbV/uEzyNGze2dHJn//79+bZrmqbKlSunrVu3qnnz5q582oDDkCHAMRYtWqQHHnjANtkg2V/dLecEdVHk15ZpmvLx8dFXX32lgQMHWmofcCfGIsAxGIsAa8iQ52PhCDzOrFmz9Pzzz9tWobVo0UJ79uxxSl/Jycnq06eP1q9fn2dygUkGlGTkCLCGDAHWTZ06VWPHjrW9rtu1a6etW7c6pa8zZ86oS5cu+v3338kRPNLmzZvVp08fXbhwwbYv96mAop7guVI7pmmqfPnyWrZsmTp06FCktoHiggwBjrF582Y98MADOn78eJ7MWD1FnV97derU0VdffUWG4BEYiwDHYCwCrCFDno3risHj9OzZ0277999/1//+9z+n9FWmTBmtWLFCXbt2zbMaGyjJyBFgDRkCrOvRo4ftd9M0tW3bNkVFRTmlr2rVqmndunUKDQ0lR/BIt956q7Zt26Ybb7zR7jWe88c0zSL95G5H+iuzbdu21bZt2zi5A49AhgDHuPXWW/XHH39o7NixKleunC0HUt5MFfZHkq29smXLasyYMfrjjz/IEDwGYxHgGIxFgDVkyLNxxRF4pNDQULv7Pnbp0kWrVq1yWn+XL1/WgAED9OOPP3JZc3gMcgRYQ4YA6xo1aqTDhw/btu+++259++23Tuvv3Llz6tatm3bt2kWO4JFM09S8efM0ZcoUW7YctUgq+9TCddddpzFjxmjIkCHy8uK7KvAsZAhwnMTERP3f//2fFixYoC1btuR5r3WtbOU+pe3t7a2bb75Z999/vx5++GFVqFDB4TUDxQFjEeA4jEWANWTI87BwBB5p0qRJGj9+vG3bMAytW7dOt99+u9P6TE9P17333qulS5fa9cskA0oqcgRYQ4YA68aMGaN33nnHtu3l5aWdO3cqNDTUaX0mJiaqZ8+e+uWXX2z7yBE8TVZWln788Uf997//1cqVK3XmzJl8H1fQy85WrVpVPXr00P33369evXrJ29vb4TUDxQkZAhzrwoUL2rJli3bs2KF9+/bpyJEjiouLU0JCgpKSkpSeni5J8vX1VZkyZRQcHKzq1aurfv36atq0qW688UbdeuutKl++vJufCeA6jEWAYzEWAdaQIc/AwhF4pNTUVJ0+fdpuX4UKFVSxYkWn9puZmakFCxbY/gBK0mOPPebUPgFnIUeANWQIsC4+Pl579+6121e/fn3Vq1fPqf1eunRJs2bNsstRzoVggKeJjo62dHKnWbNmbn4GgHuRIQCAuzEWAQAAq1g4AgAAAAAAAAAAAAAAUEpxgzoAAAAAAAAAAAAAAIBSioUjAAAAAAAAAAAAAAAApRQLRwAAAAAAAAAAAAAAAEopFo4AAAAAAAAAAAAAAACUUj7uLgAAAAAAAAAAAAAASpI+ffrojz/+kCQZhqGDBw+6uSKgZMnMzNShQ4eUkJCgMmXKqGrVqqpevboMw3B3aaUSC0cAAAAAAAAAAABKkTZt2igqKkrSXxPeGRkZbq4IKHlOnjypI0eOSBIT3Sh1Tp06pf379+v06dMKCAhQw4YN1aJFiwIdu27dOs2YMUNr1qxRUlKS3b+VL19e3bp10wMPPKC7777bGaXjClg4AjjIsWPH7LarV68uf39/N1UDlEzkCLCGDAEAAAAoCbKysrRlyxYdOnRIcXFxCgwMVM2aNRUWFqaQkBCH9fPGG2/YPicZhqFPPvnEYW0DnsA0TXeXAJR4hmGQJZQqCxYs0Hvvvaft27fn+bfq1atr5MiRGj16tPz8/PL8e3Jysp5++ml9+eWXkvIfhxITE7Vo0SItWrRIYWFh+uSTT9SyZUvHPxHkYZj8NQMcwsvLy25FadWqVfXyyy9r+PDhCggIcGNlQMlBjgBryBBgnbe3t912ixYtNGHCBA0YMMBNFQGOl5CQoIiIiDyTde3atVOHDh3k5eXlkH6GDh2qmJgYSX+dTI2MjHRIu4C7kSGg6M6dO6c33nhDX331lRISEvJ9TGhoqIYOHaohQ4bI19fXUn/ZV1QwTVOGYSgzM9NSe4AnIR+AdeQIpUlKSoruvfdeRURESLry4kPDMNSiRQtFRESodu3atv3Jycm64447tHHjRtuxV7pST862K1SooB9++EEdOnRw1FPBFbBwBHCQ/E4MGYahGjVqaOzYsRo6dGi+q+sA/I0cAdaQIcC6K+WodevWmjBhgvr27euGqgDHiImJ0ejRoxUREXHFE5qVK1fWk08+qZdeeknBwcGW+uMkKjwNGQKsiYiI0GOPPab4+PhrfjPbMAw1atRIc+fOVXh4eJH7bNOmjXbv3m1rkxwBf2OcAawjRygt0tLS1KtXL61fv77Aiz4aN26s7du3q1y5cpL+Whg/b968PMflfl+Y37+XL19ee/bsUd26dR3yfJA/Fo4ADpL7W96S7P541q5dW6+++qoGDx4sHx/uEgXkhxwB1pAhwLrcOcr5cckwDLVr104TJkxQz5493VEeUGTz5s3TyJEjlZaWVqDJukqVKmnatGl67LHHitwnJ1HhScgQYM3ixYv1wAMPKC0tTdKVJxok+/dfXl5eGj16tCZPnlykq/mQI+DKyAdKiyeffNJpbX///fc6f/68LUfXeu/HbdNQUo0bN05vvfVWgRd9ZGfiySef1Mcff6xffvlFN998c55zbhUqVFBYWJiqVq2q5ORkHTp0SHv37s3TliR169ZNK1eudNpzBAtHAIfJb7IuW85Ju3r16mncuHFOfbMClFTkCLCGDAHWFTRHt9xyiyZOnKguXbq4sjygSD744AM999xz1/xWULacjxs4cKDmz5+voKCgQvfLZAQ8BRkCrImJiVHr1q2VnJxcpG+YGoah8PBwLVq0SBUqVChU3+QIJZ0zP29s27ZNycnJtnx06tTpqo/ntmkoqa72Od8Rcn/h5GqPYyxCSXT48GE1a9ZMGRkZtn2macrf31/h4eFq3ry5/P39dfz4ca1evVpnzpyRYRgyTVM+Pj6Kjo7WSy+9pO+++862v0GDBnrnnXfUv3//PIuDjx8/rokTJ+qTTz7JsxBl06ZNuuWWW1z6/EsTFo4ADnK1bz3kXkHHmwMgf+QIsIYMAdYVJEfZH6G8vLzsPjQDxdGOHTt0yy23KCMj44pX08l2pcm65s2b68cff1SdOnUK1TeTdfAEZAiwrmPHjtq0aVOeDAUHB6tbt26qV6+ekpOTFRMTo3Xr1uny5cv5fn5p1aqVVq5cqSpVqhS4b3KEko4Jb8C67BwVh+lQcoSS6NVXX9XkyZNtOTIMQ3369NFHH32kWrVq2T02PT1d06ZN02uvvaasrCwZhqEXX3xRs2bN0uXLlyVJN910k1asWKFKlSpdtd///Oc/Gjx4sKS/x6FHH31Un376qXOeKFg4AjjLn3/+qbVr12rNmjVau3at9u/fb/s33hwABUOOAGvIEFB4R48etds+e/asLUebNm1SUlKS7d/IEYo70zQVGhqq3377Lc8EXGhoqHr37m03Wff9998rLi4u38nxevXqKTIyUg0bNixw/0zWoaQjQ4B1GzZsUHh4uN0CXD8/P7399tt67rnn8txC89y5c/r00081efJkxcfH51m4e/311ysyMlLVq1cvUP/kCCVdcZjwzjlRSIZQErEAC7AmJCREsbGxttdwjx49tGLFiqu+3j/66CONGDFChmHI399fqampkqRKlSopKipKtWvXLlDfo0aN0owZM2xjUZUqVXTmzBmHPC/kxcIRwEVOnjyptWvXKjIyUuvWrdOhQ4fcXRJQ4pAjwBoyBFiTkZGhX375xZajrVu3Kjk52d1lAVe0fPly3XnnnXaTbhUrVtS8efN0991353l8Zmamvv/+e73yyivav39/nsnvmjVrKjIyUs2aNStQ/0zWoaQjQ4B1DzzwgBYsWGA72e/n56fly5era9euVz0uPj5eQ4YM0ffff59n8Ujjxo21Zs2aAk04kCOUdEx4A9YVhwVY2cgRSppTp06pdu3atgz5+vrq4MGDBbqa4q233qqtW7fatg3D0CuvvKJJkyYVuP9z587ZFutnj0UxMTGqX79+kZ4Pro6FIwAAAABQBGlpafLz83N3GcAV3XnnnVq+fLntBE+5cuW0adMm3XDDDVc97vLlyxozZoxmzpyZZ+K7atWqioyMVMuWLa/ZP5N1KOnIEGBd5cqVlZiYaHsdv/3223r55ZcLfPx7772nl19+WVlZWZL+nuRu0KCB1qxZo3r16l31eHKEko4Jb8C6nDkyDEPt27fX+PHjFRAQYLntIUOG6NChQ7a216xZc81jOnXqZLlfwFVyL6bv06ePli5dWqBj58+fryFDhtjlb+/evWrevHmharjvvvu0cOFCSX+NRd9995369+9fqDZQMD7XfggAAAAAIDcWjaA4y8rK0rp16+xO0Lz33nvXnPCWJH9/f02fPl0dOnTQ448/bruyjmEYOnv2rDp37qxVq1apdevWTn4WgPuQIcC6ffv26fz587aJhqpVq+r5558vVBujRo1S06ZNdf/99ys5OdnW1qFDh9SpUyetXbtW1113nYMrB4qn7AnvWbNmqWrVqpbaMk1Tffr00b59+2zjHFclhadq3LixDhw4YBtDfv75Zz3//POaN2+ebrvtNkttly1b1m6bRSHwNHFxcXbbhclMhw4d7LbLlStX6EUjknTzzTfbFo5If12ZDs7h5e4CAAAAAACAY+3Zs0dJSUm27bp16+qJJ54oVBv33HOP1q9fr+rVq9v2GYah+Ph4de3aVTt27HBYvUBxQ4YA6/bs2WP73TAM3XHHHfL39y90O3369FFkZKQqV65s197Ro0fVqVMnJrvh0Tp27Ghb2CH9NeHdu3dvbd68WSEhIUX+ue666/IshC/IcUBJtHv3bj3//PN2V4KLjo5Wp06d9I9//INb0AJXcf78eUl/X/WtILeoyZb7toJFXfRYo0YNSX/fUi27JjgeC0cAAAAAAPAw+/bts/2ePVnn5VX4UwBt27bVpk2b7CYKDMPQuXPn1K1bN23bts0h9QLFDRkCrDt37pykvycawsLCitzWTTfdpLVr1+ZZiHX8+HGFh4crJibGWrFAMbVu3TrNmDFDgYGBtizFx8fr4Ycf1l133aWTJ0+6uUKg+AsICNB7772ndevWqUGDBrbFWFlZWXr//fd1ww03KDIy0t1lAsXS5cuX7bYLc4un3I8tygJiKe8Vf9PS0orUDq6NhSMAAAAAAHiY3JN1Vm6J0aBBA23cuFFNmjSxtWcYhhITE9W9e3dt3brVcr1AcUOGAOuyc5TN6q01WrZsqXXr1qlmzZq2fYZhKDY2VuHh4dq/f7+l9oHi6rnnntOvv/6q2267zTbhbZqmli1bphYtWmj+/PnuLhEoETp06KCoqCg9++yzkv6+esHhw4fVo0cPDR06VBcuXHBniUCxU6FCBbvtwlztI/djExISilRD7s9m5cuXL1I7uDYWjgAAAAAA4GFyT9blvLx/UdSuXVvr169Xy5Yt7Sa+L1y4oJ49e2rz5s2W2geKGzIEWJf7Kj2pqamW22zSpIk2bNigunXr2vYZhqGTJ0+qc+fOdlcLAjxJo0aNtGHDBv3rX/9SQECAbcI7MTFRTz31lHr06KFjx465uUqg+AsMDNSsWbO0Zs0aXXfddXaLsT755BO1aNFCy5cvd3eZQLFRqVIlSX8vtMp5K8Jr2bt3r9326dOnFR8fX+gacvdZsWLFQreBgmHhCAAAAAAAHib3pVyTkpIst1mtWjWtW7dOrVu3tpv4vnjxonr16qVNmzZZ7gMoLsgQYF3uk/pnz551SLsNGjTQ+vXr89wC6tSpUwoPD9cff/zhkH6A4sYwDI0aNUq7du1S+/bt7Sa8V69erZYtW+qDDz5wd5lAidCpUyft2bNHTz/9tKS/J8VPnDihfv366eGHHy7y1REAT9KsWTPb76ZpasWKFQU+Nr9FWCtXrix0DStXrrRlVJLde0A4lo+7CwDc6fTp04qOjtahQ4dsK92Sk5OVlpYm0zTl5+enoKAgBQcHq3r16qpfv76aNWtmdz9VoLQjR4A1ZAiwzjRNHT9+vFA5qlevnt2HTsDT5J6sO3PmjEParVy5stasWaNu3bpp586dMgxDhmHo0qVL6t27t5YtW6ZOnTo5pC/AncgQYF32LWVy3grAUUJCQrR+/Xp17tzZ1q5hGDpz5ozCw8O1Zs0atWjRwmH9AcVJkyZN9L///U/vvvuu3njjDV2+fFmSdOnSJT333HNasGCB5s+fr0aNGrm5UqB4K1OmjObMmaOBAwdq8ODBOnr0qG0x1tdff61Vq1bp/fff17333uvuUgG3ueGGG+Tn56f09HRJ0sGDB/X111/rgQceuOpxcXFxmjdvni1T2f87bdq0ax6b0w8//KD9+/fb3k96eXmpbdu2RX9CuCoWjqBUuXjxohYvXqyIiAht2LBBcXFxRWqnRo0a6tixo3r16qUBAwZwPy2UKuQIsIYMAY6xYcMGRUREaOPGjdq9e7eSk5MLdXxgYKBatWplyxGTdPA0derUkfT3ZN2BAwcc1nbFihW1Zs0ade/eXdu2bbNNfCclJalPnz5atmyZwsPDHdYf4A5kCLAu58IN0zS1YcMGh7Zft25d2+KRgwcPSvors2fPnlWXLl20atUqW9+ApzEMQy+99JLuvPNOPf7447bxxDRNbdq0Sa1atdIbb7yhF154gQXzwDV06dJFe/bs0ejRo/Xxxx/bMnP27Fndf//9+u9//6s5c+bwJS6USr6+vuratasiIiJs48wzzzyjRo0aqV27dvkec/HiRQ0cOFDnz5+XYRgKCwvTzp07ZZqmdu3apTfeeENvvPHGNfuOi4vT008/bTeOhYaGqkyZMo56esjFMHnnjFIgJiZGU6ZM0ddff227n6rVl372Hyp/f389+OCDevnll9W4cWPLtQLFFTkCrCFDgHWJiYmaPXu2/v3vf+vEiRO2/UXNUs4PnrVq1dKwYcP07LPPcq9UeITY2FjblXVM01Tjxo0VHR3t0D4uXryoHj166Oeff7blyTRNlSlTRkuWLNGLL76o3bt3S/orb5mZmQ7tH3AmMgQ4Rrly5ZScnCzTNOXl5aWzZ8+qUqVKDu3j5MmT6tKli+3bqNnvDYODg+Xj46PTp09LIkfwXFlZWZo6daomTJhg+0Z49re7w8LCNH/+/HyvwNOmTRtFRUXZHks+AGnVqlUaMmSIjh8/bnelhIoVK2r69Ol69NFH7R5PjlAafPfdd7r33nvtPrP4+/vrmWee0f3336/mzZvLz89Px48f148//qipU6cqNjbWlosPP/xQX3zxhf73v/9J+vvWa5MmTVJAQEC+fW7fvl3333+/Dh06ZJfF6dOn67nnnnPZcy9tWDgCj5aRkaFx48Zp+vTpSk9Pt5tUsLrSOndbPj4++uc//6lJkybJ19fXUttAcUKOAGvIEOAYc+fO1SuvvKLz58/nWShS1Czl106FChX09ttv2+5zDJRklStXVmJiou0ES2xsrO22AY5y6dIl9ezZU1u2bLE7iRQYGKiAgACdO3dOEpN1KJnIEGBdr169bPeyz544GDp0qMP7iYuLU5cuXbRv3z67LOX+nRzBk/3222967LHHbLdCy/684+fnp1deeUWvvPKKfHz+vgg9E95A/i5evKjnn39en376aZ5xpGfPnpo7d67q1q0riRyhdMjMzFRYWJiioqJs+3K+z8ot5/m2atWq6ciRI1q4cKEeffRRu0Ug1atX17333qubb75ZVatWVUpKig4fPqwVK1Zo1apVed7LlS1bVseOHeMLX07EwhF4rPj4ePXt21e//PKL7Y9U7j9ijvh2as52sldxL1++XFWqVClS20BxQo4Aa8gQYF1qaqoeeughLVmy5Io5kgqfpau1YRiG+vXrp6+++kqBgYFFqBooHvr376+lS5dK+ut1/e6772rUqFEO7ycpKUm9e/fWpk2bmKyDRyFDgHVTp07V2LFjba/ndu3aaevWrU7p68yZM+rSpYt+//33PPkhRygtMjMz9fbbb+vNN99URkaGpL9zcMMNN2j+/Plq27atJCa8gWuJiIjQ0KFDdeLECbuxpGzZsnrnnXc0bNgwcoRSY+fOnbr11lttV7aSrnwuLmdevvjiCz344IPKzMxU69at9fvvv9sde7XFJ7nfz82ePVsjRoxw5NNCLiwcgUe6ePGibr31Vv3222+S7P/wZL/ky5Qpo7CwMDVs2FD16tVT3bp1VbZsWQUGBiowMFCGYSglJUUpKSm6dOmSjh8/rmPHjungwYPatm2bkpOTr9h2ixYttHnzZpUrV85VTxlwOHIEWEOGAOvS09PVq1cvrVu3Ls83GXJ+jKlXr16RcnT06FFbG7nbNgxDHTt21MqVK7mCD0qsWbNm6fnnn7edtGnRooX27NnjlL6Sk5PVp08frV+/nsk6eAwyBFi3a9cu3XjjjXav5V27dik0NNQp/f3555/q1q2boqKi8n1/R45QWkRFRemxxx7T7t277a4+4uPjo9GjR2vChAlq3749E97ANSQmJuq5557TF198kec9WseOHXX48GEdO3ZMEleIg+dbunSp7r33XtvCxKsxTVMvvPCC3nnnHdu+X3/9VR06dFBKSord4/KT+33cXXfdpcWLF1uoHgXBwhF4pEGDBunbb7/N84clODhYjz/+uAYOHKgbb7zR7tJ8hZGZmamdO3fq22+/1WeffaazZ8/medMwcOBALViwwCHPB3AHcgRYQ4YA65577jm9//77eXLk6+urfv36aeDAgbr99ttVq1atIrV/6tQpbdq0SQsXLtSSJUuUnp6eJ0cjRozQ7NmzHfJ8AFeLjo5W8+bN7SbrNmzYoNtuu80p/aWkpKhfv36KjIxksg4egQwBjtGoUSMdPnzYtn333Xfr22+/dVp/586dU7du3bRr1y6u3INSLSMjQ5MmTdLkyZNtr/3sLDRu3FgXL17UqVOnJDHhDVzLsmXLNGzYMJ06dcruvWE2xhmUFps3b9bTTz+tvXv32vblXKAoyXZVnvxuAx0ZGakBAwbo0qVL17z1dHabDzzwgD777LMin0dHwbFwBB5nzZo16tatm90HQz8/P73++ut64YUX5Ofn59D+0tPTNW3aNE2YMEFpaWm2Pg3D0KpVq9SlSxeH9ge4AjkCrCFDgHU7duzQTTfdZLfPNE0NGTJEkyZNUvXq1R3a39mzZzVu3Dj9+9//tsuul5eXfv75Z914440O7Q9wldDQUNvVrySpS5cuWrVqldP6u3z5sgYMGKAff/yRyTp4BDIEWDdmzBi7b5t6eXlp586dTrvqiPTXN8R79uypX375xbaPHKG02rVrlx577DHt3bvXbnKPcQYonPPnz+uZZ57R119/ne8tpMkRSovMzEytWrVKixcv1r59+3TmzBn5+fmpfv366tKlix599FFVrFjxiscfPHhQw4cP1+rVq6/aT9OmTfX2229rwIABDn4GuBIWjsDj9OnTRxEREbY3weXKlVNkZKTCwsKc2u+OHTvUpUsXXbp0yfYmoVevXlq+fLlT+wWcgRwB1pAhwLr7779f33zzjS1Hvr6++vbbb9WvXz+n9vvDDz9o4MCBysjIsOXo3nvv1X//+1+n9gs4y6RJkzR+/HjbtmEYWrdunW6//Xan9Zmenq57771XS5cuteuXk6goicgQYF18fLzdt1IlqX79+qpXr55T+7106ZJmzZql9PR0276ceQZKk/T0dL3xxht6991384wnTHgDhbNkyRINHz5cp0+ftttPjoDC2bt3r5YvX66oqCjFx8crICBAVatWVePGjdWzZ0+1atXK3SWWOiwcgUe5cOGCqlSposzMTNsb3sWLFzt9giHb0qVL1b9/f7sJjrNnz6p8+fIu6R9wBHIEWEOGAOtSU1NVuXJlXb582ZajuXPnasiQIS7p/+OPP9awYcNsOQoICFBCQoICAgJc0j/gSKmpqXlOaFaoUOGq3/5xhMzMTC1YsMBusu6xxx5zap+AM5AhAIAn2b59ux5//HH9/vvvdvuZ8AYKJyEhQePGjdPJkyft9i9evNhNFQGAdSwcgUdZvXq1evToYTvJ37ZtW23fvt2lNYSFhWnXrl22SY4ff/xR3bt3d2kNgBXkCLCGDAHWrV+/Xp07d7blqHHjxoqOjnZpDU2bNlVMTIwtR2vWrFGnTp1cWgMAAAAAOFpaWppmzpyZZ8J7+vTpbqoIAAAUB17uLgBwpAMHDth+NwxD/fv3d3kN/fv3V871WDExMS6vAbCCHAHWkCHAupyLRAzD0KBBg1xew/3332+XI1cvXAEAAAAAZ/Dz89OLL76o6dOn2/0AAIDSjYUj8CiJiYmSZDvJX79+fZfXkN2nYRh2NQElBTkCrCFDgHXnzp2T9HeOGjZs6PIaGjRoIOnvHCUkJLi8BgAAAAAAAABwBRaOwKNkn9jPdvnyZZfX4I4+AUciR4A1ZAiwLvfdNHPnyhXc0ScAAAAAAAAAuAMLR+BRKlWqJOnvE/05bxfgKtl9Zk94VK5c2eU1AFaQI8AaMgRYV6FCBUl/5+jgwYMur+HQoUOS/s5Rdk0AAAAAAAAA4GlYOAKP0rRpU9vvpmnqyy+/VGZmpsv6z8zM1Jdffmn3DdWcNQElATkCrCFDgHWNGze2/W6apr755huX17BgwQK7HDVq1MjlNQAAAAAAAACAK7BwBB7lpptuUkBAgG37xIkTmjp1qsv6nzJlimJjY23b/v7+at++vcv6BxyBHAHWkCHAuptuukk+Pj627f3792v+/Pku63/+/PmKjo62bXt7e5MjAAAAAAAAAB6LhSPwKIGBgerbt69M05RhGDJNU+PGjdOcOXOc3vecOXP0+uuv2/o1DEN9+/a1mzwESgJyBFhDhgDrypcvr65du9rlaMSIEVq+fLnT+16xYoWGDx9ul6Nu3bqpfPnyTu8b8BTHjh2z+7l8+bK7SwJKFDIEWOft7W33ExoaqsWLF7u7LKDEYCwCrGMsAqwhQ67HwhF4nJdeesl2WfHsE/4jR45U7969tXv3bof3FxUVpT59+mjkyJEyTdO23zAMvfTSSw7vD3AFcgRYQ4YA60aPHm373TAMpaWlqV+/fho+fLjOnj3r8P7+/PNPPfPMM+rXr5/S09OvWAuAa7vuuutUv359209ISIimT5+u1NRUd5cGlAhkCLDONE27n71792rgwIG68cYbtWzZMneXBxR7jEWAdYxFgDVkyPUMM+fsAuAhRowYoY8++sg2aZf9bVFJateunQYOHKgOHTooLCzM7jLoBZGRkaEdO3Zo06ZN+u677/Tzzz/b9ZH9v8OGDXPJt8sBZyFHgDVkCLBu4MCBWrRoUZ4c+fr6qn///rYc1ahRo0jtnz592pajxYsXKy0tLU+OBgwYoIULFzryaQEez8sr73dUDMNQjRo1NHbsWA0dOlR+fn5uqAwoGcgQYJ2Xl5ftPaSkPAvs27VrpwkTJqhnz57uKA8o9hiLAOsYiwBryJDrsXAEHiktLU3du3fXxo0b7SYasmXv8/X1Vd26dRUSEqK6deuqbNmyCgwMVEBAgAzDUEpKilJSUnTp0iXFxsbq6NGjOn78uNLS0mxtZbebs58OHTpo9erVvHlGiUaOAGvIEGDdhQsXdMstt+iPP/7Ik6OcHxzr1aunRo0aFSpHMTExOnr0qK2N/HLUrFkzbd26ldvUAIWU++SOZJ+x2rVr69VXX9XgwYMLvXgSKA3IEGBdfjnKljNPt9xyiyZOnKguXbq4sjyg2GMsAqxjLAKsIUOux8IReKzk5GQNGjRIy5cvv+KKtGxX+sOT27WONU1TvXv31jfffKOgoKAiVA0UL+QIsIYMAdadPXtWvXv31s6dO6+ao4JmqCDHm6ap1q1bKyIiQtWrVy9C1UDpVtCTO/Xq1dO4ceP05JNPurI8oNgjQ4B1+V0tIVvuBcleXl7KyMhwSV1AScFYBFjHWARYQ4Zcj4Uj8HizZ8/WuHHjdOHChWu+2b2Wqx1frlw5TZw4Uf/4xz+KXCtQXJEjwBoyBFiTlpamsWPHavbs2crIyMg3B4X9WHOlNry9vfXss89qypQp8vf3L3LNQGlWkJM70t+3n8rMzHRFWUCJQYYA63JeWU76azHy2rVrtWbNGm3atElJSUm2fyNHQF6MRYB1jEWANWTI9Vg4glIhPj5eM2fO1Lx58xQXF2fbX9hvpmbLGZsaNWpoyJAheu6551SlShXLtQLFFTkCrCFDgHX79u3T22+/rW+//VaXL1+WVPQMZcvOkp+fn+677z6NGTNG119/veVaAfztzz//tJ3cWbt2rfbv32/7N07uANdGhgDHysjI0C+//KK1a9cqMjJSW7duVXJysrvLAoo1xiLAsRiLAGvIkHOwcASlSlZWltatW6cff/xRGzdu1O7du5WamlqoNgICAhQaGqrbb79dvXr1UufOna+6AhvwNOQIsIYMAdadP39eixYtsuXo9OnTRWqnWrVqthzdfffdqlSpkoMrBZCfkydP2k7urFu3TocOHXJ3SUCJQoYAx0pLS5Ofn5+7ywBKFMYiwLEYiwBryJBjsHAEpVpmZqaOHj2qI0eOKC4uTgkJCUpKSlJ6erokydfXV2XKlFFwcLCqV6+u+vXrKyQkRN7e3m6uHCg+yBFgDRkCrDt58qT27dtXqBw1bdpUtWvXdnPlAAAAAAAAAOB+LBwBAAAAAAAAAAAAAAAopbimOQAAAAAAAAAAAAAAQCnFwhEAAAAAAAAAAAAAAIBSioUjAAAAAAAAAAAAAAAApRQLRwAAAAAAAAAAAAAAAEopH3cXAAAoXZYtW6aEhATb9qOPPurGagAAAAAAQHFgmqaOHz+uQ4cO6fTp04qPj1dycrLS0tJkmqb8/PwUFBSk4OBgVa9eXfXr11e9evVkGIa7SwcAeAjGIsAaMlSyGaZpmu4uAgBQerRp00ZRUVG27czMTDdWA5Qsv/76q3766SdFRUUpISFBZcqUUdWqVdWkSRP17NlTLVq0cHeJQLF04MABrV27Vps2bdLJkycVHx+v1NRUBQcHq2rVqmrTpo26du2qm2++Wd7e3u4uF3CL06dPKzo6ulAnd5o1a6bq1au7u3SgWCBDQNFs2LBBERER2rhxo3bv3q3k5ORCHR8YGKhWrVqpY8eO6tWrlzp16uSkSoHij7EIKBrGIsAaMuQ5WDgCOFhcXJzS0tJs2/Xq1XNjNUDx06ZNG+3evVuSZBgGC0dQKmRmZmrlypX6/vvvFR0drdOnTysgIEANGzZU165d9cgjjygoKOiKx//xxx8aPny4Nm7ceNV+WrRooSlTpuiOO+5w9FMASqTVq1frrbfe0oYNG+z2Z38Eyv1thjp16mjs2LEaPHiwfH19XVYn4A4XL17U4sWLFRERoQ0bNiguLq5I7dSoUcN2cmfAgAEqX768gysFiicyBBRdYmKiZs+erX//+986ceKEbX9RT1PnfE9Xq1YtDRs2TM8++6wqVqxotVSgWGMsAoqOsQiwhgx5JhaOoFQ4efKkvv32Wy1btkyHDh1SXFycAgMDVbNmTbVr10533XWX7rjjDodMEOS8moJhGMrIyLDcJuBJsjNimiYLR1AqbNmyRcOGDdNvv/1m25d70rpixYqaPXu2HnzwwTzHL1q0SA8//LAuX75coDfehmHo8ccf18cffywvLy8HPQvA9U6cOKHPPvvMtu3r66sXX3yxQMempaVpxIgR+vTTTyXl/6HVMIwr7r/hhhu0ZMkSXXfddUUrHijGYmJiNGXKFH399ddKTU2VVPQTO9myxzN/f389+OCDevnll9W4cWPLtQLFERkCrJk7d65eeeUVnT9/Pk92inqJ8vzaqVChgt5++209/fTTRa4VKK4YiwBrGIsAa8iQ52LhCDxaenq6Jk+erKlTp17xTXT2H7FatWpp0qRJevzxxy31ydUUgKtj4QhKkyVLluj+++9Xenq63fiT34S1YRh6++239fLLL9v2rV27Vj179rQtQizIG+/sbN1zzz365ptvHPRMANebMWOGRo0aZXvdDxgwQAsXLrzmccnJyerSpYu2bdt2xSuLXE32MZUrV9aPP/6osLCwIlQPFD8ZGRkaN26cpk+fnu+4ZEXutnx8fPTPf/5TkyZN4uo98BhkCLAmNTVVDz30kJYsWXLV92iFPVV9tTYMw1C/fv301VdfKTAwsAhVA8ULYxFgDWMRYA0Z8nwsHIHHSk5O1l133aU1a9Zc8U10fpN24eHh+uyzz1SnTp0i9cukODzBsWPHnNZ27969tW/fPltGjhw5cs03EtzyCSXR9u3bddtttyk9PV3StU/iZGdi2bJl6t27t5KSktS8eXPFxsbajr1aVnKPb4Zh6MMPP9TQoUMd8GwA1+vVq5dWrlwpSXbZuJaBAwdq0aJFtuOyXWusyZ1R0zRVq1Ytbdu2TTVr1ixs+UCxEh8fr759++qXX3654skdR1xONmc7hmEoLCxMy5cvV5UqVYrUNlBckCHAmvT0dPXq1Uvr1q2zfVbJljM79erVU8OGDVWvXj3VrVtXZcuWVWBgoAIDA2UYhlJSUpSSkqJLly7p+PHjOnbsmA4ePKijR4/a2sjvc1HHjh21cuVKJr9RojEWAdYwFgHWkKHSgYUj8EimaapHjx6KjIyUVPAV19lxCA4O1ldffaXu3bsXum8WjsATeHl5Wf6mwtUU5hsR3PIJJVFmZqZuvPFGRUVFFWjiOufCkIYNGyo6OlrTp0/Xiy++aPdvoaGheuSRR3TzzTeratWqSk5O1qFDh7R8+XJ9+eWXtkUq2Y8vV66cjh8/zv2JUeKYpqlKlSrp4sWLMk1TQUFBio+Pl5+f31WP+/zzz/X444/nyZ2Xl5d69OihHj16qE2bNgoODlZAQIDOnz+vI0eOaPPmzfrvf/+ruLi4PAu1unfvrp9++sl5TxZwsosXL+rWW2+13TItv3GpTJkyCgsLK9LJnW3btik5OfmKbbdo0UKbN29WuXLlXPWUAYciQ4B1zz33nN5///08r3FfX1/169dPAwcO1O23365atWoVqf1Tp05p06ZNWrhwoZYsWaL09HS793SGYWjEiBGaPXu2Q54P4GqMRYB1jEWANWSolDABDzR9+nTTMAzTy8vL7scwjHx/8nuMr6+v+emnnxa679atW9va8fLycvyTA1zgSllxxw85Qkm0cOFCu/HFMAzTz8/PHDlypLl161YzMTHRTE1NNQ8cOGDOmDHDrFWrlt1rfuHChWbjxo1t+7y9vc0ZM2aYWVlZV+zz0KFDZqtWrWxtZP/v7NmzXfjMAceIjo62y1DPnj2veUxGRobZqFEjuwwYhmF26tTJPHDgwDWPT09PN2fMmGGWKVPGLrteXl7mhg0bHPG0ALe477778v3MU6VKFfOFF14wt27daqanpxe5/YyMDPOXX34xX3zxRbNatWp5xj8vLy/zvvvuc+AzAlyLDAHWbN++Pd/zc0899ZQZFxfn8P7OnDljDhs2LE+WvL29ze3btzu8P8AVGIsAaxiLAGvIUOnBwhF4nISEBDMoKCjPH7BatWqZ7733nrlv3z4zOTnZ/PPPP82tW7eao0ePNqtXr57vm29vb2/z/fffL1T/LByBJ8hv4ZUjf660cCu/x5EjlES9evWym7yuUKGCuXHjxis+Pj4+3rzppptsx7Rr184uIx999FGB+j1//rzZqFEjuwzdeOONjnpagMssW7bMbox46aWXrnlMREREnoVTDz300FUXXOVn69atZrly5ezaueuuu4r4TAD3ioyMzHOixd/f33zrrbfMy5cvO7y/tLQ0c/LkyWZAQECe93ORkZEO7w9wNjIEWDdo0CC792h+fn7m999/7/R+ly5davr5+dnlaNCgQU7vF3A0xiLAOsYiwBoyVHpwqxp4nGnTptku7W/+/8sX9ezZU99++62CgoLyPSY1NVWTJ0/WlClT7G6JkX381KlT9cILLxSof25VA0/g9f9vVVMchghyhJImPT1d5cqVU3p6um0s+OSTT/T4449f9bjY2Fi1bNlSFy9elGR//8a1a9cWuP81a9aoW7dutgz7+PgoMTFRgYGBVp4W4FIffvihnnnmGUl/jQMfffSRnnrqqase88ILL+i9996zvfabN2+uqKgoeXt7F7r/L774Qo899pitrbJlyyohIUE+Pj5Fej6Au/Tp00cRERG213K5cuUUGRmpsLAwp/a7Y8cOdenSRZcuXbKNZ7169dLy5cud2i/gaGQIsCY1NVWVK1fW5cuXba/luXPnasiQIS7p/+OPP9awYcNsGQ4ICFBCQoICAgJc0j/gCIxFgDWMRYA1ZKh0YeEIPE6rVq20d+9e2/aNN96ozZs3F+hE//bt23Xvvffq6NGjee6dNWnSJL3yyivXbIOFI/AEOReOGIahpk2bqnr16g5pe/v27UpOTrabFL+WwkyaA+62Y8cOtWvXzpah+vXr6+DBgwU69p///Kdmzpxpl79FixbprrvuKlQN2WNhdhvr169Xhw4divJ0ALd45513NGbMGEl/LRz5+uuvdd999131mJtvvlm//PJLoY65muuvv17R0dG2HG3YsEG33XZbkdsDXO3ChQuqUqWKMjMzba/jxYsXq1+/fi7pf+nSperfv79tTPP19dXZs2dVvnx5l/QPWEWGAOvWr1+vzp07217HjRs3VnR0tEtraNq0qWJiYmw5XrNmjTp16uTSGoCiYiwCrGMsAqwhQ6ULX5mDR7lw4YJt0Uj2H5B58+YV+NuhYWFh2rFjhwYMGKCNGzfKMAzbH8Nx48YpPT1d48ePd+ZTAIqV7Nd/XFycXnzxRT3xxBOW28xeXJWNRSHwNPv27bP9bhiG+vTpU+Bj+/Xrp5kzZ9q2vby81KVLl0LX0L17d+3Zs8e2ffToURaOoETJeQU4SQVaiBsXF2d3pZ3CZC8/d911l6ZOnWrbPnr0KAtHUKL88ssvysjIsC2Ib9OmjcsmGaS/xrS2bdtq165dkv7K9c8//6zu3bu7rAbACjIEWJdzUsEwDA0aNMjlNdx///2aNGmSXU1MNKCkYCwCrGMsAqwhQ6WLl7sLABxp27ZttltrGIahDh06KDQ0tFBtVK5cWatXr9Z9991n15Zpmpo4caJee+01h9cNFDfz5s1T+fLlbQuwzp8/ryFDhqhXr146fvy4u8sDirXz589Lkm0MKcw4dMMNN9ht16hRQ+XKlSt0Dc2bN8+3JqCkKFu2rN326dOnr3nMn3/+afu9Ro0aV7xFYUE1adLkiu0DJcGBAwdsvxuGof79+7u8hv79+9vd+jAmJsblNQBFRYYA686dOyfp789GDRs2dHkNDRo0kCTbxHtCQoLLawCKirEIsI6xCLCGDJUuLByBRzlx4oTddlG+pS1Jvr6++vrrrzV06NA8i0cmT56ssWPHWq4VKM6efPJJ7d27V927d7ctHjFNUytXrlSLFi00Z84cd5cIFFuJiYl225UqVSrwsbkfW7FixSLVkH1c9pvpCxcuFKkdwF3q1Kkj6e/XcEFu95TzqiRFWXCVW/bilewaLl26ZLlNwJWyx6PszzP169d3eQ3ZfWbnKPcYCRRnZAiwLvcd0rNfy67kjj4BR2EsAqxjLAKsIUOlCwtH4FFyr3yz8mbaMAx99NFH+uc//5ln8cg777yjF1980XrBQDFWu3Zt/fTTT/roo4/sJs8uXbqkkSNHKjw8vEATeUBp4+/vb7d9+fLlAh+b+7HJyclFqiElJcVu28/Pr0jtAO6S86o5pmlqxYoV1zymatWqtt/Pnj1ruYbsNrLfB1q9ggngarlPrBRmPHIUd/QJOAoZAqyrUKGCpMItBna0Q4cOSfr7PV12TUBJwFgEWMdYBFhDhkoXFo7AoyQlJdltlylTxnKb06ZN05gxY/IsHnnvvfc0atQoy+0Dxd3QoUMVFRWlLl262F19ZMOGDQoNDdW0adPyrDoFSrPcVwnJfTWsqzl58qTd9pkzZ4qUr+x2so8t6pVLAHdp3ry5qlWrZts+cuSI/ve//131mNDQUNtr/s8//9Thw4ct1bB161a77bp161pqD3C17KtYZZ/cyXmpc1fJ7jM7m5UrV3Z5DUBRkSHAusaNG9t+N01T33zzjctrWLBggd3ke6NGjVxeA1BUjEWAdYxFgDVkqHRh4Qg8Su7LkjvqXvRvv/22Xn/99TyLR2bOnKl//OMfDukDKM5CQkK0evVqvf/++7ZvXBuGoZSUFL300ku65ZZb9Pvvv7u5SqB4qFmzpqS/T+xs3ry5wMfmnhhPTk7Wr7/+WugacvcZHBxc6DYAdxswYIDdgsXnn3/+qo+/4447JP2dvS+++KLIfZ87d04//PCD3YfS1q1bF7k9wB2aNm1q+900TX355Zd2t3RytszMTH355Zd2OcpZE1DckSHAuptuukk+Pj627f3792v+/Pku63/+/PmKjo62bXt7e6t9+/Yu6x+wirEIsI6xCLCGDJUuLByBR8m9CvvMmTMOa/uNN97QxIkT8yweef/99/Xss886rB+gOBsxYoR2796tTp062U3m/fLLL2rbtq3efPNNl36ABYqjtm3b2n43TVMRERGKi4sr0LH5ven+7LPPCtX/mTNn9NNPP9md2AkNDS1UG0BxMHz4cLvX8c6dO/Xcc89d8fEPPfSQ7dZqpmnq3XffLfLlM1966SW7e3c3bNhQDRo0KFJbgLvcdNNNCggIsG2fOHFCU6dOdVn/U6ZMUWxsrG3b39+fkzsoUcgQYF358uXVtWtXu/MHI0aM0PLly53e94oVK2zvJ7P779atm8qXL+/0vgFHYSwCrGMsAqwhQ6ULC0fgUXJeMkmStm/f7tD2X3vtNU2ePDnP4pEPP/xQw4cPd2hfQHFVv359rV27VjNmzFBgYKAMw5BhGEpLS9P48eMVFhamXbt2ubtMwG1q1KihkJAQ23Z6erqefvrpax736aefauPGjTIMw3ZiyDRNzZs3T/v27Stw/2PHjrW7B3HlypWZ8EaJFBoaqvvuu8/ug+kHH3ygoUOHKiUlJc/jK1SooKlTp9oen5SUpB49ehTqcs6maWrs2LH65JNP7D6UDh482JFPDXCJwMBA9e3b1y5D48aN05w5c5ze95w5c/T666/b5ahv3752Ex9AcUeGAMcYPXq07ffscwf9+vXT8OHDdfbsWYf39+eff+qZZ55Rv379lJ6efsVagJKAsQhwDMYiwBoyVIqYgAe5ePGiaRiG6eXlZRqGYVauXNkp/bz77ru2frL78vLyMp966imzVatWpmEYtn2AJ4uJiTFvv/12u9wZhmH6+vqar7zyinn58uU8x7Ru3douN4AneuWVV+xy4eXlZd5zzz3m6dOn8zw2IyPDfO+990xfX1/bY0eOHGlWr17dlqmmTZuaR48evWa/U6ZMydPvI4884oynCLjE6dOnzapVq+Z5z3XdddeZ3377rZmRkZHnmJ49e9rlICgoyJw0aZJ55syZq/b1008/mbfeeqtdP4ZhmDVr1jQvXbrkrKcIONW2bdts+cn52u7Vq5f566+/Ory/3bt3m3fccUeeHHl7e5vbtm1zeH+As5EhwDHuueeefM+j+fv7m4MGDTK//fZb89SpU0VuPy4uzly4cKH5wAMPmAEBAXkylP15DCiJGIsAx2AsAqwhQ6WDYZr//9IJgIdo1qyZDhw4YFsJvXnzZqdcQm/69OkaPXq07RLq2f1ly97mth3wdKZpasaMGXrttdeUmppq22cYhpo1a6ZPPvlEN998s+3xbdq0UVRUFBmBRzty5IiaNWtmWxGd/XoPCAhQ586d1bx5c/n5+en48eOKjIxUXFyc3dWsduzYoY8//lgffvih7ds9wcHBeu211/Twww8rODjYrr+tW7fqrbfe0ooVK+y+iWQYhjZs2KDbbrvN5f8NAEdZv369evXqpbS0NEmyy0q1atX00EMPqXPnzrrllltUuXJlpaam6oEHHtD3339vlwUfHx+1atVKbdq0UXBwsPz9/ZWYmKjDhw9r69attlsc5s7QkiVLdOedd7rt+QNWjRgxQh999FG+n1vatWungQMHqkOHDgoLC7O7b3FBZGRkaMeOHdq0aZO+++47/fzzz3Z9ZP/vsGHDXPLNWMAZyBBg3YULF3TLLbfojz/+sMuSJLtzafXq1VOjRo0UEhKiunXrqmzZsgoMDFRAQIAMw1BKSopSUlJ06dIlxcbG6ujRo4qJidHRo0dtbeRu1zRNNWvWTFu3buWy5iixGIsA6xiLAGvIUOnAwhF4nOHDh2vu3Lm2PyjOfFM7a9YsPf/88/n+kWRSHKXN/v379cQTT2jLli22DEiSl5eXRo4cqbfffluBgYEsHEGpMX78eE2aNOmqb6Tz29+/f3999913OnjwoJo1a6asrCy7xxiGoYYNG6pq1apKSUnR0aNHde7cOVtbOcegTp06ac2aNS55voAzLV++XPfdd59tgaKUf6bq1q2r2rVrq0aNGoqIiLDdtinnR57cGbzSv5umqXfeeUcvvPCCY58M4GJpaWnq3r277XZoUv6veV9fX9WtW7dQJ3eOHz9uW9SVs92c/XTo0EGrV6+Wn5+fq54y4FBkCHCMs2fPqnfv3tq5c2eeL17llN97tau52vGmaap169aKiIhQ9erVi1A1UDwwFgGOwVgEWEOGPB8LR+BxvvnmG91///22ibOKFSvq1KlT8vf3d0p/H374oZ599tk8+5kUR2lkmqb+9a9/afz48XaTdYZhqEGDBvr3v/+tUaNGaffu3ZJERuDR0tPT1bNnT61bt65Ab6RN01Tt2rW1c+dOVa1aVZI0btw4vfXWW1c8MXS1tsqVK6eoqCiFhIQ4/skBbrBt2zYNGjRIR44cuWqmJPssXOuxOR+f/Rh/f3998MEHevLJJx1VPuBWycnJGjRokJYvX17g/FzLtY41TVO9e/fWN998o6CgoCJUDRQfZAhwjLS0NI0dO1azZ89WRkbGNRf0FsSV2vD29tazzz6rKVOmOO2cIOBKjEWAYzAWAdaQIc/m5e4CAEfr1auX3ernxMREzZs3z2n9DR8+XB999JHT2gdKEsMw9OKLL2rnzp0KCwuzu/rBwYMH1a1bN+3bt6/QK06BksjX11fLly/XHXfckWfBR84f6a83wg0aNNCaNWtsi0akv65a0rdv3zxXHMm5aCS/tsqWLavFixezaAQepV27dtq9e7dGjhwpb2/vfDOQMwfZ/57z99yPze+Yzp07a9euXSwagUcpU6aMfvjhB82cOVPlypW7aiays3Ctn6tlqWzZspo+fbqWL1/OJAM8AhkCHMPPz0/Tpk1TVFSUHn74Yfn5+dm9V5Ou/H7tau/jpL/fy/n6+urhhx/W7t27NX36dCYZ4DEYiwDHYCwCrCFDno0rjsAj9evXT8uWLbNt16pVS4cOHXLq5fQ+++wzDR482G6SgqspoDTLysrS1KlTNXHiRNslL7mdE0qrBQsWaPr06dq2bVueFdfBwcEaNmyYxo4dm+/JmPT0dD333HOaO3eupCt/cyi73datW2vevHlq27atg58FUHwcPnxY06ZN05dffqnExETb/sIsTMyZRT8/P91555169tln1alTJ4fWChQ38fHxmjlzpubNm6e4uDjb/qIu7M2ZpRo1amjIkCF67rnnVKVKFcu1AsURGQIc5/z581q0aJF+/PFHbdy4UadPny5SO9WqVdPtt9+uXr166e6771alSpUcXClQvDAWAY7DWARYQ4Y8CwtH4JF++OEHvffee3b7xo4dqx49eji13//+97969NFHlZGRIYnbcACS9Ntvv+mxxx7L9753ZASlzcmTJxUdHa0zZ87Iz89P9evXV2hoqLy8rn0RuM2bN2vatGlatWqVLl26ZPdvZcuWVdeuXTVo0CANGjSIq/qg1EhLS9PKlSu1atUqbd68Wb///rtSUlKueVzFihXVvHlzhYWFKTw8XN26dVO5cuVcUDFQfGRlZWndunW2kzu7d+9WampqodoICAhQaGio7eRO586dCzSmAZ6ADAGOd/LkSe3bt09HjhxRXFycEhISlJSUpPT0dEl/XdWxTJkyCg4OVvXq1VW/fn01bdpUtWvXdnPlgHswFgGOx1gEWEOGSjYWjgAAnC4zM1OTJ0/Wm2++abv6iMTiKqAoMjMzdejQIcXHxysgIEBVq1ZVjRo15O3t7e7SALczTVOnTp3SqVOndO7cOV2+fNl2icugoCAFBwerZs2aqlixortLBYqdzMxMHT16tFAnd0JCQhh/gP+PDAEA3I2xCAAAWMHCEQCAy5w4cUJ//vmn3b5WrVq5qRoAAAAAAAAAAAAALBwBAAAAAAAAAAAAAAAopbhZHQAAAAAAAAAAAAAAQCnFwhEAAAAAAAAAAAAAAIBSioUjAAAAAAAAAAAAAAAApZSPuwsAHOX333/X9ddf7+4yCiQjI0NHjhxRo0aN3F0KYIccAdaQIQBAabFs2TIlJCTYth999FE3VgMAKA0OHDigtWvXatOmTTp58qTi4+OVmpqq4OBgVa1aVW3atFHXrl118803y9vb293lAgA8EGMRYA0ZKt4M0zRNdxcBOIKvr6+efPJJTZgwQTVq1HB3OVf0zTff6NVXX9Ujjzyi119/3d3lAHbIEWANGQIAlBZt2rRRVFSUbTszM9ON1QAly6+//qqffvpJUVFRSkhIUJkyZVS1alU1adJEPXv2VIsWLdxdIlCsrF69Wm+99ZY2bNhgtz/7tLZhGHb769Spo7Fjx2rw4MHy9fV1WZ1AScJYBBQOYxFgDRkqGVg4Ao/h5eUlwzAUGBiooUOHavTo0apdu7a7y7JZuHChJk+erF9//VWSNH78eCbrUOyQI8AaMgR4jn//+9+Ki4uzbZMVwF6bNm20e/duSX+d4GHhCEqDzMxMrVy5Ut9//72io6N1+vRpBQQEqGHDhurataseeeQRBQUFXfH4P/74Q8OHD9fGjRuv2k+LFi00ZcoU3XHHHY5+CoDLnThxQp999plt29fXVy+++GKBjk1LS9OIESP06aefSvp7YiEnwzCuuP+GG27QkiVLdN111xWteKAYYiwCCo+xCLCGDJUeLByBx8ierDNNU4ZhyNfXV4888oiGDx+utm3buqWmixcv6osvvtDMmTMVExMjSbb6mKxDcUSOAGvIEOA5uJoCcHXZGckeU8gIPN2WLVs0bNgw/fbbb7Z9ub8dV7FiRc2ePVsPPvhgnuMXLVqkhx9+WJcvX873pGhuhmHo8ccf18cffywvLy8HPQvA9WbMmKFRo0bZcjJgwAAtXLjwmsclJyerS5cu2rZt2xW/iXo12cdUrlxZP/74o8LCwopQPVC8MBYBRcNYBFhDhkoPRnt4jFtvvdV20lL6axXb/Pnz1a5dO7Vr105z587V2bNnnV5HVlaW1qxZo8GDB6tWrVoaOXKkDhw4YPdmvEyZMmrTpo3TawEKixwB1pAhwLOYplmgE6oAAM+2ZMkSde7cWb/99pttbMj5ni97+9y5c3rkkUc0depUu+PXrl2r+++/X6mpqbbjrvVjmqb+85//6P7773fHUwYc5scff5T094n/wYMHF+i4Rx99VL/88otdZrLbudpPtuxjEhIS1L9/f506dcrBzwxwLcYioOgYiwBryFDpwRVH4FE+++wzjRkzRqdPn7b7AyT99QfGy8tLHTp0UN++fRUeHq62bdsWanXblcTFxWndunVavXq1li5dqvj4+Dx9Z/9+zz33aPr06apTp47lfgFnIEeANWQI8AxcTQGe4NixY05ru3fv3tq3b58tI0eOHLnmQqt69eo5rR7AWbZv367bbrtN6enpkq79DbnsTCxbtky9e/dWUlKSmjdvrtjY2DzvDfOTs/3stj788EMNHTrUAc8GcC3TNFWpUiVdvHhRpmkqKChI8fHx8vPzu+pxn3/+uR5//PE8efDy8lKPHj3Uo0cPtWnTRsHBwQoICND58+d15MgRbd68Wf/9738VFxeXJ2/du3fXTz/95LwnCzgRYxFQdIxFgDVkqHRh4Qg8zoULFzRlyhTNnj1bSUlJ+U7aZStfvrxat26t0NBQtWzZUiEhIapdu7Zq1KihoKAgBQQESJIyMjKUkpKihIQExcbGKjY2VtHR0dqzZ492796tgwcP2trMvRoue7t9+/aaPHmywsPDnf2fALCMHAHWkCGg5GPhCDxB9i3UnCX3eHM1hmEoIyPDabUAzpCZmakbb7xRUVFReU545ifne76GDRsqOjpa06dP14svvmj3b6GhoXrkkUd08803q2rVqkpOTtahQ4e0fPlyffnll7aJwezHlytXTsePH1f58uWd+GwBx9u/f7+aNWtme/13797d9o3VK8nMzFSzZs108OBBu88yHTt21Lx589SoUaOrHp+RkaEPPvhAr7zyilJTUyX9PfG9bt063X777Q54ZoDrMBYB1jAWAdaQoVLGBDzU6dOnzeeee84MCgoyDcMwvby8bD+GYdh+cu7P78fb2/uq/56zrZztZW/feOON5vfff+/u/xxAkZAjwBoyBJRcrVu3tuXIy8vL3eUARZJ7fHDnDzlCSbRw4cI87638/PzMkSNHmlu3bjUTExPN1NRU88CBA+aMGTPMWrVq2b3mFy5caDZu3Ni2z9vb25wxY4aZlZV1xT4PHTpktmrVytZG9v/Onj3bhc8ccIxly5bZZeill1665jERERF5Xv8PPfTQVXOTn61bt5rlypWza+euu+4q4jMB3IexCLCGsQiwhgyVLl7uXrgCOEu1atU0c+ZMHT9+XJMmTVL16tXt7v2Y/SNd/X5aWVlZV/33nG3lXDnXt29frVmzRtu3b1e/fv3c+Z8CKDJyBFhDhgAA7pZ7jHDkT0H7AUqqefPm2X43TVPly5dXZGSkZs2apfbt26t8+fLy9/dXo0aN9I9//EN79uxRu3btbMdMnTpVMTExkv7KyAcffKB//OMfV81F/fr1tX79ejVs2NB2nGma+s9//uOcJwk4UfYt07I/n1zr26WStHr1arvtZs2a6bPPPiv0eNK+fXt98MEHts9LpmlqzZo1XP0KJQ5jEWANYxFgDRkqXVg4Ao9XqVIlvfrqqzp+/LiWLl2qgQMHyt/f3zbZJlk7mZpz4q5Zs2Z66623dPToUS1dupRbAcBjkCPAGjIEAHCnqy0+tPJT0D6Akig9PV1r1661vdcyDEMzZsxQhw4drnhM5cqV9d1339ku479jxw5Jf73P69ixo4YNG1agvitUqKC5c+fa5ScqKkopKSkWnhHgehcvXrTbrlChwjWP2bRpk6S/L0c+fvx4eXt7F6n/Rx55RM2aNbNtJyUl6eeffy5SW4A7MBYB1jEWAdaQodLFx90FAK7i7e2tvn37qm/fvkpOTlZkZKQiIiK0fv16RUdHKysrq9BtVq5cWe3bt1ePHj10xx13qHHjxk6oHCg+yBFgDRkCCu7zzz93a/8JCQlu7R9wNMMw1LRpU1WvXt0h7W3fvl3Jycm2E0EdO3Z0SLtAcREVFaW0tDTbt+Kuu+46Pf7449c8rk6dOnriiSc0c+ZMu2/UPf/884Xqv0uXLrrhhhu0d+9eSX/dJ3zHjh1XnSwEipvc3wbNzMy85jFxcXG2SXIfHx/16dPHUg133XWXpk6dats+evSobrvtNkttAq7CWARYx1gEWEOGShcWjqBUKlOmjO68807deeedkqRLly5p586d2r9/v44cOaLY2FhduHBBycnJyszMVGBgoIKCglStWjWFhISoQYMGCg0NVYMGDdz8TAD3IUeANWQIuLrHH3+cW1wADpJ9wiYuLk4vvviinnjiCctttmnTRlFRUbbttWvXWm4TKE727dtn+90wjEKd7OzXr59mzpxp2/by8lKXLl0KXUP37t21Z88e2/bRo0eZrEOJUrZsWbvt06dPX/OYP//80/Z7jRo1FBQUZKmGJk2aXLF9oLhjLAKsYywCrCFDpQsLRwD99YevY8eOfEsOsIAcAdaQISB/7rzNBQtXUNLNmzdPo0ePVmJiogzD0Pnz5zVkyBAtWLBAH3/8serWrevuEoFi6/z585L+vrxyaGhogY+94YYb7LZr1KihcuXKFbqG5s2b51sTUFLUqVNH0t/vqQ4ePHjNY3J+i7Uouckte7Iju4ZLly5ZbhNwFcYiwDrGIsAaMlS6eLm7AAAAAAC4EsMw3PYDlHRPPvmk9u7dq+7du9smHEzT1MqVK9WiRQvNmTPH3SUCxVZiYqLddqVKlQp8bO7HVqxYsUg1ZB+XPSZduHChSO0A7pJzwtk0Ta1YseKax1StWtX2+9mzZy3XkN1G9mJkq994BVyJsQiwjrEIsIYMlS4sHAEAAABQbJmm6bYfwBPUrl1bP/30kz766CO7b+lcunRJI0eOVHh4eIG+MQSUNv7+/nbbly9fLvCxuR+bnJxcpBpSUlLstv38/IrUDuAuzZs3V7Vq1WzbR44c0f/+97+rHhMaGmp7H/bnn3/q8OHDlmrYunWr3TZX20JJwlgEWMdYBFhDhkoXblUDAAAAoNjx9fVVRkaGpL8muW+//XZ17tzZZf1/9NFHOnPmjMv6A5xt6NCh6tmzpwYPHqw1a9bYrj6yYcMGhYaGauLEiRo1ahRX2wH+v9zfzD5x4kSBjz158qTd9pkzZ2xX/SmM7Hayjy3qt8UBdxowYIDmzp1rG3eef/55bdu27YqPv+OOO7RixQpbXr744gu9/vrrRer73Llz+uGHH2x9S1Lr1q2L1BbgDoxFgGMwFgHWkKHSwzD5Kh0AAACAYubGG2/Url27JP21cOTuu+/Wt99+67L+27Rpo6ioKNsJ0pz3ZwVKujlz5mjMmDG6dOmS7eSLYRhq166d5s+fr+uvv/6abZAReLoVK1aob9++tpOd/fr10+LFiwt07GeffaYnnnjCLl/bt29XmzZtClVD//79tXTpUkl/jYXfffed+vfvX6g2AHeLioqyvfaz8/DMM89o1qxZ+T4+MTFRdevWVVJSkkzTVFBQkH799Vc1bNiw0H0/9dRT+uSTT2xZbNSokfbv32/p+QCuxFgEOAZjEWANGSo9uFUNAAAAgGInLCxMkmwfDLdv3+7migDPMWLECO3evVudOnWynfQxTVO//PKL2rZtqzfffJOFICj12rZta/vdNE1FREQoLi6uQMfOnz8/z77PPvusUP2fOXNGP/30k903w0NDQwvVBlAchIaG6r777rMbbz744AMNHTo0zy0wJKlChQqaOnWq7fFJSUnq0aOHDhw4UOA+TdPU2LFj7SYZDMPQ4MGDHfnUAKdjLAIcg7EIsIYMlR4sHAEAAABQ7GQvHMl27NgxJSQkuKkawPPUr19fa9eu1YwZMxQYGCjDMGQYhtLS0jR+/HiFhYXZrvoDlEY1atRQSEiIbTs9PV1PP/30NY/79NNPtXHjRhmGoYCAAEl/nfScN2+e9u3bV+D+x44dq8uXL9u2K1eurAYNGhTiGQDFx8yZM1WlShVJfy8K/uSTT3T99ddr4cKFeRYrDh8+XD169LBNEBw+fFht2rTRm2++qbNnz161r5UrV6pDhw5655137PZXr15dzz77rGOfGOBkjEWA4zAWAdaQodKBW9UAAAAAKHZ27dqlG2+80e5bBStWrFDPnj1d0j+34UBpcvDgQT3xxBPatGmT3X2DfXx89OKLL2r8+PHy8/OzO4aMoDR49dVXNXnyZLuxaMCAAZozZ46qVatm99jMzEzNmjVLL7/8sjIyMmyXb/7mm2905swZSVKTJk20cuVK1atX76r9Tp06VWPHjrXr96GHHtLnn3/utOcKONv69evVq1cvpaWlSZJtrDEMQ9WqVdNDDz2kzp0765ZbblHlypWVmpqqBx54QN9//71dFnx8fNSqVSu1adNGwcHB8vf3V2Jiog4fPqytW7fa8pbzG7GGYWjJkiW688473fb8gaJiLAIch7EIsIYMeT4WjgAAAAAodtLT01WuXDmlp6fbPiBOnDhRr776qkv6Z1IcpY1pmpoxY4Zee+01paam2vYZhqFmzZrpk08+0c0332x7PBlBaXDkyBE1a9ZM6enpkv7OREBAgDp37qzmzZvLz89Px48fV2RkpOLi4uxOnu7YsUMff/yxPvzwQ9sJz+DgYL322mt6+OGHFRwcbNff1q1b9dZbb2nFihV5TpJu2LBBt912m8v/GwCOtHz5ct133322cUayn3DIVrduXdWuXVs1atRQRESE7YoHOU9j53x87rZy/rtpmnrnnXf0wgsvOPbJAC7CWAQ4FmMRYA0Z8mwsHAEAAABQLN10003avn27pL8+LPbr10+LFy92Sd9MiqO02r9/v5544glt2bLF7uojXl5eGjlypN5++20FBgaSEZQa48eP16RJk+xOWkp5T3Lm3t+/f3999913OnjwoJo1a6asrCy7xxiGoYYNG6pq1apKSUnR0aNHde7cOVtbOSfqOnXqpDVr1rjk+QLOtm3bNg0aNEhHjhyxy1F+p6hz5u5aj835+OzH+Pv764MPPtCTTz7pqPIBt2AsAhyLsQiwhgx5Li93FwAAAAAA+QkLC5P094fG7EUkrsIae5RGTZo00aZNmzR16lT5+/vbJhWysrI0a9YshYaGau3atZLICEqH1157TeHh4Xkm2kzTtPvJub9WrVr66KOPJEkNGzbUmDFj8jwmKytLBw4c0JYtW7Rr1y4lJCTYtZWtbNmy+vTTT93y3AFnaNeunXbv3q2RI0fK29s7T7ayfyTZMpH799yPze+Yzp07a9euXUwywCMwFgGOxVgEWEOGPBdXHAEAAABQLM2fP19DhgyxbRuGoVOnTuW5l7czzJ07V3Fxcbbt8ePHO71PoLjZt2+fHnvsMW3bts3u6iOGYcjPz09paWlccQSlQkpKiu69916tWLEi38spZzNNUw0aNFBERIQaN25s25+RkaG7775by5Ytu+a3w3PuL1u2rJYsWaIuXbo48NkAxcfhw4c1bdo0ffnll0pMTLTtv1rOcst5atvPz0933nmnnn32WXXq1MmhtQLuxlgEOAdjEWANGfIsLBwBAAAAUCwlJSUpJibGbl/Tpk0VEBDgpoqA0icrK0tTp07VxIkTlZaWJsl+coGFIyhNFixYoOnTp2vbtm15rrgTHBysYcOGaezYsQoKCspzbHp6up577jnNnTtX0pVPpGa327p1a82bN09t27Z18LMAip+0tDStXLlSq1at0ubNm/X7778rJSXlmsdVrFhRzZs3V1hYmMLDw9WtWzeVK1fOBRUD7sNYBDgHYxFgDRnyDCwcAQAAAAAAV/Xbb7/pscce086dO/Pcc5iFIyhtTp48qejoaJ05c0Z+fn6qX7++QkND5eV17TtCb968WdOmTdOqVat06dIlu38rW7asunbtqkGDBmnQoEGF+pYe4ElM09SpU6d06tQpnTt3TpcvX5ZpmvL19VVQUJCCg4NVs2ZNVaxY0d2lAm7DWAQ4F2MRYA0ZKplYOAIAAAAAAK4pMzNTkydP1ptvvmm7+ogkFo4ARZCZmalDhw4pPj5eAQEBqlq1qmrUqCFvb293lwYAKCUYiwAAQE4sHAEAAAAAAAV24sQJ/fnnn3b7WrVq5aZqAAAAAAAAYBULRwAAAAAAAAAAAAAAAEqpa9/wDgAAAAAAAAAAAAAAAB6JhSMAAAAAAAAAAAAAAAClFAtHAAAAAAAAAAAAAAAASikWjgAAAAAoNn7//Xd3l1BgGRkZiomJcXcZQB7kCLCGDAEA3I2xCAAAuBoLRwAAAAAUG61atdKwYcMUFxfn7lKu6ptvvlHz5s311VdfubsUIA9yBFhDhgDP8e9//1sTJ060/QAlBWMR4DkYiwBryJDrGKZpmu4uAgAAAAAkycvLS4ZhKDAwUEOHDtXo0aNVu3Ztd5dls3DhQk2ePFm//vqrJGn8+PF6/fXX3VsUkAs5AqwhQ4DnaNOmjaKiomzbmZmZbqwGKDjGIsBzMBYB1pAh1+GKIwAAAACKneTkZM2cOVMNGzbUU089pZ07d7qtlosXL2rOnDlq2rSpBg0apF9//VWsv0dJQI4Aa8gQ4BlM0yQvKLEYiwDPwFgEWEOGXIOFIwAAAACKjVtvvVWmacowDElSWlqa5s+fr3bt2qldu3aaO3euzp496/Q6srKytGbNGg0ePFi1atXSyJEjdeDAAbsPqWXKlFGbNm2cXgtQWOQIsIYMAZ4lO8tAScJYBHgWxiLAGjLkGtyqBgAAAECx8tlnn2nMmDE6ffq07YNh9scWwzDk5eWlDh06qG/fvgoPD1fbtm0d8gEyLi5O69at0+rVq7V06VLFx8fn6Tv793vuuUfTp09XnTp1LPcLOAM5AqwhQ4BnyL60efYEPJc2R0nCWAR4BsYiwBoy5DosHAEAAABQ7Fy4cEFTpkzR7NmzlZSUlO+J0mzly5dX69atFRoaqpYtWyokJES1a9dWjRo1FBQUpICAAElSRkaGUlJSlJCQoNjYWMXGxio6Olp79uzR7t27dfDgQVubOT8m5Twx2r59e02ePFnh4eHO/k8AWEaOAGvIEFDyMdGAko6xCCj5GIsAa8iQ67BwBAAAAECxdebMGb311lv65JNPlJycbHdiNPdJzKvJeZIzP7n/LfcJ2bZt2+r1119Xv379Cv0cAHcjR4A1ZAgouZhogKdgLAJKLsYiwBoy5DosHAEAAABQ7J07d05z5szRBx98oLi4OEl5T4pa+WiTX1uGYahPnz4aNWoU36SDRyBHgDVkCCh5mGiAp2EsAkoexiLAGjLkOiwcAQAAAFBiZGZmKiIiQp9//rmWLVum1NRUSdf+Zt215PxY1Lx5cz388MN65JFHuFc3PBI5AqwhQ0DBff75527tf9y4cYqNjWWiAR6HsQgoOMYiwBoyVHqwcAQAAABAiZScnKzIyEhFRERo/fr1io6OVlZWVqHbqVy5stq3b68ePXrojjvuUOPGjZ1QLVA8kSPAGjIEXJ2Xl5fliWxHYKIBnoyxCLg6xiLAGjJUerBwBAAAAIBHuHTpknbu3Kn9+/fryJEjio2N1YULF5ScnKzMzEwFBgYqKChI1apVU0hIiBo0aKDQ0FA1aNDA3aUDxQY5AqwhQ4C97IkGd56Czu6fiQaUFoxFgD3GIsAaMlR6sHAEAAAAAAAAAOBwfEMVAOBujEWANWSo9PBxdwEAAAAAAAAAAM/l7m+oAgDAWARYQ4Y8HwtHAAAAAAAAAAAO5+vrq4yMDEl/nfC//fbb1blzZ5f1/9FHH+nMmTMu6w8AUPwwFgHWkKHSg4UjAAAAAAAAAACHa9mypXbt2mXbrlq1qsaPH++y/pcsWcJEAwCUcoxFgDVkqPTwcncBAAAAAAAAAADPExYWJumvb6eapqnt27e7uSIAQGnDWARYQ4ZKDxaOAAAAAAAAAAAcLnuiIduxY8eUkJDgpmoAAKURYxFgDRkqPVg4AgAAAAAAAABwuNwTDZK0bds2N1QCACitGIsAa8hQ6cHCEQAAAAAAAACAw7Vs2VJ+fn52+7i8OQDAlRiLAGvIUOnBwhEAAAAAAAAAgMP5+voqNDRUpmna9jHRAABwJcYiwBoyVHqwcAQAAAAAAAAA4BTZlzc3DEOS6ycack5yAABKJ8YiwBoyVDr4uLsAAAAAAAAAAIBnyp5oyD7hf/LkSZ05c0bVqlVzet9PP/204uLinN4PAKB4YywCrCFDpYNhskQHAAAAAAAAAOAESUlJiomJsdvXtGlTBQQEuKkiAEBpw1gEWEOGSgcWjgAAAAAAAAAAAAAAAJRSXu4uAAAAAAAAAAAAAAAAAO7BwhEAAAAAAAAAAAAAAIBSioUjAAAAAAAAAAAAAAAApRQLRwAAAAAAAAAAAAAAAEopFo4AAAAAAAAAAAAAAACUUiwcAQAAAAAAAAAAAAAAKKVYOAIAAAAAAAAAcJjff//d3SUUWEZGhmJiYtxdBgDAwRiLAGvIUOnDwhEAAAAAAAAAgMO0atVKw4YNU1xcnLtLuapvvvlGzZs311dffeXuUgAADsZYBFhDhkofFo4AAAAAAAAAABwmMzNT8+bNU6NGjTRq1CidOHHC3SXZWbhwoW688UY98MADOnTokLvLAQA4AWMRYA0ZKn1YOAIAAAAAAAAAcLjk5GTNnDlTDRs21FNPPaWdO3e6rZaLFy9qzpw5atq0qQYNGqRff/1Vpmm6rR4AgGswFgHWkKHSg4UjAAAAAAAAAACHufXWW2WapgzDkCSlpaVp/vz5ateundq1a6e5c+fq7NmzTq8jKytLa9as0eDBg1WrVi2NHDlSBw4csJtgKFOmjNq0aeP0WgAArsVYBFhDhkofw2QZDgAAAAAAAADAgT777DONGTNGp0+ftk04ZJ+KNgxDXl5e6tChg/r27avw8HC1bdvW9jgr4uLitG7dOq1evVpLly5VfHx8nr6zf7/nnns0ffp01alTx3K/AIDih7EIsIYMlS4sHAEAAAAAAAAAONyFCxc0ZcoUzZ49W0lJSflOOGQrX768WrdurdDQULVs2VIhISGqXbu2atSooaCgIAUEBEiSMjIylJKSooSEBMXGxio2NlbR0dHas2ePdu/erYMHD9razHnqO+cEQ/v27TV58mSFh4c7+z8BAMDNGIsAa8hQ6cHCEQAAAAAAAACA05w5c0ZvvfWWPvnkEyUnJ9tNMOSeDLianJMF+cn9b7knNtq2bavXX39d/fr1K/RzAACUbIxFgDVkyPOxcAQAAAAAAAAA4HTnzp3TnDlz9MEHHyguLk5S3skFK6er82vLMAz16dNHo0aN4hupAADGIsAiMuS5WDgCAAAAAAAAAHCZzMxMRURE6PPPP9eyZcuUmpoq6drfUL2WnKe6mzdvrocffliPPPII97wHAOTBWARYQ4Y8DwtHAAAAAAAAAABukZycrMjISEVERGj9+vWKjo5WVlZWodupXLmy2rdvrx49euiOO+5Q48aNnVAtAMATMRYB1pAhz8DCEQAAAAAAAABAsXDp0iXt3LlT+/fv15EjRxQbG6sLFy4oOTlZmZmZCgwMVFBQkKpVq6aQkBA1aNBAoaGhatCggbtLBwB4CMYiwBoyVDKxcAQAAAAAAAAAAAAAAKCU8nJ3AQAAAAAAAAAAAAAAAHAPFo4AAAAAAAAAAAAAAACUUiwcAQAAAAAAAAAAAAAAKKVYOAIAAAAAAAAAAAAAAFBKsXAEAAAAAAC4hGma6tChgwzDkGEY8vb21t69e91dFkqxDz74wPZ6NAxD48aNc3dJAAAAAAC4nGGapunuIgAAAAAAgOf77LPP9Pjjj9u2Bw8erHnz5rmvICdITk7Wrl27dPjwYSUmJioxMVHe3t4KCgpShQoVVK9ePV133XWqW7euvLz4Po+7paen6/rrr1dMTIwkyd/fX7/99psaNmzo5soAAAAAAHAdFo4AAAAAAACnS0xMVNOmTXX69GlJUmBgoGJiYlSrVq2rHhceHq7169fn2e/j46Pff/9djRs3LnJNjRo10sGDB23bISEhOnLkSKHbiY+P1+eff64vvvhCUVFRyszMvOYxZcuWVdu2bXXTTTepa9euCg8PV0BAQKH7LorrrrtOR48ezbO/YsWKOnTokCpVqlTktn18fOyef6dOnbRu3Tq7x7zxxhuaMGFCkfuw4tNPP7VbvCRJ33zzjQYNGmTb7tu3r3744QcXVwYAAAAAgPvw1RYAAAAAAOB0U6dOtS0akaSnnnrqmotGriYjI0OvvPKKI0qzVMPUqVNVt25djRo1Srt27SrQohFJunTpkjZs2KB//etf6t27typXrqyvv/7ayRVf3fnz5/X222+7tQZ3uPfee9W8eXPb9rJly/IsdgEAAAAAwJOxcAQAAAAAADjV6dOnNWvWLNu2r6+vXnjhBcvtLly4UL/88ovldori/Pnzuv322zVmzBilpKRYbi8lJcVuYY27vP/++zp+/Li7y3ApwzD08ssv2+179dVX3VQNAAAAAACu5+PuAgAAAAAAgGd7++23lZSUZNt++OGHVbduXYe0/dJLL7n86hAXL15U9+7dtX379nz/vW3btrrlllvUrFkzVaxYUQEBATp37pwSEhK0d+9e7dixQ9HR0crKynJp3QWRmpqqcePG6T//+Y/T+qhRo4ZatWpVqGOOHTumc+fO2e2rW7euKleuXKh2rvT4Bx98UK+99ppiY2MlSZs3b9aKFSt0xx13FKp9AAAAAABKIhaOAAAAAAAAp0lISNC8efPs9o0YMcJh7a9fv97lE/zjxo3Ld9HIvffeq0mTJqlp06bXbOP06dNasmSJFi1apNWrVxerRSRffPGFRo8erRtuuMEp7T/99NN6+umnC3XM448/rs8++8xu38SJE/X44487pCZfX18NGTJEb7zxhm3f1KlTWTgCAAAAACgVuFUNAAAAAABwmg8//FDJycm27bZt2yosLMyhfYwZM8ZlCy9iYmL0/vvv59n/7rvv6ptvvinQohFJql69uoYNG6affvpJMTExeuGFFwp99QxnycrK0pgxY9xdhssNHjxY3t7etu0NGzZox44dbqwIAAAAAADXYOEIAAAAAABwioyMjDyLLAYPHmypTW9vb9111112+/bs2aMvvvjCUrsFtWDBAmVmZtrt69evn1544YUit1m/fn29++67evTRR62WVyQNGjRQmzZt7PatWLFC69evd0s97lKnTh11797dbt/MmTPdVA0AAAAAAK7DwhEAAAAAAOAUERERiouLs217eXnpnnvusdzu5MmT7a4MIUmvv/66Ll++bLnta4mIiMizb+TIkU7v15kMw9CUKVPy7H/ppZfcUI173XvvvXbb3333nS5evOimagAAAAAAcA0WjgAAAAAAAKf4/PPP7bY7dOig6tWrW263efPmeuKJJ+z2HTt2TLNnz7bc9rUcPXo0z74bb7zR6f06W48ePdStWze7fb/88osWLlzoporco3///vLx8bFtJycnl7r/BgAAAACA0oeFIwAAAAAAwOGSkpK0bNkyu319+/Z1WPsTJkxQYGCg3b7Jkyfr/PnzDusjP2fOnMmzLygoyKl9usrUqVNlGIbdvldffVUZGRluqsj1KleurFtvvdVu31dffeWmagAAAAAAcA0WjgAAAAAAAIeLjIxUamqq3b7w8HCHtV+rVi09//zzdvsSEhI0efJkh/WRn4CAgDz78rsKSUnUtm1b3X///Xb79u/fr48//thNFblH586d7bY3bNigS5cuuakaAAAAAACcj4UjAAAAAADA4SIiIuy2y5cvr7Zt2zq0j5dfflnBwcF2+2bNmqXY2FiH9pNTjRo18uz75ptvnNafq7311lvy8/Oz2zdx4kQlJSW5qSLXy71wJC0tTZGRkW6qBgAAAAAA52PhCAAAAAAAcLj169fbbbdu3Vre3t4O7aNChQp69dVX7falpqbq9ddfd2g/OeW+jYn01y1ytmzZ4rQ+Xal+/fp6+umn7fbFxcVp2rRpbqrI9cLCwvLcsmfdunXuKQYAAAAAABdg4QgAAAAAAHCoixcvKjo62m5faGioU/oaMWKEQkJC7PZ9/vnn+u2335zS38CBA/PsS0pKUqdOnfT8888rJibGKf260rhx41SuXDm7ff/617909uxZN1XkWkFBQWrYsKHdvm3btrmpGgAAAAAAnI+FIwAAAAAAwKF27typrKwsu30tW7Z0Sl/+/v6aNGmS3b7MzEyNGTPGKf316dNHN910U5796enpmjlzpho3bqzQ0FD985//1IIFC3To0CGn1OFMVapU0Ysvvmi37+LFi5o4caKbKnK9G264wW57165dyszMdFM1AAAAAAA4FwtHAAAAAACAQ+3fvz/PvtxXBXGkhx56SK1atbLbt2zZMm3cuNEp/X311VeqUqXKFf99z549mjFjhu6//341bNhQlStXVrdu3TRu3DitWrVKSUlJTqnLkUaNGqUaNWrY7Zs7d26JXAhTFLlfr8nJyYqNjXVTNQAAAAAAOBcLRwAAAAAAgEMdOXIkz77atWs7rT8vLy9NmTIlz/6XX37ZKf01bNhQ69atU7NmzQr0+HPnzikyMlJvvvmmevTooSpVqmjQoEH68ccfnVKfIwQFBWn8+PF2+9LT0/Xqq6+6qSLXqlOnTp59+b2uAQAAAADwBCwcAQAAAAAADpXflRlyX73C0Xr16qUuXbrY7duyZYsWLVrklP5atGih7du364033lCFChUKdWxqaqq++eYb9e7dW7fddpt++eUXp9Ro1ZAhQ9SkSRO7fQsWLNCOHTvcVJHr1KxZM8++48ePu6ESAAAAAACcj4UjAAAAAADAoS5cuJBnX1BQkNP7nTp1qgzDsNv3yiuvKCMjwyn9ZV+V49ixY5o3b566du0qX1/fQrWxefNm3Xbbbfrggw+cUqMVPj4+evvtt+32mabptCu5FCdlypTJs+/ixYtuqAQAAAAAAOdj4QgAAAAAAHCo5OTkPPsCAgKc3m9YWJjuu+8+u33R0dH65JNPnNpv+fLlNXjwYK1evVrnz59XZGSkJk6cqLvuukv16tW75vEZGRl69tlni+XikXvuuUc333yz3b7IyEj99NNPbqrINQIDA/PsS0pKckMlAAAAAAA4HwtHAAAAAACAQ2VmZtptG4YhLy/XnIJ466238lz1Y8KECfkuZnGGMmXKqEuXLho3bpyWLFmio0eP6uzZs1q0aJGGDx+uqlWrXvHY559/Xjt37nRJnYUxderUPPvGjBkj0zTdUI1r+Pj45NnnrCvXAAAAAADgbiwcAQAAAAAADpX7ag2maSotLc0lfTds2FBDhw6123fq1Cm99957Luk/P1WqVNGAAQM0Z84cnThxQh999JEqVaqU53EZGRl6/fXX3VDh1XXs2FF9+vSx2/frr7/qyy+/dFNFzpeSkpJnX363rwEAAAAAwBOwcAQAAAAAADhUUFBQnn35TcQ7y+uvv65y5crZ7Xv33Xf1559/uqyGK/H19dWwYcP066+/KiQkJM+/L1++XHFxcW6o7OqmTJmS56ox48aNc9mCIFfL7/Wa3+saAAAAAABPwMIRAAAAAADgUNWqVcuzLyEhwaX9jx492m7fhQsX9Oabb7qshmupV6+evvrqq3z/LTIy0sXVXFvLli316KOP2u07cuSI5syZ46aKnCu/12t+r2sAAAAAADwBC0cAAAAAAIBD5XcljdjYWJfWMHr0aFWvXt1u34cffqjDhw+7tI6rufXWWxUWFpZnf3R0tBuqubaJEycqICDAbt+bb76pCxcuuKki58nv9Zrf6xoAAAAAAE/AwhEAAAAAAOBQDRo0yLPP1QtHypYtq9dff91uX1paml577TWX1nEtN910U559xeGWOvmpW7euRo4cabcvPj5eU6dOdVNFznPixIk8+6677jrXFwIAAAAAgAuwcAQAAAAAADhUaGhonn3uuIrG0KFD1bhxY7t9X3/9tXbt2uXyWq6kQoUKefb5+Pi4oZKCGTt2rCpVqmS3b8aMGTp58qSbKnKOffv22W3Xr19f5cuXd1M1AAAAAAA4FwtHAAAAAACAQzVs2FCVK1e227dnzx6X1+Hj46O33nrLbp9pmnr55ZddXsuVnD59Os++3LfYKU4qVaqksWPH2u1LTk7WG2+84Z6CnMA0zTyv13bt2rmpGgAAAAAAnI+FIwAAAAAAwOHat29vt71792631HHvvffmuR3MqlWrtGrVKrfUk9vatWvz7GvYsKEbKim4kSNHqm7dunb75s+fn+cqHSXVwYMHdenSJbt9uV/PAAAAAAB4EhaOAAAAAAAAh+vRo4fd9sGDB912O5OpU6fm2TdmzBiZplnotv7zn//owoULjihLX3/9tQ4fPmy3z8fHRz179nRI+84SEBCgiRMn2u3LzMzMcyWSkmrjxo159hX3/08AAAAAALCChSMAAAAAAMDh7rjjjjz71q1b5/pCJIWHh6t37952+3bu3KlDhw4Vuq0pU6YoJCREEyZMUHx8fJFr2rRpk4YPH55nf69evVSpUqVrHh8eHi7DMOx+/vOf/xS5nsJ69NFH1bJlS7t9S5YsUWZmpstqcJbcV4GpV6+eWrRo4aZqAAAAAABwPhaOAAAAAAAAh2vSpImaN29ut2/16tVuquavq454eTnmNMj58+f1xhtvqGbNmrrrrru0cOHCPLc2uZLTp0/rpZdeUteuXZWYmGj3b35+fpo2bZpDanQ2Ly8vTZkyxd1lOJxpmoqMjLTbd9ddd7mpGgAAAAAAXMPH3QUAAAAAAADP9PDDD+vVV1+1bS9dulQZGRny8XH96YgbbrhBDz/8sD7//HOHtZmenq6lS5dq6dKl8vb2VosWLdS+fXs1aNBAwcHBqlSpktLS0pSYmKgDBw5o+/bt+t///qesrKx825s+fbqaNGnisPqcrU+fPurUqZPWr1/v7lIcZuvWrXluqfToo4+6qRoAAAAAAFyDhSMAAAAAAMApHnnkEb322msyTVOSFB8fr3Xr1qlbt25uqWfSpElasGCBLl++7PC2MzMzFRUVpaioqEIf6+Pjo9mzZ+vpp592eF3ONnXqVN18883uLsNhvvvuO7vt5s2bKywszE3VAAAAAADgGtyqBgAAAAAAOEXdunXVp08fu31ffvmlm6qR6tWrp2effdZSG6+99pp69uwpPz8/h9QUHh6uXbt2FXrRyNmzZ/Psa9GihUNqKoz27dvr/7V3/yBV9XEYwJ97hxpCk5amQESiwLCSaM7VQUMcEhdbGgXBpckgGlzbmlqCFEF0URpyazJ1KkWlQSOoKcFFsved3sPr9vbn3vPezuczne8PzjnPfHnu9wwPDzf9vY1wcnKS2dnZU2etWOYBAACAH6U4AgAAADTM5OTkqXlubi5fv34tKU3y8OHDdHR0/PT9Y2NjWVlZyZcvXzI/P5+JiYn09fX958/v1Gq1dHd3Z3JyMmtra1ldXU1PT88PZfj8+XPevXt36mxgYCC3bt36oef8Lk+ePCnl80O/2/Lycg4ODor5/PnzuX//fomJAAAAoDlqf/2zLxYAAACgAfr6+rK+vl7MT58+/eXNH/833759y4cPH7Kzs5NPnz7l8PAwR0dHOXv2bNra2tLe3p7Ozs5cu3YtbW1tv/Suly9f5t69e6fO3r59m5s3b/7Sc6tucHAwS0tLxTw1NZWZmZkSEwEAAEBzKI4AAAAADbW4uJihoaFi7u7uzvb2dup1i1B/xoMHD/Ls2bNiHhoaysLCQomJWt/Ozk6uXLmS79+/J0nOnTuXvb29XLx4seRkAAAA0Hh+oQEAAAAaanBwMLdv3y7m3d3dzM/Pl5iotb1+/bq4rtVqefToUYlp/gwzMzNFaSRJJiYmlEYAAACoDBtHAAAAgIZbXV1Nf39/MV+/fj3r6+up1Wolpmo9BwcHuXTpUjGPjIxkbm6uxESt7+PHj+nq6srx8XGS5MKFC9nb20tHR0e5wQAAAKBJbBwBAAAAGu7OnTsZHh4u5s3NzczOzpaYqDX9e9tIvV7P9PR0eWH+ENPT00VpJEkeP36sNAIAAECl2DgCAAAANMX+/n6uXr2ao6OjJElXV1fev3+fM2fOlJysdYyPj+f58+dJktHR0bx48aLcQC1ua2srPT09OTk5SZLcuHEja2trqdf91woAAIDqUBwBAAAAmmZxcTEbGxvFPDo6msuXL5eYiCp79epV3rx5U8x3795Nb29viYkAAACg+RRHAAAAAAAAAAAqyt5NAAAAAAAAAICKUhwBAAAAAAAAAKgoxREAAAAAAAAAgIpSHAEAAAAAAAAAqCjFEQAAAAAAAACAilIcAQAAAAAAAACoKMURAAAAAAAAAICKUhwBAAAAAAAAAKgoxREAAAAAAAAAgIpSHAEAAAAAAAAAqCjFEQAAAAAAAACAivobDsQo0lAaHOkAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 2200x1400 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"colors_m = ( \n",
" colors.to_rgba(\"blue\"), #MCOLA \n",
" colors.to_rgba(\"red\"), #MRMA1T\n",
" colors.to_rgba(\"orange\"), #BCOLA\n",
" )\n",
"f=plt.figure(figsize=(22, 14))\n",
"ax=f.add_subplot(111)\n",
"\n",
"x = np.arange(len(labels_aux))\n",
"plot_index = 0\n",
"#ax.plot(x, tots, color=colors_m[plot_index], linestyle='-', marker= '.', markersize=18, label=\"Sinc\")\n",
"malla_tmp = malla.copy()\n",
"malls_tmp = malls.copy()\n",
"#for index in range(len(tota)):\n",
" #malla_tmp[index] = malla[index] / ideal4[index]\n",
" #malls_tmp[index] = malls[index] / ideal4[index]\n",
" #malla_tmp[index] = ideal4[index] / malla[index]\n",
" #malls_tmp[index] = ideal4[index] / malls[index]\n",
"plot_index = 0\n",
"ax.plot(x, malls_tmp, color=colors_m[plot_index], linestyle='--', marker='v', markersize=18, label=labelsMethods_aux[plot_index])\n",
"plot_index = 1\n",
"ax.plot(x, malla_tmp, color=colors_m[plot_index], linestyle=':', marker='s', markersize=18, label=labelsMethods_aux[plot_index])\n",
"plot_index = 2\n",
"ax.plot(x, ideal4, color=colors_m[plot_index], linestyle='-.', marker='h', markersize=18, label=labelsMethods_aux[plot_index])\n",
"\n",
"ax.set_xlabel(\"(NS,NT)\", fontsize=36)\n",
"name_legend = \"Time(s)\"\n",
"ax.set_ylabel(name_legend, fontsize=36)\n",
"plt.xticks(x, labels_aux,rotation=90)\n",
"ax.tick_params(axis='both', which='major', labelsize=36)\n",
"ax.tick_params(axis='both', which='minor', labelsize=36)\n",
"plt.legend(loc='best', fontsize=30,ncol=2,framealpha=0.8)\n",
