malleabilityManager.c 31.8 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
4
#include "malleabilityManager.h"
#include "malleabilityStates.h"
5
#include "malleabilityDataStructures.h"
6
#include "malleabilityTypes.h"
iker_martin's avatar
iker_martin committed
7
#include "malleabilityZombies.h"
8
#include "spawn_methods/GenericSpawn.h"
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "CommDist.h"

#define MALLEABILITY_USE_SYNCHRONOUS 0
#define MALLEABILITY_USE_ASYNCHRONOUS 1


void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

void Children_init();
int spawn_step();
int start_redistribution();
int check_redistribution();
int end_redistribution();
iker_martin's avatar
iker_martin committed
23
int shrink_redistribution();
24

25
26
27
void comm_node_data(int rootBcast, int is_child_group);
void def_nodeinfo_type(MPI_Datatype *node_type);

28
29
int thread_creation();
int thread_check();
30
void* thread_async_work();
31

32
void print_comms_state();
33
void malleability_comms_update(MPI_Comm comm);
34

35
typedef struct {
36
  int spawn_method;
37
  int spawn_dist;
38
  int spawn_strategies;
39
40
  int red_method;
  int red_strategies;
41

42
  int grp;
43
44
45
46
  configuration *config_file;
  results_data *results;
} malleability_config_t;

iker_martin's avatar
iker_martin committed
47
typedef struct { //FIXME numC_spawned no se esta usando
48
  int myId, numP, numC, numC_spawned, root, root_parents;
49
50
51
  pthread_t async_thread;
  MPI_Comm comm, thread_comm;
  MPI_Comm intercomm;
52
  MPI_Comm user_comm;
53
  int dup_user_comm;
54
  
55
  char *name_exec, *nodelist;
56
  int num_cpus, num_nodes, nodelist_len;
57
58
} malleability_t;

59
int state = MALL_UNRESERVED; //FIXME Mover a otro lado
60
61
62
63
64
65
66
67
68

malleability_config_t *mall_conf;
malleability_t *mall;

malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

69
/*
70
71
72
73
74
75
76
77
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
78
 */
79
int init_malleability(int myId, int numP, int root, MPI_Comm comm, char *name_exec, char *nodelist, int num_cpus, int num_nodes) {
80
81
82
83
84
85
86
87
88
  MPI_Comm dup_comm, thread_comm;

  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

89
  mall->dup_user_comm = 0;
90
91
  MPI_Comm_dup(comm, &dup_comm);
  MPI_Comm_dup(comm, &thread_comm);
92
93
  MPI_Comm_set_name(dup_comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(thread_comm, "MPI_COMM_MALL_THREAD");
94
95
96
97

  mall->myId = myId;
  mall->numP = numP;
  mall->root = root;
98
  mall->comm = dup_comm;
99
  mall->thread_comm = thread_comm;
100
  mall->user_comm = comm;
101

102
  mall->name_exec = name_exec;
103
104
105
  mall->nodelist = nodelist;
  mall->num_cpus = num_cpus;
  mall->num_nodes = num_nodes;
106
107
108
109
110
111

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

112
  state = MALL_NOT_STARTED;
113

114
115
  zombies_service_init();

116
117
118
119
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
  if(mall->intercomm != MPI_COMM_NULL ) { 
    Children_init();
120
    return MALLEABILITY_CHILDREN;
121
  }
iker_martin's avatar
iker_martin committed
122

123
124
125
126
127
128
129
  if(nodelist != NULL) { //TODO To be deprecated by using Slurm or else statement
    mall->nodelist_len = strlen(nodelist);
  } else { // If no nodelist is detected, get it from the actual run
    mall->nodelist = malloc(MPI_MAX_PROCESSOR_NAME * sizeof(char));
    MPI_Get_processor_name(mall->nodelist, &mall->nodelist_len);
    //TODO Get name of each process and create real nodelist
  }
130

131
  return MALLEABILITY_NOT_CHILDREN;
132
133
}

134
135
136
137
138
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
139
void free_malleability() {	  
140
141
142
143
144
145
146
147
148
149
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);

150
151
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
152
153
  free(mall);
  free(mall_conf);
iker_martin's avatar
iker_martin committed
154
155
156
157

  zombies_awake();
  zombies_service_free();

158
  state = MALL_UNRESERVED;
159
160
}

161
162
/* 
 * TODO Reescribir
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
 * Se realiza el redimensionado de procesos por parte de los padres.
 *
 * Se crean los nuevos procesos con la distribucion fisica elegida y
 * a continuacion se transmite la informacion a los mismos.
 *
 * Si hay datos asincronos a transmitir, primero se comienza a
 * transmitir estos y se termina la funcion. Se tiene que comprobar con
 * llamando a la función de nuevo que se han terminado de enviar
 *
 * Si hay ademas datos sincronos a enviar, no se envian aun.
 *
 * Si solo hay datos sincronos se envian tras la creacion de los procesos
 * y finalmente se desconectan los dos grupos de procesos.
 */
int malleability_checkpoint() {
178
179
180
181
182
183
184
185
  double end_real_time;

  switch(state) {
    case MALL_UNRESERVED:
      break;
    case MALL_NOT_STARTED:
      // Comprobar si se tiene que realizar un redimensionado
      //if(CHECK_RMS()) {return MALL_DENIED;}
186

187
188
189
190
191
192
      state = spawn_step();

      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPT_POSTPONE){
        malleability_checkpoint();
      }
      break;
193

194
195
196
197
198
199
    case MALL_SPAWN_PENDING: // Comprueba si el spawn ha terminado y comienza la redistribucion
    case MALL_SPAWN_SINGLE_PENDING:
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPTED) {
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
        mall_conf->results->spawn_real_time[mall_conf->grp] = end_real_time - mall_conf->results->spawn_start;
200

201
202
203
        malleability_checkpoint();
      }
      break;
204

205
206
207
208