"#ax.axhline(y=1, color='black', linestyle='--')\n",
"\n",
"print(malls_tmp)\n",
"print(malla_tmp)\n",
"print(ideal4)\n",
"plt.ylim([0,6.7])\n",
"f.tight_layout()\n",
"f.savefig(\"Images/TEST\"+\".eps\", format=\"eps\", dpi=300)"
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "c961e35e-20dc-4ede-8618-6b4987f2abac",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" 80686760\n",
"3404950172\n"
]
}
],
"source": [
"row = 2017169\n",
"matrix = 283073458\n",
"\n",
"mam = row * 8 * 5\n",
"user = (matrix * (4 + 8)) + (row * 4)\n",
"print(\" \" +str(mam))\n",
"print(user)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "4921dc40-d2e1-4f95-941f-79153d1a9e34",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"42.19961455881981"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"user/mam"
]
},
{
"cell_type": "code",
"execution_count": 81,
"id": "a2f35195-aaf1-4dc6-85ff-a612f37b897b",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"3.550186388"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"3550186388 / (1000 * 1000 * 1000)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "ffc12e7f-12f6-46bf-a399-c9c1d231ca9e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-3.32100894, -3.32565943, -4.75105871, -4.70867003, -0.30450212,\n",
" -0.45525678, -0.48542673, -0.71140234, -0.42443466, -0.3941093 ])"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"testa = np.array(malla_tmp)\n",
"tests = np.array(malls_tmp)\n",
"tests- testa"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d9db153-773f-4690-8699-f37e5678d2a7",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
%% Cell type:code id:603f28cb-7479-47e8-8d8d-b18a620925d1 tags:
``` python
%matplotlib inline
import pandas as pd
from pandas import DataFrame, Series
import numpy as np
import math
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.colors as colors
from matplotlib.legend_handler import HandlerLine2D, HandlerTuple
from matplotlib.colors import LinearSegmentedColormap
from scipy import stats
import scikit_posthocs as sp
import sys
from mpl_toolkits.mplot3d import axes3d
```
%% Cell type:code id:516a5850-000a-488c-a52d-7051a31b691a tags:
``` python
totn = [1429.511096, 195.93417907, 174.12488914, 149.39460301, 157.55367208]
processes = [2, 20, 40, 80, 160]
iters = []
tot_iters = 1000
for it_value in totn:
iters.append(it_value / tot_iters)
print(iters)
labelsMethods_aux = ['Merge - COLS',
'Merge - COLA',
'Ideal']
```
%%%% Output: stream
[1.429511096, 0.19593417907, 0.17412488914, 0.14939460301, 0.15755367208]
%% Cell type:code id:d1f3ec22-9445-414e-8acf-40da5209a90a tags:
``` python
#OFI REDUCCION
#CON BARRIERS
malls = [1.191402, 3.13309, 2.585917, 2.569179, 0.777284, 1.033414, 0.920364, 0.668779, 0.519809, 0.334906]
malla = [1.612513, 3.265418, 2.965351, 2.98502, 1.002663, 1.030409, 1.112991, 0.873688, 0.871016, 0.727469]
#SIN BARRIERS
#malls = []
#malla = []
labels_aux = ['(20,2)', '(40,2)', '(80,2)', '(160,2)', '(40,20)', '(80,20)', '(160,20)', '(80,40)', '(160,40)', '(160,80)']
tuples_aux = [ (20,2), (40,2), (80,2), (160,2), (40,20), (80,20), (160,20), (80,40), (160,40), (160,80)]
tots = [814.67876291, 808.5604651, 795.9308548, 795.54596305, 190.34062719, 177.72450495, 176.88434005, 163.42062998, 161.76110101, 147.07955885]
tota = [816.94620895, 807.90405488, 792.34561992, 789.45519304, 183.67259693, 176.26401806, 173.38925004, 159.47613788, 164.16760778, 146.63839984]
spawn_min = [1.45000e-04, 6.29000e-04, 1.05700e-03, 1.47300e-03, 5.85000e-04, 1.04000e-03, 1.42700e-03, 1.04200e-03, 1.53700e-03, 1.44100e-03]
```
%% Cell type:code id:73b84c51-16da-4277-88cc-a7571d6d159d tags:
``` python
#OFI EXPANSION
tots = [822.592448, 812.38741612, 687.25450993, 792.73712492, 189.64718318, 180.3323071, 183.42675281, 163.77047706, 156.8667469, 146.14701796]
tota = [827.57983398, 808.741225, 691.38776207, 798.37592387, 188.47194409, 182.5640409, 177.40146399, 161.12198901, 164.66972589, 150.13075709]
labels_aux = ['(2,20)', '(2,40)', '(2,80)', '(2,160)', '(20,40)', '(20,80)', '(20,160)', '(40,80)', '(40,160)', '(80,160)']
tuples_aux = [(2,20), (2,40), (2,80), (2,160), (20,40), (20,80), (20,160), (40,80), (40,160), (80,160)]
#CON BARRIERS
malls = [1.459048, 1.377933, 1.562658, 1.646107, 1.336804, 1.289738, 1.335803, 1.006473, 1.193941, 1.098027]
malla = [4.291689, 4.300612, 5.926505, 6.496032, 1.582687, 1.722409, 1.863822, 1.683262, 1.657882, 1.50607]
#SIN BARRIERS
#malls = [1.386815, 1.352518, 1.552363, 1.545332, 1.200833, 1.278144, 1.446389, 1.350773, 1.233166, 1.073713]
#malla = [4.266167, 4.137584, 4.408637, 7.202143, 1.580283, 1.684443, 1.784895, 1.481095, 1.592655, 1.49029]
spawns = [0.646706, 0.637626, 0.79149, 0.874327, 0.703415, 0.77506, 0.923799, 0.922304, 0.875446, 0.808462]
spawna = [0.667736, 0.599761, 0.883783, 1.069666, 0.683896, 0.838215, 0.875225, 0.769545, 0.918761, 0.887716]
reds_s = [0.031203, 0.034094, 0.036393, 0.036872, 0.325629, 0.161447, 0.051848, 0.275889, 0.117939, 0.124082]
reds_a = [0.016136, 0.018315, 0.017299, 0.020972, 0.00817, 0.008836, 0.010475, 0.006352, 0.006724, 0.001864]
spawn_min = [5.68926e-01, 5.94807e-01, 6.34480e-01, 7.45979e-01, 5.23472e-01, 6.66369e-01, 8.03722e-01, 6.67325e-01, 8.09060e-01, 7.51335e-01,]
```
%% Cell type:code id:1d1e1454-5908-4904-b481-cfb21b04c81b tags:
``` python
iters_a = [] # Total de iteraciones asincronas esperadas
iters_s = [] # Total de iteraciones sincronas esperadas para caso ideal
for index in range(len(malla)):
index_iter = index%len(iters)
mall_aux = malla[index] - spawna[index] - reds_a[index]
aux_value = math.ceil( mall_aux / iters[index_iter])
aux_value = max(aux_value, 2)
iters_a.append(aux_value)
mall_aux = malls[index] - spawns[index] - reds_s[index]
aux_value = math.ceil(mall_aux / iters[index_iter])
aux_value = max(aux_value, 2)
iters_s.append(aux_value)
print(iters_a)
print(iters_s)
iters_a = np.array(iters_a)
iters_s = np.array(iters_s)
```
%%%% Output: error
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[4], line 5
3 for index in range(len(malla)):
4 index_iter = index%len(iters)
----> 5 mall_aux = malla[index] - spawna[index] - reds_a[index]
6 aux_value = math.ceil( mall_aux / iters[index_iter])
7 aux_value = max(aux_value, 2)
NameError: name 'spawna' is not defined
%% Cell type:code id:5e9d9070-70d7-4c30-92eb-4709726ff6c1 tags:
``` python
ideal = []
for index in range(len(tota)):
index_iter = index%len(iters)
aux_value = tots[index] - malls[index]
ideal.append(aux_value)
print(ideal)
print(tota)
```
%%%% Output: stream
[813.48736091, 805.4273751, 793.3449378, 792.97678405, 189.56334318999998, 176.69109095000002, 175.96397604999999, 162.75185098, 161.24129201, 146.74465285000002]
[816.94620895, 807.90405488, 792.34561992, 789.45519304, 183.67259693, 176.26401806, 173.38925004, 159.47613788, 164.16760778, 146.63839984]
%% Cell type:code id:40a27c2c-3aee-4edc-9136-b13fa4416205 tags:
``` python
ideal2 = []
for tuple_aux in tuples_aux:
index1 = tuple_aux[0]
index1 = processes.index(index1)
index2 = tuple_aux[1]
index2 = processes.index(index2)
val_aux = (iters[index1] + iters[index2]) * 500
ideal2.append(val_aux)
print(ideal2)
```
%%%% Output: stream
[812.722637535, 801.81799257, 789.4528495049999, 793.5323840399999, 185.029534105, 172.66439103999997, 176.74392557500002, 161.75974607499998, 165.83928061, 153.474137545]
%% Cell type:code id:de3b66fe-8992-48c3-8474-f3aa13a1a770 tags:
``` python
iters_diff = iters_a - iters_s
iters_diff
ideal3 = []
for index in range(len(tota)):
index_iter = index%len(iters)
aux_value = tota[index] - malla[index] + (iters_diff[index] * iters[index_iter])
ideal3.append(aux_value)
print(ideal3)
print(tota)
```
%%%% Output: error
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[7], line 1
----> 1 iters_diff = iters_a - iters_s
2 iters_diff
4 ideal3 = []
TypeError: unsupported operand type(s) for -: 'list' and 'list'
%% Cell type:code id:fd74e4dd-553a-4493-8429-9ca62841ffc6 tags:
``` python
ideal4 = []
L = 5 * (10 **-6)
B = 100 * (10 **9)
D = 3550186388 * 8
print(L)
print(B)
for spawn_value in spawn_min:
aux_value = L + D / B
ideal4.append(aux_value + spawn_value)
print(ideal4)
```
%%%% Output: stream
4.9999999999999996e-06
100000000000
[0.28416491103999997, 0.28464891103999995, 0.28507691103999994, 0.28549291103999996, 0.28460491103999996, 0.28505991103999995, 0.28544691104, 0.28506191103999995, 0.28555691103999997, 0.28546091104]
%% Cell type:code id:a6606f9f-fc4a-465f-a603-9acc7b146d5a tags:
``` python
colors_m = (
colors.to_rgba("red"), #MCOLS
colors.to_rgba("blue"), #MCOLA
colors.to_rgba("red"), #MRMA1T
colors.to_rgba("mediumseagreen"), #BCOLA
colors.to_rgba("orange"), #BCOLA
)
f=plt.figure(figsize=(22, 14))
ax=f.add_subplot(111)
x = np.arange(len(labels_aux))
plot_index = 0
#ax.plot(x, tots, color=colors_m[plot_index], linestyle='-', marker= '.', markersize=18, label="Sinc")
tota_tmp = []
tots_tmp = []
ideal_tmp = []
ideal4_tmp = []
for index in range(len(tota)):
tota_tmp.append(ideal2[index] / tota[index])
tots_tmp.append(ideal2[index] / tots[index])
ideal_tmp.append(ideal2[index] / ideal[index])
ideal4_tmp.append(ideal[index] / ideal4[index])
'.','v','s','p',
plot_index = 1
ax.plot(x, tots_tmp, color=colors_m[plot_index], linestyle='--', marker='v', markersize=18, label="Sinc")
plot_index = 2
ax.plot(x, tota_tmp, color=colors_m[plot_index], linestyle=':', marker='s', markersize=18, label="Asinc")
plot_index = 3
ax.plot(x, ideal_tmp, color=colors_m[plot_index], linestyle='-.', marker='p', markersize=18, label="Ideal")
plot_index = 4
#ax.plot(x, ideal4_tmp, color=colors_m[plot_index], linestyle='-.', marker='h', markersize=18, label="Ideal4")
ax.set_xlabel("(NS,NT)", fontsize=36)
name_legend = "Difference over Ideal"
ax.set_ylabel(name_legend, fontsize=36)
plt.xticks(x, labels_aux,rotation=90)
ax.tick_params(axis='both', which='major', labelsize=36)
ax.tick_params(axis='both', which='minor', labelsize=36)
plt.legend(loc='best', fontsize=30,ncol=2,framealpha=0.8)
ax.axhline(y=1, color='black', linestyle='--')
#plt.ylim([0,1.1])
f.tight_layout()
f.savefig("Images/TEST"+".eps", format="eps", dpi=300)
```
%% Cell type:code id:f37522d1-d4d8-4d86-a96e-ea0b262e0320 tags:
``` python
colors_m = (
colors.to_rgba("blue"), #MCOLA
colors.to_rgba("red"), #MRMA1T
colors.to_rgba("orange"), #BCOLA
)
f=plt.figure(figsize=(22, 14))
ax=f.add_subplot(111)
x = np.arange(len(labels_aux))
plot_index = 0
#ax.plot(x, tots, color=colors_m[plot_index], linestyle='-', marker= '.', markersize=18, label="Sinc")
malla_tmp = malla.copy()
malls_tmp = malls.copy()
#for index in range(len(tota)):
#malla_tmp[index] = malla[index] / ideal4[index]
#malls_tmp[index] = malls[index] / ideal4[index]
#malla_tmp[index] = ideal4[index] / malla[index]
#malls_tmp[index] = ideal4[index] / malls[index]
plot_index = 0
ax.plot(x, malls_tmp, color=colors_m[plot_index], linestyle='--', marker='v', markersize=18, label=labelsMethods_aux[plot_index])
plot_index = 1
ax.plot(x, malla_tmp, color=colors_m[plot_index], linestyle=':', marker='s', markersize=18, label=labelsMethods_aux[plot_index])
plot_index = 2
ax.plot(x, ideal4, color=colors_m[plot_index], linestyle='-.', marker='h', markersize=18, label=labelsMethods_aux[plot_index])
ax.set_xlabel("(NS,NT)", fontsize=36)
name_legend = "Time(s)"
ax.set_ylabel(name_legend, fontsize=36)
plt.xticks(x, labels_aux,rotation=90)
ax.tick_params(axis='both', which='major', labelsize=36)
ax.tick_params(axis='both', which='minor', labelsize=36)
plt.legend(loc='best', fontsize=30,ncol=2,framealpha=0.8)
#ax.axhline(y=1, color='black', linestyle='--')
print(malls_tmp)
print(malla_tmp)
print(ideal4)
plt.ylim([0,6.7])
f.tight_layout()
f.savefig("Images/TEST"+".eps", format="eps", dpi=300)
```
%%%% Output: stream
The PostScript backend does not support transparency; partially transparent artists will be rendered opaque.
%%%% Output: stream
[1.191402, 3.13309, 2.585917, 2.569179, 0.777284, 1.033414, 0.920364, 0.668779, 0.519809, 0.334906]
[1.612513, 3.265418, 2.965351, 2.98502, 1.002663, 1.030409, 1.112991, 0.873688, 0.871016, 0.727469]
[0.28416491103999997, 0.28464891103999995, 0.28507691103999994, 0.28549291103999996, 0.28460491103999996, 0.28505991103999995, 0.28544691104, 0.28506191103999995, 0.28555691103999997, 0.28546091104]
%%%% Output: display_data
[Hidden Image Output]
%% Cell type:code id:c961e35e-20dc-4ede-8618-6b4987f2abac tags:
``` python
row = 2017169
matrix = 283073458
mam = row * 8 * 5
user = (matrix * (4 + 8)) + (row * 4)
print(" " +str(mam))
print(user)
```
%%%% Output: stream
80686760
3404950172
%% Cell type:code id:4921dc40-d2e1-4f95-941f-79153d1a9e34 tags:
``` python
user/mam
```
%%%% Output: execute_result
42.19961455881981
%% Cell type:code id:a2f35195-aaf1-4dc6-85ff-a612f37b897b tags:
``` python
3550186388 / (1000 * 1000 * 1000)
```
%%%% Output: execute_result
3.550186388
%% Cell type:code id:ffc12e7f-12f6-46bf-a399-c9c1d231ca9e tags:
``` python
testa = np.array(malla_tmp)
tests = np.array(malls_tmp)
tests- testa
```
%%%% Output: execute_result
array([-3.32100894, -3.32565943, -4.75105871, -4.70867003, -0.30450212,
-0.45525678, -0.48542673, -0.71140234, -0.42443466, -0.3941093 ])
%% Cell type:code id:0d9db153-773f-4690-8699-f37e5678d2a7 tags:
``` python
```
%!PS-Adobe-3.0 EPSF-3.0
%%Title: TEST.eps
%%Creator: Matplotlib v3.7.1, https://matplotlib.org/
%%CreationDate: Mon May 20 23:37:49 2024
%%Orientation: portrait
%%BoundingBox: -486 -108 1098 900
%%HiResBoundingBox: -486.000000 -108.000000 1098.000000 900.000000
%%EndComments
%%BeginProlog
/mpldict 11 dict def
mpldict begin
/_d { bind def } bind def
/m { moveto } _d
/l { lineto } _d
/r { rlineto } _d
/c { curveto } _d
/cl { closepath } _d
/ce { closepath eofill } _d
/box {
m
1 index 0 r
0 exch r
neg 0 r
cl
} _d
/clipbox {
box
clip
newpath
} _d
/sc { setcachedevice } _d
%!PS-Adobe-3.0 Resource-Font
%%Creator: Converted from TrueType to Type 3 by Matplotlib.
10 dict begin
/FontName /DejaVuSans def
/PaintType 0 def
/FontMatrix [0.00048828125 0 0 0.00048828125 0 0] def
/FontBBox [-2090 -948 3673 2524] def
/FontType 3 def
/Encoding [/space /parenleft /parenright /comma /hyphen /zero /one /two /three /four /five /six /eight /A /C /I /L /M /N /O /S /T /a /d /e /g /i /l /m /r /s] def
/CharStrings 32 dict dup begin
/.notdef 0 def
/space{651 0 0 0 0 0 sc
ce} _d
/parenleft{799 0 176 -270 635 1554 sc
635 1554 m
546 1401 479 1249 436 1099 c
393 949 371 797 371 643 c
371 489 393 336 436 185 c
480 34 546 -117 635 -270 c
475 -270 l
375 -113 300 41 250 192 c
201 343 176 494 176 643 c
176 792 201 941 250 1092 c
299 1243 374 1397 475 1554 c
635 1554 l
ce} _d
/parenright{799 0 164 -270 623 1554 sc
164 1554 m
324 1554 l
424 1397 499 1243 548 1092 c
598 941 623 792 623 643 c
623 494 598 343 548 192 c
499 41 424 -113 324 -270 c
164 -270 l
253 -117 319 34 362 185 c
406 336 428 489 428 643 c
428 797 406 949 362 1099 c
319 1249 253 1401 164 1554 c
ce} _d
/comma{651 0 158 -238 451 254 sc
240 254 m
451 254 l
451 82 l
287 -238 l
158 -238 l
240 82 l
240 254 l
ce} _d
/hyphen{739 0 100 479 639 643 sc
100 643 m
639 643 l
639 479 l
100 479 l
100 643 l
ce} _d
/zero{1303 0 135 -29 1167 1520 sc
651 1360 m
547 1360 469 1309 416 1206 c
364 1104 338 950 338 745 c
338 540 364 387 416 284 c
469 182 547 131 651 131 c
756 131 834 182 886 284 c
939 387 965 540 965 745 c
965 950 939 1104 886 1206 c
834 1309 756 1360 651 1360 c
651 1520 m
818 1520 946 1454 1034 1321 c
1123 1189 1167 997 1167 745 c
1167 494 1123 302 1034 169 c
946 37 818 -29 651 -29 c
484 -29 356 37 267 169 c
179 302 135 494 135 745 c
135 997 179 1189 267 1321 c
356 1454 484 1520 651 1520 c
ce} _d
/one{1303 0 225 0 1114 1493 sc
254 170 m
584 170 l
584 1309 l
225 1237 l
225 1421 l
582 1493 l
784 1493 l
784 170 l
1114 170 l
1114 0 l
254 0 l
254 170 l
ce} _d
/two{1303 0 150 0 1098 1520 sc
393 170 m
1098 170 l
1098 0 l
150 0 l
150 170 l
227 249 331 356 463 489 c
596 623 679 709 713 748 c
778 821 823 882 848 932 c
874 983 887 1032 887 1081 c
887 1160 859 1225 803 1275 c
748 1325 675 1350 586 1350 c
523 1350 456 1339 385 1317 c
315 1295 240 1262 160 1217 c
160 1421 l
241 1454 317 1478 388 1495 c
459 1512 523 1520 582 1520 c
737 1520 860 1481 952 1404 c
1044 1327 1090 1223 1090 1094 c
1090 1033 1078 974 1055 919 c
1032 864 991 800 930 725 c
913 706 860 650 771 557 c
682 465 556 336 393 170 c
ce} _d
/three{1303 0 156 -29 1139 1520 sc
831 805 m
928 784 1003 741 1057 676 c
1112 611 1139 530 1139 434 c
1139 287 1088 173 987 92 c
886 11 742 -29 555 -29 c
492 -29 428 -23 361 -10 c
295 2 227 20 156 45 c
156 240 l
212 207 273 183 340 166 c
407 149 476 141 549 141 c
676 141 772 166 838 216 c
905 266 938 339 938 434 c
938 522 907 591 845 640 c
784 690 698 715 588 715 c
414 715 l
414 881 l
596 881 l
695 881 771 901 824 940 c
877 980 903 1037 903 1112 c
903 1189 876 1247 821 1288 c
767 1329 689 1350 588 1350 c
533 1350 473 1344 410 1332 c
347 1320 277 1301 201 1276 c
201 1456 l
278 1477 349 1493 416 1504 c
483 1515 547 1520 606 1520 c
759 1520 881 1485 970 1415 c
1059 1346 1104 1252 1104 1133 c
1104 1050 1080 980 1033 923 c
986 866 918 827 831 805 c
ce} _d
/four{1303 0 100 0 1188 1493 sc
774 1317 m
264 520 l
774 520 l
774 1317 l
721 1493 m
975 1493 l
975 520 l
1188 520 l
1188 352 l
975 352 l
975 0 l
774 0 l
774 352 l
100 352 l
100 547 l
721 1493 l
ce} _d
/five{1303 0 158 -29 1124 1493 sc
221 1493 m
1014 1493 l
1014 1323 l
406 1323 l
406 957 l
435 967 465 974 494 979 c
523 984 553 987 582 987 c
749 987 881 941 978 850 c
1075 759 1124 635 1124 479 c
1124 318 1074 193 974 104 c
874 15 733 -29 551 -29 c
488 -29 424 -24 359 -13 c
294 -2 227 14 158 35 c
158 238 l
218 205 280 181 344 165 c
408 149 476 141 547 141 c
662 141 754 171 821 232 c
888 293 922 375 922 479 c
922 583 888 665 821 726 c
754 787 662 817 547 817 c
493 817 439 811 385 799 c
332 787 277 768 221 743 c
221 1493 l
ce} _d
/six{1303 0 143 -29 1174 1520 sc
676 827 m
585 827 513 796 460 734 c
407 672 381 587 381 479 c
381 372 407 287 460 224 c
513 162 585 131 676 131 c
767 131 838 162 891 224 c
944 287 971 372 971 479 c
971 587 944 672 891 734 c
838 796 767 827 676 827 c
1077 1460 m
1077 1276 l
1026 1300 975 1318 923 1331 c
872 1344 821 1350 770 1350 c
637 1350 535 1305 464 1215 c
394 1125 354 989 344 807 c
383 865 433 909 492 940 c
551 971 617 987 688 987 c
838 987 956 941 1043 850 c
1130 759 1174 636 1174 479 c
1174 326 1129 203 1038 110 c
947 17 827 -29 676 -29 c
503 -29 371 37 280 169 c
189 302 143 494 143 745 c
143 981 199 1169 311 1309 c
423 1450 573 1520 762 1520 c
813 1520 864 1515 915 1505 c
967 1495 1021 1480 1077 1460 c
ce} _d
/eight{1303 0 139 -29 1163 1520 sc
651 709 m
555 709 479 683 424 632 c
369 581 342 510 342 420 c
342 330 369 259 424 208 c
479 157 555 131 651 131 c
747 131 823 157 878 208 c
933 260 961 331 961 420 c
961 510 933 581 878 632 c
823 683 748 709 651 709 c
449 795 m
362 816 295 857 246 916 c
198 975 174 1048 174 1133 c
174 1252 216 1347 301 1416 c
386 1485 503 1520 651 1520 c
800 1520 916 1485 1001 1416 c
1086 1347 1128 1252 1128 1133 c
1128 1048 1104 975 1055 916 c
1007 857 940 816 854 795 c
951 772 1027 728 1081 662 c
1136 596 1163 515 1163 420 c
1163 275 1119 164 1030 87 c
942 10 816 -29 651 -29 c
486 -29 360 10 271 87 c
183 164 139 275 139 420 c
139 515 166 596 221 662 c
276 728 352 772 449 795 c
375 1114 m
375 1037 399 976 447 933 c
496 890 564 868 651 868 c
738 868 805 890 854 933 c
903 976 928 1037 928 1114 c
928 1191 903 1252 854 1295 c
805 1338 738 1360 651 1360 c
564 1360 496 1338 447 1295 c
399 1252 375 1191 375 1114 c
ce} _d
/A{1401 0 16 0 1384 1493 sc
700 1294 m
426 551 l
975 551 l
700 1294 l
586 1493 m
815 1493 l
1384 0 l
1174 0 l
1038 383 l
365 383 l
229 0 l
16 0 l
586 1493 l
ce} _d
/C{1430 0 115 -29 1319 1520 sc
1319 1378 m
1319 1165 l
1251 1228 1178 1276 1101 1307 c
1024 1338 943 1354 856 1354 c
685 1354 555 1302 464 1197 c
373 1093 328 942 328 745 c
328 548 373 398 464 293 c
555 189 685 137 856 137 c
943 137 1024 153 1101 184 c
1178 215 1251 263 1319 326 c
1319 115 l
1248 67 1173 31 1094 7 c
1015 -17 932 -29 844 -29 c
618 -29 440 40 310 178 c
180 317 115 506 115 745 c
115 985 180 1174 310 1312 c
440 1451 618 1520 844 1520 c
933 1520 1017 1508 1096 1484 c
1175 1461 1250 1425 1319 1378 c
ce} _d
/I{604 0 201 0 403 1493 sc
201 1493 m
403 1493 l
403 0 l
201 0 l
201 1493 l
ce} _d
/L{1141 0 201 0 1130 1493 sc
201 1493 m
403 1493 l
403 170 l
1130 170 l
1130 0 l
201 0 l
201 1493 l
ce} _d
/M{1767 0 201 0 1567 1493 sc
201 1493 m
502 1493 l
883 477 l
1266 1493 l
1567 1493 l
1567 0 l
1370 0 l
1370 1311 l
985 287 l
782 287 l
397 1311 l
397 0 l
201 0 l
201 1493 l
ce} _d
/N{1532 0 201 0 1331 1493 sc
201 1493 m
473 1493 l
1135 244 l
1135 1493 l
1331 1493 l
1331 0 l
1059 0 l
397 1249 l
397 0 l
201 0 l
201 1493 l
ce} _d
/O{1612 0 115 -29 1497 1520 sc
807 1356 m
660 1356 544 1301 457 1192 c
371 1083 328 934 328 745 c
328 557 371 408 457 299 c
544 190 660 135 807 135 c
954 135 1070 190 1155 299 c
1241 408 1284 557 1284 745 c
1284 934 1241 1083 1155 1192 c
1070 1301 954 1356 807 1356 c
807 1520 m
1016 1520 1184 1450 1309 1309 c
1434 1169 1497 981 1497 745 c
1497 510 1434 322 1309 181 c
1184 41 1016 -29 807 -29 c
597 -29 429 41 303 181 c
178 321 115 509 115 745 c
115 981 178 1169 303 1309 c
429 1450 597 1520 807 1520 c
ce} _d
/S{1300 0 135 -29 1186 1520 sc
1096 1444 m
1096 1247 l
1019 1284 947 1311 879 1329 c
811 1347 745 1356 682 1356 c
572 1356 487 1335 427 1292 c
368 1249 338 1189 338 1110 c
338 1044 358 994 397 960 c
437 927 512 900 623 879 c
745 854 l
896 825 1007 775 1078 702 c
1150 630 1186 533 1186 412 c
1186 267 1137 158 1040 83 c
943 8 801 -29 614 -29 c
543 -29 468 -21 388 -5 c
309 11 226 35 141 66 c
141 274 l
223 228 303 193 382 170 c
461 147 538 135 614 135 c
729 135 818 158 881 203 c
944 248 975 313 975 397 c
975 470 952 528 907 569 c
862 610 789 641 686 662 c
563 686 l
412 716 303 763 236 827 c
169 891 135 980 135 1094 c
135 1226 181 1330 274 1406 c
367 1482 496 1520 659 1520 c
729 1520 800 1514 873 1501 c
946 1488 1020 1469 1096 1444 c
ce} _d
/T{1251 0 -6 0 1257 1493 sc
-6 1493 m
1257 1493 l
1257 1323 l
727 1323 l
727 0 l
524 0 l
524 1323 l
-6 1323 l
-6 1493 l
ce} _d
/a{1255 0 123 -29 1069 1147 sc
702 563 m
553 563 450 546 393 512 c
336 478 307 420 307 338 c
307 273 328 221 371 182 c
414 144 473 125 547 125 c
649 125 731 161 792 233 c
854 306 885 402 885 522 c
885 563 l
702 563 l
1069 639 m
1069 0 l
885 0 l
885 170 l
843 102 791 52 728 19 c
665 -13 589 -29 498 -29 c
383 -29 292 3 224 67 c
157 132 123 218 123 326 c
123 452 165 547 249 611 c
334 675 460 707 627 707 c
885 707 l
885 725 l
885 810 857 875 801 921 c
746 968 668 991 567 991 c
503 991 441 983 380 968 c
319 953 261 930 205 899 c
205 1069 l
272 1095 338 1114 401 1127 c
464 1140 526 1147 586 1147 c
748 1147 869 1105 949 1021 c
1029 937 1069 810 1069 639 c
ce} _d
/d{1300 0 113 -29 1114 1556 sc
930 950 m
930 1556 l
1114 1556 l
1114 0 l
930 0 l
930 168 l
891 101 842 52 783 19 c
724 -13 654 -29 571 -29 c
436 -29 325 25 240 133 c
155 241 113 383 113 559 c
113 735 155 877 240 985 c
325 1093 436 1147 571 1147 c
654 1147 724 1131 783 1098 c
842 1066 891 1017 930 950 c
303 559 m
303 424 331 317 386 240 c
442 163 519 125 616 125 c
713 125 790 163 846 240 c
902 317 930 424 930 559 c
930 694 902 800 846 877 c
790 954 713 993 616 993 c
519 993 442 954 386 877 c
331 800 303 694 303 559 c
ce} _d
/e{1260 0 113 -29 1151 1147 sc
1151 606 m
1151 516 l
305 516 l
313 389 351 293 419 226 c
488 160 583 127 705 127 c
776 127 844 136 910 153 c
977 170 1043 196 1108 231 c
1108 57 l
1042 29 974 8 905 -7 c
836 -22 765 -29 694 -29 c
515 -29 374 23 269 127 c
165 231 113 372 113 549 c
113 732 162 878 261 985 c
360 1093 494 1147 662 1147 c
813 1147 932 1098 1019 1001 c
1107 904 1151 773 1151 606 c
967 660 m
966 761 937 841 882 901 c
827 961 755 991 664 991 c
561 991 479 962 417 904 c
356 846 320 764 311 659 c
967 660 l
ce} _d
/g{1300 0 113 -426 1114 1147 sc
930 573 m
930 706 902 810 847 883 c
792 956 715 993 616 993 c
517 993 440 956 385 883 c
330 810 303 706 303 573 c
303 440 330 337 385 264 c
440 191 517 154 616 154 c
715 154 792 191 847 264 c
902 337 930 440 930 573 c
1114 139 m
1114 -52 1072 -193 987 -286 c
902 -379 773 -426 598 -426 c
533 -426 472 -421 415 -411 c
358 -402 302 -387 248 -367 c
248 -188 l
302 -217 355 -239 408 -253 c
461 -267 514 -274 569 -274 c
690 -274 780 -242 840 -179 c
900 -116 930 -21 930 106 c
930 197 l
892 131 843 82 784 49 c
725 16 654 0 571 0 c
434 0 323 52 239 157 c
155 262 113 400 113 573 c
113 746 155 885 239 990 c
323 1095 434 1147 571 1147 c
654 1147 725 1131 784 1098 c
843 1065 892 1016 930 950 c
930 1120 l
1114 1120 l
1114 139 l
ce} _d
/i{569 0 193 0 377 1556 sc
193 1120 m
377 1120 l
377 0 l
193 0 l
193 1120 l
193 1556 m
377 1556 l
377 1323 l
193 1323 l
193 1556 l
ce} _d
/l{569 0 193 0 377 1556 sc
193 1556 m
377 1556 l
377 0 l
193 0 l
193 1556 l
ce} _d
/m{1995 0 186 0 1821 1147 sc
1065 905 m
1111 988 1166 1049 1230 1088 c
1294 1127 1369 1147 1456 1147 c
1573 1147 1663 1106 1726 1024 c
1789 943 1821 827 1821 676 c
1821 0 l
1636 0 l
1636 670 l
1636 777 1617 857 1579 909 c
1541 961 1483 987 1405 987 c
1310 987 1234 955 1179 892 c
1124 829 1096 742 1096 633 c
1096 0 l
911 0 l
911 670 l
911 778 892 858 854 909 c
816 961 757 987 678 987 c
584 987 509 955 454 891 c
399 828 371 742 371 633 c
371 0 l
186 0 l
186 1120 l
371 1120 l
371 946 l
413 1015 463 1065 522 1098 c
581 1131 650 1147 731 1147 c
812 1147 881 1126 938 1085 c
995 1044 1038 984 1065 905 c
ce} _d
/r{842 0 186 0 842 1147 sc
842 948 m
821 960 799 969 774 974 c
750 980 723 983 694 983 c
590 983 510 949 454 881 c
399 814 371 717 371 590 c
371 0 l
186 0 l
186 1120 l
371 1120 l
371 946 l
410 1014 460 1064 522 1097 c
584 1130 659 1147 748 1147 c
761 1147 775 1146 790 1144 c
805 1143 822 1140 841 1137 c
842 948 l
ce} _d
/s{1067 0 111 -29 967 1147 sc
907 1087 m
907 913 l
855 940 801 960 745 973 c
689 986 631 993 571 993 c
480 993 411 979 365 951 c
320 923 297 881 297 825 c
297 782 313 749 346 724 c
379 700 444 677 543 655 c
606 641 l
737 613 829 573 884 522 c
939 471 967 400 967 309 c
967 205 926 123 843 62 c
761 1 648 -29 504 -29 c
444 -29 381 -23 316 -11 c
251 0 183 18 111 41 c
111 231 l
179 196 246 169 312 151 c
378 134 443 125 508 125 c
595 125 661 140 708 169 c
755 199 778 241 778 295 c
778 345 761 383 727 410 c
694 437 620 462 506 487 c
442 502 l
328 526 246 563 195 612 c
144 662 119 730 119 817 c
119 922 156 1004 231 1061 c
306 1118 412 1147 549 1147 c
617 1147 681 1142 741 1132 c
801 1122 856 1107 907 1087 c
ce} _d
end readonly def
/BuildGlyph {
exch begin
CharStrings exch
2 copy known not {pop /.notdef} if
true 3 1 roll get exec
end
} _d
/BuildChar {
1 index /Encoding get exch get
1 index /BuildGlyph get exec
} _d
FontName currentdict end definefont pop
end
%%EndProlog
mpldict begin
-486 -108 translate
1584 1008 0 0 clipbox
gsave
0 0 m
1584 0 l
1584 1008 l
0 1008 l
cl
1.000 setgray
fill
grestore
gsave
79.31 210.53 m
1573.2 210.53 l
1573.2 997.2 l
79.31 997.2 l
cl
1.000 setgray
fill
grestore
0.800 setlinewidth
1 setlinejoin
0 setlinecap
[] 0 setdash
0.000 setgray
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
147.214 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
157.152 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /comma glyphshow
48.3926 0 m /two glyphshow
71.2969 0 m /zero glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
298.112 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
308.05 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /comma glyphshow
48.3926 0 m /four glyphshow
71.2969 0 m /zero glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
449.01 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
458.948 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /comma glyphshow
48.3926 0 m /eight glyphshow
71.2969 0 m /zero glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
599.908 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
609.846 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /comma glyphshow
48.3926 0 m /one glyphshow
71.2969 0 m /six glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
750.806 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
760.744 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /four glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
901.704 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
911.641 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /eight glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1052.6 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1062.54 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /one glyphshow
94.2012 0 m /six glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1203.5 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1213.44 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /four glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /eight glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1354.4 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1364.34 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /four glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /one glyphshow
94.2012 0 m /six glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1505.3 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1515.23 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /eight glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /one glyphshow
94.2012 0 m /six glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
/DejaVuSans 36.000 selectfont
gsave
757.13 18.1081 translate
0 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /N glyphshow
40.9746 0 m /S glyphshow
63.8262 0 m /comma glyphshow
75.2695 0 m /N glyphshow
102.199 0 m /T glyphshow
124.189 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 196.85 translate
0 rotate
0 0 m /zero glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 327.943 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 314.264 translate
0 rotate
0 0 m /one glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 445.357 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 431.677 translate
0 rotate
0 0 m /two glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 562.77 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 549.091 translate
0 rotate
0 0 m /three glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 680.184 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 666.504 translate
0 rotate
0 0 m /four glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 797.597 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 783.917 translate
0 rotate
0 0 m /five glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 915.011 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 901.331 translate
0 rotate
0 0 m /six glyphshow
grestore
/DejaVuSans 36.000 selectfont
gsave
37.9194 536.404 translate
90 rotate
0 0 m /T glyphshow
20.8652 0 m /i glyphshow
30.8672 0 m /m glyphshow
65.9355 0 m /e glyphshow
88.084 0 m /parenleft glyphshow
102.129 0 m /s glyphshow
120.885 0 m /parenright glyphshow
grestore
1.500 setlinewidth
[5.55 2.4] 0 setdash
0.000 0.000 1.000 setrgbcolor
gsave
1493.89 786.67 79.31 210.53 clipbox
147.214091 381.841834 m
298.112071 372.317844 l
449.010051 394.00704 l
599.90803 403.805074 l
750.80601 367.488747 l
901.70399 361.962566 l
1052.60197 367.371216 l
1203.499949 328.70345 l
1354.397929 350.714711 l
1505.295909 339.453119 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 786.67 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-0 -9 m
9 9 l
-9 9 l
cl
gsave
0.000 0.000 1.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 381.842 o
298.112 372.318 o
449.01 394.007 o
599.908 403.805 o
750.806 367.489 o
901.704 361.963 o
1052.6 367.371 o
1203.5 328.703 o
1354.4 350.715 o
1505.3 339.453 o
grestore
1.500 setlinewidth
1 setlinejoin
[1.5 2.475] 0 setdash
1.000 0.000 0.000 setrgbcolor
gsave
1493.89 786.67 79.31 210.53 clipbox
147.214091 714.431938 m
298.112071 715.479618 l
449.010051 906.381297 l
599.90803 973.251417 l
750.80601 396.358714 l
901.70399 412.763953 l
1052.60197 429.367739 l
1203.499949 408.16757 l
1354.397929 405.187617 l
1505.295909 387.362849 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 786.67 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-9 -9 m
9 -9 l
9 9 l
-9 9 l
cl
gsave
1.000 0.000 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 714.432 o
298.112 715.48 o
449.01 906.381 o
599.908 973.251 o
750.806 396.359 o
901.704 412.764 o
1052.6 429.368 o
1203.5 408.168 o
1354.4 405.188 o
1505.3 387.363 o
grestore
1.500 setlinewidth
1 setlinejoin
[9.6 2.4 1.5 2.4] 0 setdash
1.000 0.647 0.000 setrgbcolor
gsave
1493.89 786.67 79.31 210.53 clipbox
147.214091 310.677307 m
298.112071 313.716084 l
449.010051 318.374228 l
599.90803 331.465708 l
750.80601 305.340397 l
901.70399 322.118425 l
1052.60197 338.245512 l
1203.499949 322.230672 l
1354.397929 338.872265 l
1505.295909 332.094574 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 786.67 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
0 9 m
-7.794229 4.5 l
-7.794229 -4.5 l
-0 -9 l
7.794229 -4.5 l
7.794229 4.5 l
cl
gsave
1.000 0.647 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 310.677 o
298.112 313.716 o
449.01 318.374 o
599.908 331.466 o
750.806 305.34 o
901.704 322.118 o
1052.6 338.246 o
1203.5 322.231 o
1354.4 338.872 o
1505.3 332.095 o
grestore
0.800 setlinewidth
2 setlinecap
0.000 setgray
gsave
79.31 210.53 m
79.31 997.2 l
stroke
grestore
gsave
1573.2 210.53 m
1573.2 997.2 l
stroke
grestore
gsave
79.31 210.53 m
1573.2 210.53 l
stroke
grestore
gsave
79.31 997.2 m
1573.2 997.2 l
stroke
grestore
1.000 setlinewidth
0 setlinecap
0.800 setgray
gsave
1032.996875 885.1375 m
1552.2 885.1375 l
1556.2 885.1375 1558.2 887.1375 1558.2 891.1375 c
1558.2 976.2 l
1558.2 980.2 1556.2 982.2 1552.2 982.2 c
1032.996875 982.2 l
1028.996875 982.2 1026.996875 980.2 1026.996875 976.2 c
1026.996875 891.1375 l
1026.996875 887.1375 1028.996875 885.1375 1032.996875 885.1375 c
cl
gsave
1.000 setgray
fill
grestore
stroke
grestore
1.500 setlinewidth
1 setlinejoin
[5.55 2.4] 0 setdash
0.000 0.000 1.000 setrgbcolor
gsave
1038.996875 957.903125 m
1068.996875 957.903125 l
1098.996875 957.903125 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-0 -9 m
9 9 l
-9 9 l
cl
gsave
0.000 0.000 1.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1069 957.903 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1123 947.403 translate
0 rotate
0 0 m /M glyphshow
25.8838 0 m /e glyphshow
44.3408 0 m /r glyphshow
56.1748 0 m /g glyphshow
75.2178 0 m /e glyphshow
93.6748 0 m /space glyphshow
103.211 0 m /hyphen glyphshow
114.036 0 m /space glyphshow
123.572 0 m /C glyphshow
144.52 0 m /O glyphshow
168.133 0 m /L glyphshow
184.847 0 m /S glyphshow
grestore
1.500 setlinewidth
1 setlinejoin
[1.5 2.475] 0 setdash
1.000 0.000 0.000 setrgbcolor
gsave
1038.996875 913.871875 m
1068.996875 913.871875 l
1098.996875 913.871875 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-9 -9 m
9 -9 l
9 9 l
-9 9 l
cl
gsave
1.000 0.000 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1069 913.872 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1123 903.372 translate
0 rotate
0 0 m /M glyphshow
25.8838 0 m /e glyphshow
44.3408 0 m /r glyphshow
56.1748 0 m /g glyphshow
75.2178 0 m /e glyphshow
93.6748 0 m /space glyphshow
103.211 0 m /hyphen glyphshow
114.036 0 m /space glyphshow
123.572 0 m /C glyphshow
144.52 0 m /O glyphshow
168.133 0 m /L glyphshow
185.597 0 m /A glyphshow
grestore
1.500 setlinewidth
1 setlinejoin
[9.6 2.4 1.5 2.4] 0 setdash
1.000 0.647 0.000 setrgbcolor
gsave
1389.121875 957.903125 m
1419.121875 957.903125 l
1449.121875 957.903125 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
0 9 m
-7.794229 4.5 l
-7.794229 -4.5 l
-0 -9 l
7.794229 -4.5 l
7.794229 4.5 l
cl
gsave
1.000 0.647 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1419.12 957.903 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1473.12 947.403 translate
0 rotate
0 0 m /I glyphshow
8.84766 0 m /d glyphshow
27.8906 0 m /e glyphshow
46.3477 0 m /a glyphshow
64.7314 0 m /l glyphshow
grestore
end
showpage
%!PS-Adobe-3.0 EPSF-3.0
%%Title: TEST.eps
%%Creator: Matplotlib v3.7.1, https://matplotlib.org/
%%CreationDate: Fri May 17 23:42:13 2024
%%Orientation: portrait
%%BoundingBox: -486 -108 1098 900
%%HiResBoundingBox: -486.000000 -108.000000 1098.000000 900.000000
%%EndComments
%%BeginProlog
/mpldict 11 dict def
mpldict begin
/_d { bind def } bind def
/m { moveto } _d
/l { lineto } _d
/r { rlineto } _d
/c { curveto } _d
/cl { closepath } _d
/ce { closepath eofill } _d
/box {
m
1 index 0 r
0 exch r
neg 0 r
cl
} _d
/clipbox {
box
clip
newpath
} _d
/sc { setcachedevice } _d
%!PS-Adobe-3.0 Resource-Font
%%Creator: Converted from TrueType to Type 3 by Matplotlib.
10 dict begin
/FontName /DejaVuSans def
/PaintType 0 def
/FontMatrix [0.00048828125 0 0 0.00048828125 0 0] def
/FontBBox [-2090 -948 3673 2524] def
/FontType 3 def
/Encoding [/space /parenleft /parenright /comma /hyphen /zero /one /two /three /four /five /six /seven /eight /A /C /I /L /M /N /O /S /T /a /d /e /g /i /l /m /r /s] def
/CharStrings 33 dict dup begin
/.notdef 0 def
/space{651 0 0 0 0 0 sc
ce} _d
/parenleft{799 0 176 -270 635 1554 sc
635 1554 m
546 1401 479 1249 436 1099 c
393 949 371 797 371 643 c
371 489 393 336 436 185 c
480 34 546 -117 635 -270 c
475 -270 l
375 -113 300 41 250 192 c
201 343 176 494 176 643 c
176 792 201 941 250 1092 c
299 1243 374 1397 475 1554 c
635 1554 l
ce} _d
/parenright{799 0 164 -270 623 1554 sc
164 1554 m
324 1554 l
424 1397 499 1243 548 1092 c
598 941 623 792 623 643 c
623 494 598 343 548 192 c
499 41 424 -113 324 -270 c
164 -270 l
253 -117 319 34 362 185 c
406 336 428 489 428 643 c
428 797 406 949 362 1099 c
319 1249 253 1401 164 1554 c
ce} _d
/comma{651 0 158 -238 451 254 sc
240 254 m
451 254 l
451 82 l
287 -238 l
158 -238 l
240 82 l
240 254 l
ce} _d
/hyphen{739 0 100 479 639 643 sc
100 643 m
639 643 l
639 479 l
100 479 l
100 643 l
ce} _d
/zero{1303 0 135 -29 1167 1520 sc
651 1360 m
547 1360 469 1309 416 1206 c
364 1104 338 950 338 745 c
338 540 364 387 416 284 c
469 182 547 131 651 131 c
756 131 834 182 886 284 c
939 387 965 540 965 745 c
965 950 939 1104 886 1206 c
834 1309 756 1360 651 1360 c
651 1520 m
818 1520 946 1454 1034 1321 c
1123 1189 1167 997 1167 745 c
1167 494 1123 302 1034 169 c
946 37 818 -29 651 -29 c
484 -29 356 37 267 169 c
179 302 135 494 135 745 c
135 997 179 1189 267 1321 c
356 1454 484 1520 651 1520 c
ce} _d
/one{1303 0 225 0 1114 1493 sc
254 170 m
584 170 l
584 1309 l
225 1237 l
225 1421 l
582 1493 l
784 1493 l
784 170 l
1114 170 l
1114 0 l
254 0 l
254 170 l
ce} _d
/two{1303 0 150 0 1098 1520 sc
393 170 m
1098 170 l
1098 0 l
150 0 l
150 170 l
227 249 331 356 463 489 c
596 623 679 709 713 748 c
778 821 823 882 848 932 c
874 983 887 1032 887 1081 c
887 1160 859 1225 803 1275 c
748 1325 675 1350 586 1350 c
523 1350 456 1339 385 1317 c
315 1295 240 1262 160 1217 c
160 1421 l
241 1454 317 1478 388 1495 c
459 1512 523 1520 582 1520 c
737 1520 860 1481 952 1404 c
1044 1327 1090 1223 1090 1094 c
1090 1033 1078 974 1055 919 c
1032 864 991 800 930 725 c
913 706 860 650 771 557 c
682 465 556 336 393 170 c
ce} _d
/three{1303 0 156 -29 1139 1520 sc
831 805 m
928 784 1003 741 1057 676 c
1112 611 1139 530 1139 434 c
1139 287 1088 173 987 92 c
886 11 742 -29 555 -29 c
492 -29 428 -23 361 -10 c
295 2 227 20 156 45 c
156 240 l
212 207 273 183 340 166 c
407 149 476 141 549 141 c
676 141 772 166 838 216 c
905 266 938 339 938 434 c
938 522 907 591 845 640 c
784 690 698 715 588 715 c
414 715 l
414 881 l
596 881 l
695 881 771 901 824 940 c
877 980 903 1037 903 1112 c
903 1189 876 1247 821 1288 c
767 1329 689 1350 588 1350 c
533 1350 473 1344 410 1332 c
347 1320 277 1301 201 1276 c
201 1456 l
278 1477 349 1493 416 1504 c
483 1515 547 1520 606 1520 c
759 1520 881 1485 970 1415 c
1059 1346 1104 1252 1104 1133 c
1104 1050 1080 980 1033 923 c
986 866 918 827 831 805 c
ce} _d
/four{1303 0 100 0 1188 1493 sc
774 1317 m
264 520 l
774 520 l
774 1317 l
721 1493 m
975 1493 l
975 520 l
1188 520 l
1188 352 l
975 352 l
975 0 l
774 0 l
774 352 l
100 352 l
100 547 l
721 1493 l
ce} _d
/five{1303 0 158 -29 1124 1493 sc
221 1493 m
1014 1493 l
1014 1323 l
406 1323 l
406 957 l
435 967 465 974 494 979 c
523 984 553 987 582 987 c
749 987 881 941 978 850 c
1075 759 1124 635 1124 479 c
1124 318 1074 193 974 104 c
874 15 733 -29 551 -29 c
488 -29 424 -24 359 -13 c
294 -2 227 14 158 35 c
158 238 l
218 205 280 181 344 165 c
408 149 476 141 547 141 c
662 141 754 171 821 232 c
888 293 922 375 922 479 c
922 583 888 665 821 726 c
754 787 662 817 547 817 c
493 817 439 811 385 799 c
332 787 277 768 221 743 c
221 1493 l
ce} _d
/six{1303 0 143 -29 1174 1520 sc
676 827 m
585 827 513 796 460 734 c
407 672 381 587 381 479 c
381 372 407 287 460 224 c
513 162 585 131 676 131 c
767 131 838 162 891 224 c
944 287 971 372 971 479 c
971 587 944 672 891 734 c
838 796 767 827 676 827 c
1077 1460 m
1077 1276 l
1026 1300 975 1318 923 1331 c
872 1344 821 1350 770 1350 c
637 1350 535 1305 464 1215 c
394 1125 354 989 344 807 c
383 865 433 909 492 940 c
551 971 617 987 688 987 c
838 987 956 941 1043 850 c
1130 759 1174 636 1174 479 c
1174 326 1129 203 1038 110 c
947 17 827 -29 676 -29 c
503 -29 371 37 280 169 c
189 302 143 494 143 745 c
143 981 199 1169 311 1309 c
423 1450 573 1520 762 1520 c
813 1520 864 1515 915 1505 c
967 1495 1021 1480 1077 1460 c
ce} _d
/seven{1303 0 168 0 1128 1493 sc
168 1493 m
1128 1493 l
1128 1407 l
586 0 l
375 0 l
885 1323 l
168 1323 l
168 1493 l
ce} _d
/eight{1303 0 139 -29 1163 1520 sc
651 709 m
555 709 479 683 424 632 c
369 581 342 510 342 420 c
342 330 369 259 424 208 c
479 157 555 131 651 131 c
747 131 823 157 878 208 c
933 260 961 331 961 420 c
961 510 933 581 878 632 c
823 683 748 709 651 709 c
449 795 m
362 816 295 857 246 916 c
198 975 174 1048 174 1133 c
174 1252 216 1347 301 1416 c
386 1485 503 1520 651 1520 c
800 1520 916 1485 1001 1416 c
1086 1347 1128 1252 1128 1133 c
1128 1048 1104 975 1055 916 c
1007 857 940 816 854 795 c
951 772 1027 728 1081 662 c
1136 596 1163 515 1163 420 c
1163 275 1119 164 1030 87 c
942 10 816 -29 651 -29 c
486 -29 360 10 271 87 c
183 164 139 275 139 420 c
139 515 166 596 221 662 c
276 728 352 772 449 795 c
375 1114 m
375 1037 399 976 447 933 c
496 890 564 868 651 868 c
738 868 805 890 854 933 c
903 976 928 1037 928 1114 c
928 1191 903 1252 854 1295 c
805 1338 738 1360 651 1360 c
564 1360 496 1338 447 1295 c
399 1252 375 1191 375 1114 c
ce} _d
/A{1401 0 16 0 1384 1493 sc
700 1294 m
426 551 l
975 551 l
700 1294 l
586 1493 m
815 1493 l
1384 0 l
1174 0 l
1038 383 l
365 383 l
229 0 l
16 0 l
586 1493 l
ce} _d
/C{1430 0 115 -29 1319 1520 sc
1319 1378 m
1319 1165 l
1251 1228 1178 1276 1101 1307 c
1024 1338 943 1354 856 1354 c
685 1354 555 1302 464 1197 c
373 1093 328 942 328 745 c
328 548 373 398 464 293 c
555 189 685 137 856 137 c
943 137 1024 153 1101 184 c
1178 215 1251 263 1319 326 c
1319 115 l
1248 67 1173 31 1094 7 c
1015 -17 932 -29 844 -29 c
618 -29 440 40 310 178 c
180 317 115 506 115 745 c
115 985 180 1174 310 1312 c
440 1451 618 1520 844 1520 c
933 1520 1017 1508 1096 1484 c
1175 1461 1250 1425 1319 1378 c
ce} _d
/I{604 0 201 0 403 1493 sc
201 1493 m
403 1493 l
403 0 l
201 0 l
201 1493 l
ce} _d
/L{1141 0 201 0 1130 1493 sc
201 1493 m
403 1493 l
403 170 l
1130 170 l
1130 0 l
201 0 l
201 1493 l
ce} _d
/M{1767 0 201 0 1567 1493 sc
201 1493 m
502 1493 l
883 477 l
1266 1493 l
1567 1493 l
1567 0 l
1370 0 l
1370 1311 l
985 287 l
782 287 l
397 1311 l
397 0 l
201 0 l
201 1493 l
ce} _d
/N{1532 0 201 0 1331 1493 sc
201 1493 m
473 1493 l
1135 244 l
1135 1493 l
1331 1493 l
1331 0 l
1059 0 l
397 1249 l
397 0 l
201 0 l
201 1493 l
ce} _d
/O{1612 0 115 -29 1497 1520 sc
807 1356 m
660 1356 544 1301 457 1192 c
371 1083 328 934 328 745 c
328 557 371 408 457 299 c
544 190 660 135 807 135 c
954 135 1070 190 1155 299 c
1241 408 1284 557 1284 745 c
1284 934 1241 1083 1155 1192 c
1070 1301 954 1356 807 1356 c
807 1520 m
1016 1520 1184 1450 1309 1309 c
1434 1169 1497 981 1497 745 c
1497 510 1434 322 1309 181 c
1184 41 1016 -29 807 -29 c
597 -29 429 41 303 181 c
178 321 115 509 115 745 c
115 981 178 1169 303 1309 c
429 1450 597 1520 807 1520 c
ce} _d
/S{1300 0 135 -29 1186 1520 sc
1096 1444 m
1096 1247 l
1019 1284 947 1311 879 1329 c
811 1347 745 1356 682 1356 c
572 1356 487 1335 427 1292 c
368 1249 338 1189 338 1110 c
338 1044 358 994 397 960 c
437 927 512 900 623 879 c
745 854 l
896 825 1007 775 1078 702 c
1150 630 1186 533 1186 412 c
1186 267 1137 158 1040 83 c
943 8 801 -29 614 -29 c
543 -29 468 -21 388 -5 c
309 11 226 35 141 66 c
141 274 l
223 228 303 193 382 170 c
461 147 538 135 614 135 c
729 135 818 158 881 203 c
944 248 975 313 975 397 c
975 470 952 528 907 569 c
862 610 789 641 686 662 c
563 686 l
412 716 303 763 236 827 c
169 891 135 980 135 1094 c
135 1226 181 1330 274 1406 c
367 1482 496 1520 659 1520 c
729 1520 800 1514 873 1501 c
946 1488 1020 1469 1096 1444 c
ce} _d
/T{1251 0 -6 0 1257 1493 sc
-6 1493 m
1257 1493 l
1257 1323 l
727 1323 l
727 0 l
524 0 l
524 1323 l
-6 1323 l
-6 1493 l
ce} _d
/a{1255 0 123 -29 1069 1147 sc
702 563 m
553 563 450 546 393 512 c
336 478 307 420 307 338 c
307 273 328 221 371 182 c
414 144 473 125 547 125 c
649 125 731 161 792 233 c
854 306 885 402 885 522 c
885 563 l
702 563 l
1069 639 m
1069 0 l
885 0 l
885 170 l
843 102 791 52 728 19 c
665 -13 589 -29 498 -29 c
383 -29 292 3 224 67 c
157 132 123 218 123 326 c
123 452 165 547 249 611 c
334 675 460 707 627 707 c
885 707 l
885 725 l
885 810 857 875 801 921 c
746 968 668 991 567 991 c
503 991 441 983 380 968 c
319 953 261 930 205 899 c
205 1069 l
272 1095 338 1114 401 1127 c
464 1140 526 1147 586 1147 c
748 1147 869 1105 949 1021 c
1029 937 1069 810 1069 639 c
ce} _d
/d{1300 0 113 -29 1114 1556 sc
930 950 m
930 1556 l
1114 1556 l
1114 0 l
930 0 l
930 168 l
891 101 842 52 783 19 c
724 -13 654 -29 571 -29 c
436 -29 325 25 240 133 c
155 241 113 383 113 559 c
113 735 155 877 240 985 c
325 1093 436 1147 571 1147 c
654 1147 724 1131 783 1098 c
842 1066 891 1017 930 950 c
303 559 m
303 424 331 317 386 240 c
442 163 519 125 616 125 c
713 125 790 163 846 240 c
902 317 930 424 930 559 c
930 694 902 800 846 877 c
790 954 713 993 616 993 c
519 993 442 954 386 877 c
331 800 303 694 303 559 c
ce} _d
/e{1260 0 113 -29 1151 1147 sc
1151 606 m
1151 516 l
305 516 l
313 389 351 293 419 226 c
488 160 583 127 705 127 c
776 127 844 136 910 153 c
977 170 1043 196 1108 231 c
1108 57 l
1042 29 974 8 905 -7 c
836 -22 765 -29 694 -29 c
515 -29 374 23 269 127 c
165 231 113 372 113 549 c
113 732 162 878 261 985 c
360 1093 494 1147 662 1147 c
813 1147 932 1098 1019 1001 c
1107 904 1151 773 1151 606 c
967 660 m
966 761 937 841 882 901 c
827 961 755 991 664 991 c
561 991 479 962 417 904 c
356 846 320 764 311 659 c
967 660 l
ce} _d
/g{1300 0 113 -426 1114 1147 sc
930 573 m
930 706 902 810 847 883 c
792 956 715 993 616 993 c
517 993 440 956 385 883 c
330 810 303 706 303 573 c
303 440 330 337 385 264 c
440 191 517 154 616 154 c
715 154 792 191 847 264 c
902 337 930 440 930 573 c
1114 139 m
1114 -52 1072 -193 987 -286 c
902 -379 773 -426 598 -426 c
533 -426 472 -421 415 -411 c
358 -402 302 -387 248 -367 c
248 -188 l
302 -217 355 -239 408 -253 c
461 -267 514 -274 569 -274 c
690 -274 780 -242 840 -179 c
900 -116 930 -21 930 106 c
930 197 l
892 131 843 82 784 49 c
725 16 654 0 571 0 c
434 0 323 52 239 157 c
155 262 113 400 113 573 c
113 746 155 885 239 990 c
323 1095 434 1147 571 1147 c
654 1147 725 1131 784 1098 c
843 1065 892 1016 930 950 c
930 1120 l
1114 1120 l
1114 139 l
ce} _d
/i{569 0 193 0 377 1556 sc
193 1120 m
377 1120 l
377 0 l
193 0 l
193 1120 l
193 1556 m
377 1556 l
377 1323 l
193 1323 l
193 1556 l
ce} _d
/l{569 0 193 0 377 1556 sc
193 1556 m
377 1556 l
377 0 l
193 0 l
193 1556 l
ce} _d
/m{1995 0 186 0 1821 1147 sc
1065 905 m
1111 988 1166 1049 1230 1088 c
1294 1127 1369 1147 1456 1147 c
1573 1147 1663 1106 1726 1024 c
1789 943 1821 827 1821 676 c
1821 0 l
1636 0 l
1636 670 l
1636 777 1617 857 1579 909 c
1541 961 1483 987 1405 987 c
1310 987 1234 955 1179 892 c
1124 829 1096 742 1096 633 c
1096 0 l
911 0 l
911 670 l
911 778 892 858 854 909 c
816 961 757 987 678 987 c
584 987 509 955 454 891 c
399 828 371 742 371 633 c
371 0 l
186 0 l
186 1120 l
371 1120 l
371 946 l
413 1015 463 1065 522 1098 c
581 1131 650 1147 731 1147 c
812 1147 881 1126 938 1085 c
995 1044 1038 984 1065 905 c
ce} _d
/r{842 0 186 0 842 1147 sc
842 948 m
821 960 799 969 774 974 c
750 980 723 983 694 983 c
590 983 510 949 454 881 c
399 814 371 717 371 590 c
371 0 l
186 0 l
186 1120 l
371 1120 l
371 946 l
410 1014 460 1064 522 1097 c
584 1130 659 1147 748 1147 c
761 1147 775 1146 790 1144 c
805 1143 822 1140 841 1137 c
842 948 l
ce} _d
/s{1067 0 111 -29 967 1147 sc
907 1087 m
907 913 l
855 940 801 960 745 973 c
689 986 631 993 571 993 c
480 993 411 979 365 951 c
320 923 297 881 297 825 c
297 782 313 749 346 724 c
379 700 444 677 543 655 c
606 641 l
737 613 829 573 884 522 c
939 471 967 400 967 309 c
967 205 926 123 843 62 c
761 1 648 -29 504 -29 c
444 -29 381 -23 316 -11 c
251 0 183 18 111 41 c
111 231 l
179 196 246 169 312 151 c
378 134 443 125 508 125 c
595 125 661 140 708 169 c
755 199 778 241 778 295 c
778 345 761 383 727 410 c
694 437 620 462 506 487 c
442 502 l
328 526 246 563 195 612 c
144 662 119 730 119 817 c
119 922 156 1004 231 1061 c
306 1118 412 1147 549 1147 c
617 1147 681 1142 741 1132 c
801 1122 856 1107 907 1087 c
ce} _d
end readonly def
/BuildGlyph {
exch begin
CharStrings exch
2 copy known not {pop /.notdef} if
true 3 1 roll get exec
end
} _d
/BuildChar {
1 index /Encoding get exch get
1 index /BuildGlyph get exec
} _d
FontName currentdict end definefont pop
end
%%EndProlog
mpldict begin
-486 -108 translate
1584 1008 0 0 clipbox
gsave
0 0 m
1584 0 l
1584 1008 l
0 1008 l
cl
1.000 setgray
fill
grestore
gsave
79.31 210.53 m
1573.2 210.53 l
1573.2 983.52 l
79.31 983.52 l
cl
1.000 setgray
fill
grestore
0.800 setlinewidth
1 setlinejoin
0 setlinecap
[] 0 setdash
0.000 setgray
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
147.214 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
157.152 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /comma glyphshow
48.3926 0 m /two glyphshow
71.2969 0 m /zero glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
298.112 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
308.05 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /comma glyphshow
48.3926 0 m /four glyphshow
71.2969 0 m /zero glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
449.01 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
458.948 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /comma glyphshow
48.3926 0 m /eight glyphshow
71.2969 0 m /zero glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
599.908 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
609.846 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /comma glyphshow
48.3926 0 m /one glyphshow
71.2969 0 m /six glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
750.806 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
760.744 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /four glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
901.704 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
911.641 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /eight glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1052.6 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1062.54 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /one glyphshow
94.2012 0 m /six glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1203.5 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1213.44 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /four glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /eight glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1354.4 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1364.34 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /four glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /one glyphshow
94.2012 0 m /six glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1505.3 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1515.23 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /eight glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /one glyphshow
94.2012 0 m /six glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
/DejaVuSans 36.000 selectfont
gsave
757.13 18.1081 translate
0 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /N glyphshow
40.9746 0 m /S glyphshow
63.8262 0 m /comma glyphshow
75.2695 0 m /N glyphshow
102.199 0 m /T glyphshow
124.189 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 196.85 translate
0 rotate
0 0 m /zero glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 307.154 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 293.474 translate
0 rotate
0 0 m /one glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 403.778 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 390.098 translate
0 rotate
0 0 m /two glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 500.401 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 486.722 translate
0 rotate
0 0 m /three glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 597.025 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 583.345 translate
0 rotate
0 0 m /four glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 693.649 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 679.969 translate
0 rotate
0 0 m /five glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 790.273 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 776.593 translate
0 rotate
0 0 m /six glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 886.896 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 873.217 translate
0 rotate
0 0 m /seven glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 983.52 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 969.84 translate
0 rotate
0 0 m /eight glyphshow
grestore
/DejaVuSans 36.000 selectfont
gsave
37.9194 529.564 translate
90 rotate
0 0 m /T glyphshow
20.8652 0 m /i glyphshow
30.8672 0 m /m glyphshow
65.9355 0 m /e glyphshow
88.084 0 m /parenleft glyphshow
102.129 0 m /s glyphshow
120.885 0 m /parenright glyphshow
grestore
1.500 setlinewidth
[5.55 2.4] 0 setdash
0.000 0.000 1.000 setrgbcolor
gsave
1493.89 772.99 79.31 210.53 clipbox
147.214091 351.508689 m
298.112071 343.671054 l
449.010051 361.519876 l
599.90803 369.583031 l
750.80601 339.697015 l
901.70399 335.149322 l
1052.60197 339.600295 l
1203.499949 307.779196 l
1354.397929 325.893057 l
1505.295909 316.625486 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 772.99 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-0 -9 m
9 9 l
-9 9 l
cl
gsave
0.000 0.000 1.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 351.509 o
298.112 343.671 o
449.01 361.52 o
599.908 369.583 o
750.806 339.697 o
901.704 335.149 o
1052.6 339.6 o
1203.5 307.779 o
1354.4 325.893 o
1505.3 316.625 o
grestore
1.500 setlinewidth
1 setlinejoin
[1.5 2.475] 0 setdash
1.000 0.000 0.000 setrgbcolor
gsave
1493.89 772.99 79.31 210.53 clipbox
147.214091 625.209085 m
298.112071 626.071259 l
449.010051 783.171137 l
599.90803 838.200972 l
750.80601 363.455153 l
901.70399 376.955617 l
1052.60197 390.619471 l
1203.499949 373.173087 l
1354.397929 370.720776 l
1505.295909 356.052131 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 772.99 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-9 -9 m
9 -9 l
9 9 l
-9 9 l
cl
gsave
1.000 0.000 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 625.209 o
298.112 626.071 o
449.01 783.171 o
599.908 838.201 o
750.806 363.455 o
901.704 376.956 o
1052.6 390.619 o
1203.5 373.173 o
1354.4 370.721 o
1505.3 356.052 o
grestore
1.500 setlinewidth
1 setlinejoin
[9.6 2.4 1.5 2.4] 0 setdash
1.000 0.647 0.000 setrgbcolor
gsave
1493.89 772.99 79.31 210.53 clipbox
147.214091 292.944832 m
298.112071 295.445552 l
449.010051 299.278906 l
599.90803 310.052357 l
750.80601 288.552897 l
901.70399 302.360141 l
1052.60197 315.631702 l
1203.499949 302.452513 l
1354.397929 316.14748 l
1505.295909 310.569874 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 772.99 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
0 9 m
-7.794229 4.5 l
-7.794229 -4.5 l
-0 -9 l
7.794229 -4.5 l
7.794229 4.5 l
cl
gsave
1.000 0.647 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 292.945 o
298.112 295.446 o
449.01 299.279 o
599.908 310.052 o
750.806 288.553 o
901.704 302.36 o
1052.6 315.632 o
1203.5 302.453 o
1354.4 316.147 o
1505.3 310.57 o
grestore
0.800 setlinewidth
2 setlinecap
0.000 setgray
gsave
79.31 210.53 m
79.31 983.52 l
stroke
grestore
gsave
1573.2 210.53 m
1573.2 983.52 l
stroke
grestore
gsave
79.31 210.53 m
1573.2 210.53 l
stroke
grestore
gsave
79.31 983.52 m
1573.2 983.52 l
stroke
grestore
1.000 setlinewidth
0 setlinecap
0.800 setgray
gsave
1032.996875 871.4575 m
1552.2 871.4575 l
1556.2 871.4575 1558.2 873.4575 1558.2 877.4575 c
1558.2 962.52 l
1558.2 966.52 1556.2 968.52 1552.2 968.52 c
1032.996875 968.52 l
1028.996875 968.52 1026.996875 966.52 1026.996875 962.52 c
1026.996875 877.4575 l
1026.996875 873.4575 1028.996875 871.4575 1032.996875 871.4575 c
cl
gsave
1.000 setgray
fill
grestore
stroke
grestore
1.500 setlinewidth
1 setlinejoin
[5.55 2.4] 0 setdash
0.000 0.000 1.000 setrgbcolor
gsave
1038.996875 944.223125 m
1068.996875 944.223125 l
1098.996875 944.223125 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-0 -9 m
9 9 l
-9 9 l
cl
gsave
0.000 0.000 1.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1069 944.223 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1123 933.723 translate
0 rotate
0 0 m /M glyphshow
25.8838 0 m /e glyphshow
44.3408 0 m /r glyphshow
56.1748 0 m /g glyphshow
75.2178 0 m /e glyphshow
93.6748 0 m /space glyphshow
103.211 0 m /hyphen glyphshow
114.036 0 m /space glyphshow
123.572 0 m /C glyphshow
144.52 0 m /O glyphshow
168.133 0 m /L glyphshow
184.847 0 m /S glyphshow
grestore
1.500 setlinewidth
1 setlinejoin
[1.5 2.475] 0 setdash
1.000 0.000 0.000 setrgbcolor
gsave
1038.996875 900.191875 m
1068.996875 900.191875 l
1098.996875 900.191875 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-9 -9 m
9 -9 l
9 9 l
-9 9 l
cl
gsave
1.000 0.000 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1069 900.192 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1123 889.692 translate
0 rotate
0 0 m /M glyphshow
25.8838 0 m /e glyphshow
44.3408 0 m /r glyphshow
56.1748 0 m /g glyphshow
75.2178 0 m /e glyphshow
93.6748 0 m /space glyphshow
103.211 0 m /hyphen glyphshow
114.036 0 m /space glyphshow
123.572 0 m /C glyphshow
144.52 0 m /O glyphshow
168.133 0 m /L glyphshow
185.597 0 m /A glyphshow
grestore
1.500 setlinewidth
1 setlinejoin
[9.6 2.4 1.5 2.4] 0 setdash
1.000 0.647 0.000 setrgbcolor
gsave
1389.121875 944.223125 m
1419.121875 944.223125 l
1449.121875 944.223125 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
0 9 m
-7.794229 4.5 l
-7.794229 -4.5 l
-0 -9 l
7.794229 -4.5 l
7.794229 4.5 l
cl
gsave
1.000 0.647 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1419.12 944.223 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1473.12 933.723 translate
0 rotate
0 0 m /I glyphshow
8.84766 0 m /d glyphshow
27.8906 0 m /e glyphshow
46.3477 0 m /a glyphshow
64.7314 0 m /l glyphshow
grestore
end
showpage
%!PS-Adobe-3.0 EPSF-3.0
%%Title: TEST.eps
%%Creator: Matplotlib v3.7.1, https://matplotlib.org/
%%CreationDate: Mon May 20 23:42:13 2024
%%Orientation: portrait
%%BoundingBox: -486 -108 1098 900
%%HiResBoundingBox: -486.000000 -108.000000 1098.000000 900.000000
%%EndComments
%%BeginProlog
/mpldict 11 dict def
mpldict begin
/_d { bind def } bind def
/m { moveto } _d
/l { lineto } _d
/r { rlineto } _d
/c { curveto } _d
/cl { closepath } _d
/ce { closepath eofill } _d
/box {
m
1 index 0 r
0 exch r
neg 0 r
cl
} _d
/clipbox {
box
clip
newpath
} _d
/sc { setcachedevice } _d
%!PS-Adobe-3.0 Resource-Font
%%Creator: Converted from TrueType to Type 3 by Matplotlib.
10 dict begin
/FontName /DejaVuSans def
/PaintType 0 def
/FontMatrix [0.00048828125 0 0 0.00048828125 0 0] def
/FontBBox [-2090 -948 3673 2524] def
/FontType 3 def
/Encoding [/space /parenleft /parenright /comma /hyphen /zero /one /two /three /four /five /six /eight /A /C /I /L /M /N /O /S /T /a /d /e /g /i /l /m /r /s] def
/CharStrings 32 dict dup begin
/.notdef 0 def
/space{651 0 0 0 0 0 sc
ce} _d
/parenleft{799 0 176 -270 635 1554 sc
635 1554 m
546 1401 479 1249 436 1099 c
393 949 371 797 371 643 c
371 489 393 336 436 185 c
480 34 546 -117 635 -270 c
475 -270 l
375 -113 300 41 250 192 c
201 343 176 494 176 643 c
176 792 201 941 250 1092 c
299 1243 374 1397 475 1554 c
635 1554 l
ce} _d
/parenright{799 0 164 -270 623 1554 sc
164 1554 m
324 1554 l
424 1397 499 1243 548 1092 c
598 941 623 792 623 643 c
623 494 598 343 548 192 c
499 41 424 -113 324 -270 c
164 -270 l
253 -117 319 34 362 185 c
406 336 428 489 428 643 c
428 797 406 949 362 1099 c
319 1249 253 1401 164 1554 c
ce} _d
/comma{651 0 158 -238 451 254 sc
240 254 m
451 254 l
451 82 l
287 -238 l
158 -238 l
240 82 l
240 254 l
ce} _d
/hyphen{739 0 100 479 639 643 sc
100 643 m
639 643 l
639 479 l
100 479 l
100 643 l
ce} _d
/zero{1303 0 135 -29 1167 1520 sc
651 1360 m
547 1360 469 1309 416 1206 c
364 1104 338 950 338 745 c
338 540 364 387 416 284 c
469 182 547 131 651 131 c
756 131 834 182 886 284 c
939 387 965 540 965 745 c
965 950 939 1104 886 1206 c
834 1309 756 1360 651 1360 c
651 1520 m
818 1520 946 1454 1034 1321 c
1123 1189 1167 997 1167 745 c
1167 494 1123 302 1034 169 c
946 37 818 -29 651 -29 c
484 -29 356 37 267 169 c
179 302 135 494 135 745 c
135 997 179 1189 267 1321 c
356 1454 484 1520 651 1520 c
ce} _d
/one{1303 0 225 0 1114 1493 sc
254 170 m
584 170 l
584 1309 l
225 1237 l
225 1421 l
582 1493 l
784 1493 l
784 170 l
1114 170 l
1114 0 l
254 0 l
254 170 l
ce} _d
/two{1303 0 150 0 1098 1520 sc
393 170 m
1098 170 l
1098 0 l
150 0 l
150 170 l
227 249 331 356 463 489 c
596 623 679 709 713 748 c
778 821 823 882 848 932 c
874 983 887 1032 887 1081 c
887 1160 859 1225 803 1275 c
748 1325 675 1350 586 1350 c
523 1350 456 1339 385 1317 c
315 1295 240 1262 160 1217 c
160 1421 l
241 1454 317 1478 388 1495 c
459 1512 523 1520 582 1520 c
737 1520 860 1481 952 1404 c
1044 1327 1090 1223 1090 1094 c
1090 1033 1078 974 1055 919 c
1032 864 991 800 930 725 c
913 706 860 650 771 557 c
682 465 556 336 393 170 c
ce} _d
/three{1303 0 156 -29 1139 1520 sc
831 805 m
928 784 1003 741 1057 676 c
1112 611 1139 530 1139 434 c
1139 287 1088 173 987 92 c
886 11 742 -29 555 -29 c
492 -29 428 -23 361 -10 c
295 2 227 20 156 45 c
156 240 l
212 207 273 183 340 166 c
407 149 476 141 549 141 c
676 141 772 166 838 216 c
905 266 938 339 938 434 c
938 522 907 591 845 640 c
784 690 698 715 588 715 c
414 715 l
414 881 l
596 881 l
695 881 771 901 824 940 c
877 980 903 1037 903 1112 c
903 1189 876 1247 821 1288 c
767 1329 689 1350 588 1350 c
533 1350 473 1344 410 1332 c
347 1320 277 1301 201 1276 c
201 1456 l
278 1477 349 1493 416 1504 c
483 1515 547 1520 606 1520 c
759 1520 881 1485 970 1415 c
1059 1346 1104 1252 1104 1133 c
1104 1050 1080 980 1033 923 c
986 866 918 827 831 805 c
ce} _d
/four{1303 0 100 0 1188 1493 sc
774 1317 m
264 520 l
774 520 l
774 1317 l
721 1493 m
975 1493 l
975 520 l
1188 520 l
1188 352 l
975 352 l
975 0 l
774 0 l
774 352 l
100 352 l
100 547 l
721 1493 l
ce} _d
/five{1303 0 158 -29 1124 1493 sc
221 1493 m
1014 1493 l
1014 1323 l
406 1323 l
406 957 l
435 967 465 974 494 979 c
523 984 553 987 582 987 c
749 987 881 941 978 850 c
1075 759 1124 635 1124 479 c
1124 318 1074 193 974 104 c
874 15 733 -29 551 -29 c
488 -29 424 -24 359 -13 c
294 -2 227 14 158 35 c
158 238 l
218 205 280 181 344 165 c
408 149 476 141 547 141 c
662 141 754 171 821 232 c
888 293 922 375 922 479 c
922 583 888 665 821 726 c
754 787 662 817 547 817 c
493 817 439 811 385 799 c
332 787 277 768 221 743 c
221 1493 l
ce} _d
/six{1303 0 143 -29 1174 1520 sc
676 827 m
585 827 513 796 460 734 c
407 672 381 587 381 479 c
381 372 407 287 460 224 c
513 162 585 131 676 131 c
767 131 838 162 891 224 c
944 287 971 372 971 479 c
971 587 944 672 891 734 c
838 796 767 827 676 827 c
1077 1460 m
1077 1276 l
1026 1300 975 1318 923 1331 c
872 1344 821 1350 770 1350 c
637 1350 535 1305 464 1215 c
394 1125 354 989 344 807 c
383 865 433 909 492 940 c
551 971 617 987 688 987 c
838 987 956 941 1043 850 c
1130 759 1174 636 1174 479 c
1174 326 1129 203 1038 110 c
947 17 827 -29 676 -29 c
503 -29 371 37 280 169 c
189 302 143 494 143 745 c
143 981 199 1169 311 1309 c
423 1450 573 1520 762 1520 c
813 1520 864 1515 915 1505 c
967 1495 1021 1480 1077 1460 c
ce} _d
/eight{1303 0 139 -29 1163 1520 sc
651 709 m
555 709 479 683 424 632 c
369 581 342 510 342 420 c
342 330 369 259 424 208 c
479 157 555 131 651 131 c
747 131 823 157 878 208 c
933 260 961 331 961 420 c
961 510 933 581 878 632 c
823 683 748 709 651 709 c
449 795 m
362 816 295 857 246 916 c
198 975 174 1048 174 1133 c
174 1252 216 1347 301 1416 c
386 1485 503 1520 651 1520 c
800 1520 916 1485 1001 1416 c
1086 1347 1128 1252 1128 1133 c
1128 1048 1104 975 1055 916 c
1007 857 940 816 854 795 c
951 772 1027 728 1081 662 c
1136 596 1163 515 1163 420 c
1163 275 1119 164 1030 87 c
942 10 816 -29 651 -29 c
486 -29 360 10 271 87 c
183 164 139 275 139 420 c
139 515 166 596 221 662 c
276 728 352 772 449 795 c
375 1114 m
375 1037 399 976 447 933 c
496 890 564 868 651 868 c
738 868 805 890 854 933 c
903 976 928 1037 928 1114 c
928 1191 903 1252 854 1295 c
805 1338 738 1360 651 1360 c
564 1360 496 1338 447 1295 c
399 1252 375 1191 375 1114 c
ce} _d
/A{1401 0 16 0 1384 1493 sc
700 1294 m
426 551 l
975 551 l
700 1294 l
586 1493 m
815 1493 l
1384 0 l
1174 0 l
1038 383 l
365 383 l
229 0 l
16 0 l
586 1493 l
ce} _d
/C{1430 0 115 -29 1319 1520 sc
1319 1378 m
1319 1165 l
1251 1228 1178 1276 1101 1307 c
1024 1338 943 1354 856 1354 c
685 1354 555 1302 464 1197 c
373 1093 328 942 328 745 c
328 548 373 398 464 293 c
555 189 685 137 856 137 c
943 137 1024 153 1101 184 c
1178 215 1251 263 1319 326 c
1319 115 l
1248 67 1173 31 1094 7 c
1015 -17 932 -29 844 -29 c
618 -29 440 40 310 178 c
180 317 115 506 115 745 c
115 985 180 1174 310 1312 c
440 1451 618 1520 844 1520 c
933 1520 1017 1508 1096 1484 c
1175 1461 1250 1425 1319 1378 c
ce} _d
/I{604 0 201 0 403 1493 sc
201 1493 m
403 1493 l
403 0 l
201 0 l
201 1493 l
ce} _d
/L{1141 0 201 0 1130 1493 sc
201 1493 m
403 1493 l
403 170 l
1130 170 l
1130 0 l
201 0 l
201 1493 l
ce} _d
/M{1767 0 201 0 1567 1493 sc
201 1493 m
502 1493 l
883 477 l
1266 1493 l
1567 1493 l
1567 0 l
1370 0 l
1370 1311 l
985 287 l
782 287 l
397 1311 l
397 0 l
201 0 l
201 1493 l
ce} _d
/N{1532 0 201 0 1331 1493 sc
201 1493 m
473 1493 l
1135 244 l
1135 1493 l
1331 1493 l
1331 0 l
1059 0 l
397 1249 l
397 0 l
201 0 l
201 1493 l
ce} _d
/O{1612 0 115 -29 1497 1520 sc
807 1356 m
660 1356 544 1301 457 1192 c
371 1083 328 934 328 745 c
328 557 371 408 457 299 c
544 190 660 135 807 135 c
954 135 1070 190 1155 299 c
1241 408 1284 557 1284 745 c
1284 934 1241 1083 1155 1192 c
1070 1301 954 1356 807 1356 c
807 1520 m
1016 1520 1184 1450 1309 1309 c
1434 1169 1497 981 1497 745 c
1497 510 1434 322 1309 181 c
1184 41 1016 -29 807 -29 c
597 -29 429 41 303 181 c
178 321 115 509 115 745 c
115 981 178 1169 303 1309 c
429 1450 597 1520 807 1520 c
ce} _d
/S{1300 0 135 -29 1186 1520 sc
1096 1444 m
1096 1247 l
1019 1284 947 1311 879 1329 c
811 1347 745 1356 682 1356 c
572 1356 487 1335 427 1292 c
368 1249 338 1189 338 1110 c
338 1044 358 994 397 960 c
437 927 512 900 623 879 c
745 854 l
896 825 1007 775 1078 702 c
1150 630 1186 533 1186 412 c
1186 267 1137 158 1040 83 c
943 8 801 -29 614 -29 c
543 -29 468 -21 388 -5 c
309 11 226 35 141 66 c
141 274 l
223 228 303 193 382 170 c
461 147 538 135 614 135 c
729 135 818 158 881 203 c
944 248 975 313 975 397 c
975 470 952 528 907 569 c
862 610 789 641 686 662 c
563 686 l
412 716 303 763 236 827 c
169 891 135 980 135 1094 c
135 1226 181 1330 274 1406 c
367 1482 496 1520 659 1520 c
729 1520 800 1514 873 1501 c
946 1488 1020 1469 1096 1444 c
ce} _d
/T{1251 0 -6 0 1257 1493 sc
-6 1493 m
1257 1493 l
1257 1323 l
727 1323 l
727 0 l
524 0 l
524 1323 l
-6 1323 l
-6 1493 l
ce} _d
/a{1255 0 123 -29 1069 1147 sc
702 563 m
553 563 450 546 393 512 c
336 478 307 420 307 338 c
307 273 328 221 371 182 c
414 144 473 125 547 125 c
649 125 731 161 792 233 c
854 306 885 402 885 522 c
885 563 l
702 563 l
1069 639 m
1069 0 l
885 0 l
885 170 l
843 102 791 52 728 19 c
665 -13 589 -29 498 -29 c
383 -29 292 3 224 67 c
157 132 123 218 123 326 c
123 452 165 547 249 611 c
334 675 460 707 627 707 c
885 707 l
885 725 l
885 810 857 875 801 921 c
746 968 668 991 567 991 c
503 991 441 983 380 968 c
319 953 261 930 205 899 c
205 1069 l
272 1095 338 1114 401 1127 c
464 1140 526 1147 586 1147 c
748 1147 869 1105 949 1021 c
1029 937 1069 810 1069 639 c
ce} _d
/d{1300 0 113 -29 1114 1556 sc
930 950 m
930 1556 l
1114 1556 l
1114 0 l
930 0 l
930 168 l
891 101 842 52 783 19 c
724 -13 654 -29 571 -29 c
436 -29 325 25 240 133 c
155 241 113 383 113 559 c
113 735 155 877 240 985 c
325 1093 436 1147 571 1147 c
654 1147 724 1131 783 1098 c
842 1066 891 1017 930 950 c
303 559 m
303 424 331 317 386 240 c
442 163 519 125 616 125 c
713 125 790 163 846 240 c
902 317 930 424 930 559 c
930 694 902 800 846 877 c
790 954 713 993 616 993 c
519 993 442 954 386 877 c
331 800 303 694 303 559 c
ce} _d
/e{1260 0 113 -29 1151 1147 sc
1151 606 m
1151 516 l
305 516 l
313 389 351 293 419 226 c
488 160 583 127 705 127 c
776 127 844 136 910 153 c
977 170 1043 196 1108 231 c
1108 57 l
1042 29 974 8 905 -7 c
836 -22 765 -29 694 -29 c
515 -29 374 23 269 127 c
165 231 113 372 113 549 c
113 732 162 878 261 985 c
360 1093 494 1147 662 1147 c
813 1147 932 1098 1019 1001 c
1107 904 1151 773 1151 606 c
967 660 m
966 761 937 841 882 901 c
827 961 755 991 664 991 c
561 991 479 962 417 904 c
356 846 320 764 311 659 c
967 660 l
ce} _d
/g{1300 0 113 -426 1114 1147 sc
930 573 m
930 706 902 810 847 883 c
792 956 715 993 616 993 c
517 993 440 956 385 883 c
330 810 303 706 303 573 c
303 440 330 337 385 264 c
440 191 517 154 616 154 c
715 154 792 191 847 264 c
902 337 930 440 930 573 c
1114 139 m
1114 -52 1072 -193 987 -286 c
902 -379 773 -426 598 -426 c
533 -426 472 -421 415 -411 c
358 -402 302 -387 248 -367 c
248 -188 l
302 -217 355 -239 408 -253 c
461 -267 514 -274 569 -274 c
690 -274 780 -242 840 -179 c
900 -116 930 -21 930 106 c
930 197 l
892 131 843 82 784 49 c
725 16 654 0 571 0 c
434 0 323 52 239 157 c
155 262 113 400 113 573 c
113 746 155 885 239 990 c
323 1095 434 1147 571 1147 c
654 1147 725 1131 784 1098 c
843 1065 892 1016 930 950 c
930 1120 l
1114 1120 l
1114 139 l
ce} _d
/i{569 0 193 0 377 1556 sc
193 1120 m
377 1120 l
377 0 l
193 0 l
193 1120 l
193 1556 m
377 1556 l
377 1323 l
193 1323 l
193 1556 l
ce} _d
/l{569 0 193 0 377 1556 sc
193 1556 m
377 1556 l
377 0 l
193 0 l
193 1556 l
ce} _d
/m{1995 0 186 0 1821 1147 sc
1065 905 m
1111 988 1166 1049 1230 1088 c
1294 1127 1369 1147 1456 1147 c
1573 1147 1663 1106 1726 1024 c
1789 943 1821 827 1821 676 c
1821 0 l
1636 0 l
1636 670 l
1636 777 1617 857 1579 909 c
1541 961 1483 987 1405 987 c
1310 987 1234 955 1179 892 c
1124 829 1096 742 1096 633 c
1096 0 l
911 0 l
911 670 l
911 778 892 858 854 909 c
816 961 757 987 678 987 c
584 987 509 955 454 891 c
399 828 371 742 371 633 c
371 0 l
186 0 l
186 1120 l
371 1120 l
371 946 l
413 1015 463 1065 522 1098 c
581 1131 650 1147 731 1147 c
812 1147 881 1126 938 1085 c
995 1044 1038 984 1065 905 c
ce} _d
/r{842 0 186 0 842 1147 sc
842 948 m
821 960 799 969 774 974 c
750 980 723 983 694 983 c
590 983 510 949 454 881 c
399 814 371 717 371 590 c
371 0 l
186 0 l
186 1120 l
371 1120 l
371 946 l
410 1014 460 1064 522 1097 c
584 1130 659 1147 748 1147 c
761 1147 775 1146 790 1144 c
805 1143 822 1140 841 1137 c
842 948 l
ce} _d
/s{1067 0 111 -29 967 1147 sc
907 1087 m
907 913 l
855 940 801 960 745 973 c
689 986 631 993 571 993 c
480 993 411 979 365 951 c
320 923 297 881 297 825 c
297 782 313 749 346 724 c
379 700 444 677 543 655 c
606 641 l
737 613 829 573 884 522 c
939 471 967 400 967 309 c
967 205 926 123 843 62 c
761 1 648 -29 504 -29 c
444 -29 381 -23 316 -11 c
251 0 183 18 111 41 c
111 231 l
179 196 246 169 312 151 c
378 134 443 125 508 125 c
595 125 661 140 708 169 c
755 199 778 241 778 295 c
778 345 761 383 727 410 c
694 437 620 462 506 487 c
442 502 l
328 526 246 563 195 612 c
144 662 119 730 119 817 c
119 922 156 1004 231 1061 c
306 1118 412 1147 549 1147 c
617 1147 681 1142 741 1132 c
801 1122 856 1107 907 1087 c
ce} _d
end readonly def
/BuildGlyph {
exch begin
CharStrings exch
2 copy known not {pop /.notdef} if
true 3 1 roll get exec
end
} _d
/BuildChar {
1 index /Encoding get exch get
1 index /BuildGlyph get exec
} _d
FontName currentdict end definefont pop
end
%%EndProlog
mpldict begin
-486 -108 translate
1584 1008 0 0 clipbox
gsave
0 0 m
1584 0 l
1584 1008 l
0 1008 l
cl
1.000 setgray
fill
grestore
gsave
79.31 210.53 m
1573.2 210.53 l
1573.2 997.2 l
79.31 997.2 l
cl
1.000 setgray
fill
grestore
0.800 setlinewidth
1 setlinejoin
0 setlinecap
[] 0 setdash
0.000 setgray
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
147.214 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
157.152 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /two glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
298.112 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
308.05 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /four glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /two glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
449.01 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
458.948 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /eight glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /two glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
599.908 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
609.846 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /one glyphshow
36.9492 0 m /six glyphshow
59.8535 0 m /zero glyphshow
82.7578 0 m /comma glyphshow
94.2012 0 m /two glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
750.806 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
760.744 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /four glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /two glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
901.704 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
911.641 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /eight glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /two glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1052.6 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1062.54 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /one glyphshow
36.9492 0 m /six glyphshow
59.8535 0 m /zero glyphshow
82.7578 0 m /comma glyphshow
94.2012 0 m /two glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1203.5 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1213.44 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /eight glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /four glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1354.4 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1364.34 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /one glyphshow
36.9492 0 m /six glyphshow
59.8535 0 m /zero glyphshow
82.7578 0 m /comma glyphshow
94.2012 0 m /four glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1505.3 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1515.23 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /one glyphshow
36.9492 0 m /six glyphshow
59.8535 0 m /zero glyphshow
82.7578 0 m /comma glyphshow
94.2012 0 m /eight glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
/DejaVuSans 36.000 selectfont
gsave
757.13 18.1081 translate
0 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /N glyphshow
40.9746 0 m /S glyphshow
63.8262 0 m /comma glyphshow
75.2695 0 m /N glyphshow
102.199 0 m /T glyphshow
124.189 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 196.85 translate
0 rotate
0 0 m /zero glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 327.943 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 314.264 translate
0 rotate
0 0 m /one glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 445.357 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 431.677 translate
0 rotate
0 0 m /two glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 562.77 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 549.091 translate
0 rotate
0 0 m /three glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 680.184 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 666.504 translate
0 rotate
0 0 m /four glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 797.597 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 783.917 translate
0 rotate
0 0 m /five glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 915.011 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 901.331 translate
0 rotate
0 0 m /six glyphshow
grestore
/DejaVuSans 36.000 selectfont
gsave
37.9194 536.404 translate
90 rotate
0 0 m /T glyphshow
20.8652 0 m /i glyphshow
30.8672 0 m /m glyphshow
65.9355 0 m /e glyphshow
88.084 0 m /parenleft glyphshow
102.129 0 m /s glyphshow
120.885 0 m /parenright glyphshow
grestore
1.500 setlinewidth
[5.55 2.4] 0 setdash
0.000 0.000 1.000 setrgbcolor
gsave
1493.89 786.67 79.31 210.53 clipbox
147.214091 350.416599 m
298.112071 578.396852 l
449.010051 514.151392 l
599.90803 512.186126 l
750.80601 301.793583 l
901.70399 331.866685 l
1052.60197 318.593097 l
1203.499949 289.053638 l
1354.397929 271.562559 l
1505.295909 249.852463 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 786.67 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-0 -9 m
9 9 l
-9 9 l
cl
gsave
0.000 0.000 1.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 350.417 o
298.112 578.397 o
449.01 514.151 o
599.908 512.186 o
750.806 301.794 o
901.704 331.867 o
1052.6 318.593 o
1203.5 289.054 o
1354.4 271.563 o
1505.3 249.852 o
grestore
1.500 setlinewidth
1 setlinejoin
[1.5 2.475] 0 setdash
1.000 0.000 0.000 setrgbcolor
gsave
1493.89 786.67 79.31 210.53 clipbox
147.214091 399.860687 m
298.112071 593.933937 l
449.010051 558.70204 l
599.90803 561.011445 l
750.80601 328.256105 l
901.70399 331.513858 l
1052.60197 341.210094 l
1203.499949 313.112707 l
1354.397929 312.798979 l
1505.295909 295.944633 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 786.67 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-9 -9 m
9 -9 l
9 9 l
-9 9 l
cl
gsave
1.000 0.000 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 399.861 o
298.112 593.934 o
449.01 558.702 o
599.908 561.011 o
750.806 328.256 o
901.704 331.514 o
1052.6 341.21 o
1203.5 313.113 o
1354.4 312.799 o
1505.3 295.945 o
grestore
1.500 setlinewidth
1 setlinejoin
[9.6 2.4 1.5 2.4] 0 setdash
1.000 0.647 0.000 setrgbcolor
gsave
1493.89 786.67 79.31 210.53 clipbox
147.214091 243.894778 m
298.112071 243.951606 l
449.010051 244.001859 l
599.90803 244.050703 l
750.80601 243.94644 l
901.70399 243.999863 l
1052.60197 244.045302 l
1203.499949 244.000098 l
1354.397929 244.058217 l
1505.295909 244.046946 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 786.67 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
0 9 m
-7.794229 4.5 l
-7.794229 -4.5 l
-0 -9 l
7.794229 -4.5 l
7.794229 4.5 l
cl
gsave
1.000 0.647 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 243.895 o
298.112 243.952 o
449.01 244.002 o
599.908 244.051 o
750.806 243.946 o
901.704 244 o
1052.6 244.045 o
1203.5 244 o
1354.4 244.058 o
1505.3 244.047 o
grestore
0.800 setlinewidth
2 setlinecap
0.000 setgray
gsave
79.31 210.53 m
79.31 997.2 l
stroke
grestore
gsave
1573.2 210.53 m
1573.2 997.2 l
stroke
grestore
gsave
79.31 210.53 m
1573.2 210.53 l
stroke
grestore
gsave
79.31 997.2 m
1573.2 997.2 l
stroke
grestore
1.000 setlinewidth
0 setlinecap
0.800 setgray
gsave
1032.996875 885.1375 m
1552.2 885.1375 l
1556.2 885.1375 1558.2 887.1375 1558.2 891.1375 c
1558.2 976.2 l
1558.2 980.2 1556.2 982.2 1552.2 982.2 c
1032.996875 982.2 l
1028.996875 982.2 1026.996875 980.2 1026.996875 976.2 c
1026.996875 891.1375 l
1026.996875 887.1375 1028.996875 885.1375 1032.996875 885.1375 c
cl
gsave
1.000 setgray
fill
grestore
stroke
grestore
1.500 setlinewidth
1 setlinejoin
[5.55 2.4] 0 setdash
0.000 0.000 1.000 setrgbcolor
gsave
1038.996875 957.903125 m
1068.996875 957.903125 l
1098.996875 957.903125 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-0 -9 m
9 9 l
-9 9 l
cl
gsave
0.000 0.000 1.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1069 957.903 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1123 947.403 translate
0 rotate
0 0 m /M glyphshow
25.8838 0 m /e glyphshow
44.3408 0 m /r glyphshow
56.1748 0 m /g glyphshow
75.2178 0 m /e glyphshow
93.6748 0 m /space glyphshow
103.211 0 m /hyphen glyphshow
114.036 0 m /space glyphshow
123.572 0 m /C glyphshow
144.52 0 m /O glyphshow
168.133 0 m /L glyphshow
184.847 0 m /S glyphshow
grestore
1.500 setlinewidth
1 setlinejoin
[1.5 2.475] 0 setdash
1.000 0.000 0.000 setrgbcolor
gsave
1038.996875 913.871875 m
1068.996875 913.871875 l
1098.996875 913.871875 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-9 -9 m
9 -9 l
9 9 l
-9 9 l
cl
gsave
1.000 0.000 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1069 913.872 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1123 903.372 translate
0 rotate
0 0 m /M glyphshow
25.8838 0 m /e glyphshow
44.3408 0 m /r glyphshow
56.1748 0 m /g glyphshow
75.2178 0 m /e glyphshow
93.6748 0 m /space glyphshow
103.211 0 m /hyphen glyphshow
114.036 0 m /space glyphshow
123.572 0 m /C glyphshow
144.52 0 m /O glyphshow
168.133 0 m /L glyphshow
185.597 0 m /A glyphshow
grestore
1.500 setlinewidth
1 setlinejoin
[9.6 2.4 1.5 2.4] 0 setdash
1.000 0.647 0.000 setrgbcolor
gsave
1389.121875 957.903125 m
1419.121875 957.903125 l
1449.121875 957.903125 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
0 9 m
-7.794229 4.5 l
-7.794229 -4.5 l
-0 -9 l
7.794229 -4.5 l
7.794229 4.5 l
cl
gsave
1.000 0.647 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1419.12 957.903 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1473.12 947.403 translate
0 rotate
0 0 m /I glyphshow
8.84766 0 m /d glyphshow
27.8906 0 m /e glyphshow
46.3477 0 m /a glyphshow
64.7314 0 m /l glyphshow
grestore
end
showpage
%!PS-Adobe-3.0 EPSF-3.0
%%Title: TEST.eps
%%Creator: Matplotlib v3.7.1, https://matplotlib.org/
%%CreationDate: Fri May 17 23:41:34 2024
%%Orientation: portrait
%%BoundingBox: -486 -108 1098 900
%%HiResBoundingBox: -486.000000 -108.000000 1098.000000 900.000000
%%EndComments
%%BeginProlog
/mpldict 11 dict def
mpldict begin
/_d { bind def } bind def
/m { moveto } _d
/l { lineto } _d
/r { rlineto } _d
/c { curveto } _d
/cl { closepath } _d
/ce { closepath eofill } _d
/box {
m
1 index 0 r
0 exch r
neg 0 r
cl
} _d
/clipbox {
box
clip
newpath
} _d
/sc { setcachedevice } _d
%!PS-Adobe-3.0 Resource-Font
%%Creator: Converted from TrueType to Type 3 by Matplotlib.
10 dict begin
/FontName /DejaVuSans def
/PaintType 0 def
/FontMatrix [0.00048828125 0 0 0.00048828125 0 0] def
/FontBBox [-2090 -948 3673 2524] def
/FontType 3 def
/Encoding [/space /parenleft /parenright /comma /hyphen /zero /one /two /three /four /five /six /seven /eight /A /C /I /L /M /N /O /S /T /a /d /e /g /i /l /m /r /s] def
/CharStrings 33 dict dup begin
/.notdef 0 def
/space{651 0 0 0 0 0 sc
ce} _d
/parenleft{799 0 176 -270 635 1554 sc
635 1554 m
546 1401 479 1249 436 1099 c
393 949 371 797 371 643 c
371 489 393 336 436 185 c
480 34 546 -117 635 -270 c
475 -270 l
375 -113 300 41 250 192 c
201 343 176 494 176 643 c
176 792 201 941 250 1092 c
299 1243 374 1397 475 1554 c
635 1554 l
ce} _d
/parenright{799 0 164 -270 623 1554 sc
164 1554 m
324 1554 l
424 1397 499 1243 548 1092 c
598 941 623 792 623 643 c
623 494 598 343 548 192 c
499 41 424 -113 324 -270 c
164 -270 l
253 -117 319 34 362 185 c
406 336 428 489 428 643 c
428 797 406 949 362 1099 c
319 1249 253 1401 164 1554 c
ce} _d
/comma{651 0 158 -238 451 254 sc
240 254 m
451 254 l
451 82 l
287 -238 l
158 -238 l
240 82 l
240 254 l
ce} _d
/hyphen{739 0 100 479 639 643 sc
100 643 m
639 643 l
639 479 l
100 479 l
100 643 l
ce} _d
/zero{1303 0 135 -29 1167 1520 sc
651 1360 m
547 1360 469 1309 416 1206 c
364 1104 338 950 338 745 c
338 540 364 387 416 284 c
469 182 547 131 651 131 c
756 131 834 182 886 284 c
939 387 965 540 965 745 c
965 950 939 1104 886 1206 c
834 1309 756 1360 651 1360 c
651 1520 m
818 1520 946 1454 1034 1321 c
1123 1189 1167 997 1167 745 c
1167 494 1123 302 1034 169 c
946 37 818 -29 651 -29 c
484 -29 356 37 267 169 c
179 302 135 494 135 745 c
135 997 179 1189 267 1321 c
356 1454 484 1520 651 1520 c
ce} _d
/one{1303 0 225 0 1114 1493 sc
254 170 m
584 170 l
584 1309 l
225 1237 l
225 1421 l
582 1493 l
784 1493 l
784 170 l
1114 170 l
1114 0 l
254 0 l
254 170 l
ce} _d
/two{1303 0 150 0 1098 1520 sc
393 170 m
1098 170 l
1098 0 l
150 0 l
150 170 l
227 249 331 356 463 489 c
596 623 679 709 713 748 c
778 821 823 882 848 932 c
874 983 887 1032 887 1081 c
887 1160 859 1225 803 1275 c
748 1325 675 1350 586 1350 c
523 1350 456 1339 385 1317 c
315 1295 240 1262 160 1217 c
160 1421 l
241 1454 317 1478 388 1495 c
459 1512 523 1520 582 1520 c
737 1520 860 1481 952 1404 c
1044 1327 1090 1223 1090 1094 c
1090 1033 1078 974 1055 919 c
1032 864 991 800 930 725 c
913 706 860 650 771 557 c
682 465 556 336 393 170 c
ce} _d
/three{1303 0 156 -29 1139 1520 sc
831 805 m
928 784 1003 741 1057 676 c
1112 611 1139 530 1139 434 c
1139 287 1088 173 987 92 c
886 11 742 -29 555 -29 c
492 -29 428 -23 361 -10 c
295 2 227 20 156 45 c
156 240 l
212 207 273 183 340 166 c
407 149 476 141 549 141 c
676 141 772 166 838 216 c
905 266 938 339 938 434 c
938 522 907 591 845 640 c
784 690 698 715 588 715 c
414 715 l
414 881 l
596 881 l
695 881 771 901 824 940 c
877 980 903 1037 903 1112 c
903 1189 876 1247 821 1288 c
767 1329 689 1350 588 1350 c
533 1350 473 1344 410 1332 c
347 1320 277 1301 201 1276 c
201 1456 l
278 1477 349 1493 416 1504 c
483 1515 547 1520 606 1520 c
759 1520 881 1485 970 1415 c
1059 1346 1104 1252 1104 1133 c
1104 1050 1080 980 1033 923 c
986 866 918 827 831 805 c
ce} _d
/four{1303 0 100 0 1188 1493 sc
774 1317 m
264 520 l
774 520 l
774 1317 l
721 1493 m
975 1493 l
975 520 l
1188 520 l
1188 352 l
975 352 l
975 0 l
774 0 l
774 352 l
100 352 l
100 547 l
721 1493 l
ce} _d
/five{1303 0 158 -29 1124 1493 sc
221 1493 m
1014 1493 l
1014 1323 l
406 1323 l
406 957 l
435 967 465 974 494 979 c
523 984 553 987 582 987 c
749 987 881 941 978 850 c
1075 759 1124 635 1124 479 c
1124 318 1074 193 974 104 c
874 15 733 -29 551 -29 c
488 -29 424 -24 359 -13 c
294 -2 227 14 158 35 c
158 238 l
218 205 280 181 344 165 c
408 149 476 141 547 141 c
662 141 754 171 821 232 c
888 293 922 375 922 479 c
922 583 888 665 821 726 c
754 787 662 817 547 817 c
493 817 439 811 385 799 c
332 787 277 768 221 743 c
221 1493 l
ce} _d
/six{1303 0 143 -29 1174 1520 sc
676 827 m
585 827 513 796 460 734 c
407 672 381 587 381 479 c
381 372 407 287 460 224 c
513 162 585 131 676 131 c
767 131 838 162 891 224 c
944 287 971 372 971 479 c
971 587 944 672 891 734 c
838 796 767 827 676 827 c
1077 1460 m
1077 1276 l
1026 1300 975 1318 923 1331 c
872 1344 821 1350 770 1350 c
637 1350 535 1305 464 1215 c
394 1125 354 989 344 807 c
383 865 433 909 492 940 c
551 971 617 987 688 987 c
838 987 956 941 1043 850 c
1130 759 1174 636 1174 479 c
1174 326 1129 203 1038 110 c
947 17 827 -29 676 -29 c
503 -29 371 37 280 169 c
189 302 143 494 143 745 c
143 981 199 1169 311 1309 c
423 1450 573 1520 762 1520 c
813 1520 864 1515 915 1505 c
967 1495 1021 1480 1077 1460 c
ce} _d
/seven{1303 0 168 0 1128 1493 sc
168 1493 m
1128 1493 l
1128 1407 l
586 0 l
375 0 l
885 1323 l
168 1323 l
168 1493 l
ce} _d
/eight{1303 0 139 -29 1163 1520 sc
651 709 m
555 709 479 683 424 632 c
369 581 342 510 342 420 c
342 330 369 259 424 208 c
479 157 555 131 651 131 c
747 131 823 157 878 208 c
933 260 961 331 961 420 c
961 510 933 581 878 632 c
823 683 748 709 651 709 c
449 795 m
362 816 295 857 246 916 c
198 975 174 1048 174 1133 c
174 1252 216 1347 301 1416 c
386 1485 503 1520 651 1520 c
800 1520 916 1485 1001 1416 c
1086 1347 1128 1252 1128 1133 c
1128 1048 1104 975 1055 916 c
1007 857 940 816 854 795 c
951 772 1027 728 1081 662 c
1136 596 1163 515 1163 420 c
1163 275 1119 164 1030 87 c
942 10 816 -29 651 -29 c
486 -29 360 10 271 87 c
183 164 139 275 139 420 c
139 515 166 596 221 662 c
276 728 352 772 449 795 c
375 1114 m
375 1037 399 976 447 933 c
496 890 564 868 651 868 c
738 868 805 890 854 933 c
903 976 928 1037 928 1114 c
928 1191 903 1252 854 1295 c
805 1338 738 1360 651 1360 c
564 1360 496 1338 447 1295 c
399 1252 375 1191 375 1114 c
ce} _d
/A{1401 0 16 0 1384 1493 sc
700 1294 m
426 551 l
975 551 l
700 1294 l
586 1493 m
815 1493 l
1384 0 l
1174 0 l
1038 383 l
365 383 l
229 0 l
16 0 l
586 1493 l
ce} _d
/C{1430 0 115 -29 1319 1520 sc
1319 1378 m
1319 1165 l
1251 1228 1178 1276 1101 1307 c
1024 1338 943 1354 856 1354 c
685 1354 555 1302 464 1197 c
373 1093 328 942 328 745 c
328 548 373 398 464 293 c
555 189 685 137 856 137 c
943 137 1024 153 1101 184 c
1178 215 1251 263 1319 326 c
1319 115 l
1248 67 1173 31 1094 7 c
1015 -17 932 -29 844 -29 c
618 -29 440 40 310 178 c
180 317 115 506 115 745 c
115 985 180 1174 310 1312 c
440 1451 618 1520 844 1520 c
933 1520 1017 1508 1096 1484 c
1175 1461 1250 1425 1319 1378 c
ce} _d
/I{604 0 201 0 403 1493 sc
201 1493 m
403 1493 l
403 0 l
201 0 l
201 1493 l
ce} _d
/L{1141 0 201 0 1130 1493 sc
201 1493 m
403 1493 l
403 170 l
1130 170 l
1130 0 l
201 0 l
201 1493 l
ce} _d
/M{1767 0 201 0 1567 1493 sc
201 1493 m
502 1493 l
883 477 l
1266 1493 l
1567 1493 l
1567 0 l
1370 0 l
1370 1311 l
985 287 l
782 287 l
397 1311 l
397 0 l
201 0 l
201 1493 l
ce} _d
/N{1532 0 201 0 1331 1493 sc
201 1493 m
473 1493 l
1135 244 l
1135 1493 l
1331 1493 l
1331 0 l
1059 0 l
397 1249 l
397 0 l
201 0 l
201 1493 l
ce} _d
/O{1612 0 115 -29 1497 1520 sc
807 1356 m
660 1356 544 1301 457 1192 c
371 1083 328 934 328 745 c
328 557 371 408 457 299 c
544 190 660 135 807 135 c
954 135 1070 190 1155 299 c
1241 408 1284 557 1284 745 c
1284 934 1241 1083 1155 1192 c
1070 1301 954 1356 807 1356 c
807 1520 m
1016 1520 1184 1450 1309 1309 c
1434 1169 1497 981 1497 745 c
1497 510 1434 322 1309 181 c
1184 41 1016 -29 807 -29 c
597 -29 429 41 303 181 c
178 321 115 509 115 745 c
115 981 178 1169 303 1309 c
429 1450 597 1520 807 1520 c
ce} _d
/S{1300 0 135 -29 1186 1520 sc
1096 1444 m
1096 1247 l
1019 1284 947 1311 879 1329 c
811 1347 745 1356 682 1356 c
572 1356 487 1335 427 1292 c
368 1249 338 1189 338 1110 c
338 1044 358 994 397 960 c
437 927 512 900 623 879 c
745 854 l
896 825 1007 775 1078 702 c
1150 630 1186 533 1186 412 c
1186 267 1137 158 1040 83 c
943 8 801 -29 614 -29 c
543 -29 468 -21 388 -5 c
309 11 226 35 141 66 c
141 274 l
223 228 303 193 382 170 c
461 147 538 135 614 135 c
729 135 818 158 881 203 c
944 248 975 313 975 397 c
975 470 952 528 907 569 c
862 610 789 641 686 662 c
563 686 l
412 716 303 763 236 827 c
169 891 135 980 135 1094 c
135 1226 181 1330 274 1406 c
367 1482 496 1520 659 1520 c
729 1520 800 1514 873 1501 c
946 1488 1020 1469 1096 1444 c
ce} _d
/T{1251 0 -6 0 1257 1493 sc
-6 1493 m
1257 1493 l
1257 1323 l
727 1323 l
727 0 l
524 0 l
524 1323 l
-6 1323 l
-6 1493 l
ce} _d
/a{1255 0 123 -29 1069 1147 sc
702 563 m
553 563 450 546 393 512 c
336 478 307 420 307 338 c
307 273 328 221 371 182 c
414 144 473 125 547 125 c
649 125 731 161 792 233 c
854 306 885 402 885 522 c
885 563 l
702 563 l
1069 639 m
1069 0 l
885 0 l
885 170 l
843 102 791 52 728 19 c
665 -13 589 -29 498 -29 c
383 -29 292 3 224 67 c
157 132 123 218 123 326 c
123 452 165 547 249 611 c
334 675 460 707 627 707 c
885 707 l
885 725 l
885 810 857 875 801 921 c
746 968 668 991 567 991 c
503 991 441 983 380 968 c
319 953 261 930 205 899 c
205 1069 l
272 1095 338 1114 401 1127 c
464 1140 526 1147 586 1147 c
748 1147 869 1105 949 1021 c
1029 937 1069 810 1069 639 c
ce} _d
/d{1300 0 113 -29 1114 1556 sc
930 950 m
930 1556 l
1114 1556 l
1114 0 l
930 0 l
930 168 l
891 101 842 52 783 19 c
724 -13 654 -29 571 -29 c
436 -29 325 25 240 133 c
155 241 113 383 113 559 c
113 735 155 877 240 985 c
325 1093 436 1147 571 1147 c
654 1147 724 1131 783 1098 c
842 1066 891 1017 930 950 c
303 559 m
303 424 331 317 386 240 c
442 163 519 125 616 125 c
713 125 790 163 846 240 c
902 317 930 424 930 559 c
930 694 902 800 846 877 c
790 954 713 993 616 993 c
519 993 442 954 386 877 c
331 800 303 694 303 559 c
ce} _d
/e{1260 0 113 -29 1151 1147 sc
1151 606 m
1151 516 l
305 516 l
313 389 351 293 419 226 c
488 160 583 127 705 127 c
776 127 844 136 910 153 c
977 170 1043 196 1108 231 c
1108 57 l
1042 29 974 8 905 -7 c
836 -22 765 -29 694 -29 c
515 -29 374 23 269 127 c
165 231 113 372 113 549 c
113 732 162 878 261 985 c
360 1093 494 1147 662 1147 c
813 1147 932 1098 1019 1001 c
1107 904 1151 773 1151 606 c
967 660 m
966 761 937 841 882 901 c
827 961 755 991 664 991 c
561 991 479 962 417 904 c
356 846 320 764 311 659 c
967 660 l
ce} _d
/g{1300 0 113 -426 1114 1147 sc
930 573 m
930 706 902 810 847 883 c
792 956 715 993 616 993 c
517 993 440 956 385 883 c
330 810 303 706 303 573 c
303 440 330 337 385 264 c
440 191 517 154 616 154 c
715 154 792 191 847 264 c
902 337 930 440 930 573 c
1114 139 m
1114 -52 1072 -193 987 -286 c
902 -379 773 -426 598 -426 c
533 -426 472 -421 415 -411 c
358 -402 302 -387 248 -367 c
248 -188 l
302 -217 355 -239 408 -253 c
461 -267 514 -274 569 -274 c
690 -274 780 -242 840 -179 c
900 -116 930 -21 930 106 c
930 197 l
892 131 843 82 784 49 c
725 16 654 0 571 0 c
434 0 323 52 239 157 c
155 262 113 400 113 573 c
113 746 155 885 239 990 c
323 1095 434 1147 571 1147 c
654 1147 725 1131 784 1098 c
843 1065 892 1016 930 950 c
930 1120 l
1114 1120 l
1114 139 l
ce} _d
/i{569 0 193 0 377 1556 sc
193 1120 m
377 1120 l
377 0 l
193 0 l
193 1120 l
193 1556 m
377 1556 l
377 1323 l
193 1323 l
193 1556 l
ce} _d
/l{569 0 193 0 377 1556 sc
193 1556 m
377 1556 l
377 0 l
193 0 l
193 1556 l
ce} _d
/m{1995 0 186 0 1821 1147 sc
1065 905 m
1111 988 1166 1049 1230 1088 c
1294 1127 1369 1147 1456 1147 c
1573 1147 1663 1106 1726 1024 c
1789 943 1821 827 1821 676 c
1821 0 l
1636 0 l
1636 670 l
1636 777 1617 857 1579 909 c
1541 961 1483 987 1405 987 c
1310 987 1234 955 1179 892 c
1124 829 1096 742 1096 633 c
1096 0 l
911 0 l
911 670 l
911 778 892 858 854 909 c
816 961 757 987 678 987 c
584 987 509 955 454 891 c
399 828 371 742 371 633 c
371 0 l
186 0 l
186 1120 l
371 1120 l
371 946 l
413 1015 463 1065 522 1098 c
581 1131 650 1147 731 1147 c
812 1147 881 1126 938 1085 c
995 1044 1038 984 1065 905 c
ce} _d
/r{842 0 186 0 842 1147 sc
842 948 m
821 960 799 969 774 974 c
750 980 723 983 694 983 c
590 983 510 949 454 881 c
399 814 371 717 371 590 c
371 0 l
186 0 l
186 1120 l
371 1120 l
371 946 l
410 1014 460 1064 522 1097 c
584 1130 659 1147 748 1147 c
761 1147 775 1146 790 1144 c
805 1143 822 1140 841 1137 c
842 948 l
ce} _d
/s{1067 0 111 -29 967 1147 sc
907 1087 m
907 913 l
855 940 801 960 745 973 c
689 986 631 993 571 993 c
480 993 411 979 365 951 c
320 923 297 881 297 825 c
297 782 313 749 346 724 c
379 700 444 677 543 655 c
606 641 l
737 613 829 573 884 522 c
939 471 967 400 967 309 c
967 205 926 123 843 62 c
761 1 648 -29 504 -29 c
444 -29 381 -23 316 -11 c
251 0 183 18 111 41 c
111 231 l
179 196 246 169 312 151 c
378 134 443 125 508 125 c
595 125 661 140 708 169 c
755 199 778 241 778 295 c
778 345 761 383 727 410 c
694 437 620 462 506 487 c
442 502 l
328 526 246 563 195 612 c
144 662 119 730 119 817 c
119 922 156 1004 231 1061 c
306 1118 412 1147 549 1147 c
617 1147 681 1142 741 1132 c
801 1122 856 1107 907 1087 c
ce} _d
end readonly def
/BuildGlyph {
exch begin
CharStrings exch
2 copy known not {pop /.notdef} if
true 3 1 roll get exec
end
} _d
/BuildChar {
1 index /Encoding get exch get
1 index /BuildGlyph get exec
} _d
FontName currentdict end definefont pop
end
%%EndProlog
mpldict begin
-486 -108 translate
1584 1008 0 0 clipbox
gsave
0 0 m
1584 0 l
1584 1008 l
0 1008 l
cl
1.000 setgray
fill
grestore
gsave
79.31 210.53 m
1573.2 210.53 l
1573.2 983.52 l
79.31 983.52 l
cl
1.000 setgray
fill
grestore
0.800 setlinewidth
1 setlinejoin
0 setlinecap
[] 0 setdash
0.000 setgray
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
147.214 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
157.152 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /two glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /two glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
298.112 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
308.05 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /four glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /two glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
449.01 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
458.948 95.28 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /eight glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /two glyphshow
94.2012 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
599.908 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
609.846 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /one glyphshow
36.9492 0 m /six glyphshow
59.8535 0 m /zero glyphshow
82.7578 0 m /comma glyphshow
94.2012 0 m /two glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
750.806 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
760.744 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /four glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /two glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
901.704 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
911.641 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /eight glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /two glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1052.6 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1062.54 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /one glyphshow
36.9492 0 m /six glyphshow
59.8535 0 m /zero glyphshow
82.7578 0 m /comma glyphshow
94.2012 0 m /two glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1203.5 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1213.44 72.3738 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /eight glyphshow
36.9492 0 m /zero glyphshow
59.8535 0 m /comma glyphshow
71.2969 0 m /four glyphshow
94.2012 0 m /zero glyphshow
117.105 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1354.4 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1364.34 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /one glyphshow
36.9492 0 m /six glyphshow
59.8535 0 m /zero glyphshow
82.7578 0 m /comma glyphshow
94.2012 0 m /four glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
0 0 m
0 -3.5 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
1505.3 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
1515.23 49.4675 translate
90 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /one glyphshow
36.9492 0 m /six glyphshow
59.8535 0 m /zero glyphshow
82.7578 0 m /comma glyphshow
94.2012 0 m /eight glyphshow
117.105 0 m /zero glyphshow
140.01 0 m /parenright glyphshow
grestore
/DejaVuSans 36.000 selectfont
gsave
757.13 18.1081 translate
0 rotate
0 0 m /parenleft glyphshow
14.0449 0 m /N glyphshow
40.9746 0 m /S glyphshow
63.8262 0 m /comma glyphshow
75.2695 0 m /N glyphshow
102.199 0 m /T glyphshow
124.189 0 m /parenright glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 210.53 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 196.85 translate
0 rotate
0 0 m /zero glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 307.154 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 293.474 translate
0 rotate
0 0 m /one glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 403.778 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 390.098 translate
0 rotate
0 0 m /two glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 500.401 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 486.722 translate
0 rotate
0 0 m /three glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 597.025 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 583.345 translate
0 rotate
0 0 m /four glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 693.649 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 679.969 translate
0 rotate
0 0 m /five glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 790.273 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 776.593 translate
0 rotate
0 0 m /six glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 886.896 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 873.217 translate
0 rotate
0 0 m /seven glyphshow
grestore
gsave
/o {
gsave
newpath
translate
0.8 setlinewidth
1 setlinejoin
0 setlinecap
-0 0 m
-3.5 0 l
gsave
0.000 setgray
fill
grestore
stroke
grestore
} bind def
79.31 983.52 o
grestore
/DejaVuSans 36.000 selectfont
gsave
49.4038 969.84 translate
0 rotate
0 0 m /eight glyphshow
grestore
/DejaVuSans 36.000 selectfont
gsave
37.9194 529.564 translate
90 rotate
0 0 m /T glyphshow
20.8652 0 m /i glyphshow
30.8672 0 m /m glyphshow
65.9355 0 m /e glyphshow
88.084 0 m /parenleft glyphshow
102.129 0 m /s glyphshow
120.885 0 m /parenright glyphshow
grestore
1.500 setlinewidth
[5.55 2.4] 0 setdash
0.000 0.000 1.000 setrgbcolor
gsave
1493.89 772.99 79.31 210.53 clipbox
147.214091 325.647729 m
298.112071 513.260905 l
449.010051 460.390998 l
599.90803 458.773709 l
750.80601 285.634095 l
901.70399 310.382336 l
1052.60197 299.459021 l
1203.499949 275.149935 l
1354.397929 260.755895 l
1505.295909 242.889874 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 772.99 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-0 -9 m
9 9 l
-9 9 l
cl
gsave
0.000 0.000 1.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 325.648 o
298.112 513.261 o
449.01 460.391 o
599.908 458.774 o
750.806 285.634 o
901.704 310.382 o
1052.6 299.459 o
1203.5 275.15 o
1354.4 260.756 o
1505.3 242.89 o
grestore
1.500 setlinewidth
1 setlinejoin
[1.5 2.475] 0 setdash
1.000 0.000 0.000 setrgbcolor
gsave
1493.89 772.99 79.31 210.53 clipbox
147.214091 366.337053 m
298.112071 526.046932 l
449.010051 497.053334 l
599.90803 498.953826 l
750.80601 307.411059 l
901.70399 310.091982 l
1052.60197 318.071364 l
1203.499949 294.949011 l
1354.397929 294.690832 l
1505.295909 280.820783 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 772.99 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-9 -9 m
9 -9 l
9 9 l
-9 9 l
cl
gsave
1.000 0.000 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 366.337 o
298.112 526.047 o
449.01 497.053 o
599.908 498.954 o
750.806 307.411 o
901.704 310.092 o
1052.6 318.071 o
1203.5 294.949 o
1354.4 294.691 o
1505.3 280.821 o
grestore
1.500 setlinewidth
1 setlinejoin
[9.6 2.4 1.5 2.4] 0 setdash
1.000 0.647 0.000 setrgbcolor
gsave
1493.89 772.99 79.31 210.53 clipbox
147.214091 237.987079 m
298.112071 238.033845 l
449.010051 238.0752 l
599.90803 238.115396 l
750.80601 238.029594 l
901.70399 238.073558 l
1052.60197 238.110951 l
1203.499949 238.073751 l
1354.397929 238.12158 l
1505.295909 238.112304 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
1493.89 772.99 79.31 210.53 clipbox
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
0 9 m
-7.794229 4.5 l
-7.794229 -4.5 l
-0 -9 l
7.794229 -4.5 l
7.794229 4.5 l
cl
gsave
1.000 0.647 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
147.214 237.987 o
298.112 238.034 o
449.01 238.075 o
599.908 238.115 o
750.806 238.03 o
901.704 238.074 o
1052.6 238.111 o
1203.5 238.074 o
1354.4 238.122 o
1505.3 238.112 o
grestore
0.800 setlinewidth
2 setlinecap
0.000 setgray
gsave
79.31 210.53 m
79.31 983.52 l
stroke
grestore
gsave
1573.2 210.53 m
1573.2 983.52 l
stroke
grestore
gsave
79.31 210.53 m
1573.2 210.53 l
stroke
grestore
gsave
79.31 983.52 m
1573.2 983.52 l
stroke
grestore
1.000 setlinewidth
0 setlinecap
0.800 setgray
gsave
1032.996875 871.4575 m
1552.2 871.4575 l
1556.2 871.4575 1558.2 873.4575 1558.2 877.4575 c
1558.2 962.52 l
1558.2 966.52 1556.2 968.52 1552.2 968.52 c
1032.996875 968.52 l
1028.996875 968.52 1026.996875 966.52 1026.996875 962.52 c
1026.996875 877.4575 l
1026.996875 873.4575 1028.996875 871.4575 1032.996875 871.4575 c
cl
gsave
1.000 setgray
fill
grestore
stroke
grestore
1.500 setlinewidth
1 setlinejoin
[5.55 2.4] 0 setdash
0.000 0.000 1.000 setrgbcolor
gsave
1038.996875 944.223125 m
1068.996875 944.223125 l
1098.996875 944.223125 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-0 -9 m
9 9 l
-9 9 l
cl
gsave
0.000 0.000 1.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1069 944.223 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1123 933.723 translate
0 rotate
0 0 m /M glyphshow
25.8838 0 m /e glyphshow
44.3408 0 m /r glyphshow
56.1748 0 m /g glyphshow
75.2178 0 m /e glyphshow
93.6748 0 m /space glyphshow
103.211 0 m /hyphen glyphshow
114.036 0 m /space glyphshow
123.572 0 m /C glyphshow
144.52 0 m /O glyphshow
168.133 0 m /L glyphshow
184.847 0 m /S glyphshow
grestore
1.500 setlinewidth
1 setlinejoin
[1.5 2.475] 0 setdash
1.000 0.000 0.000 setrgbcolor
gsave
1038.996875 900.191875 m
1068.996875 900.191875 l
1098.996875 900.191875 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
-9 -9 m
9 -9 l
9 9 l
-9 9 l
cl
gsave
1.000 0.000 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1069 900.192 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1123 889.692 translate
0 rotate
0 0 m /M glyphshow
25.8838 0 m /e glyphshow
44.3408 0 m /r glyphshow
56.1748 0 m /g glyphshow
75.2178 0 m /e glyphshow
93.6748 0 m /space glyphshow
103.211 0 m /hyphen glyphshow
114.036 0 m /space glyphshow
123.572 0 m /C glyphshow
144.52 0 m /O glyphshow
168.133 0 m /L glyphshow
185.597 0 m /A glyphshow
grestore
1.500 setlinewidth
1 setlinejoin
[9.6 2.4 1.5 2.4] 0 setdash
1.000 0.647 0.000 setrgbcolor
gsave
1389.121875 944.223125 m
1419.121875 944.223125 l
1449.121875 944.223125 l
stroke
grestore
1.000 setlinewidth
0 setlinejoin
[] 0 setdash
gsave
/o {
gsave
newpath
translate
1.0 setlinewidth
0 setlinejoin
0 setlinecap
0 9 m
-7.794229 4.5 l
-7.794229 -4.5 l
-0 -9 l
7.794229 -4.5 l
7.794229 4.5 l
cl
gsave
1.000 0.647 0.000 setrgbcolor
fill
grestore
stroke
grestore
} bind def
1419.12 944.223 o
grestore
0.000 setgray
/DejaVuSans 30.000 selectfont
gsave
1473.12 933.723 translate
0 rotate
0 0 m /I glyphshow
8.84766 0 m /d glyphshow
27.8906 0 m /e glyphshow
46.3477 0 m /a glyphshow
64.7314 0 m /l glyphshow
grestore
end
showpage
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment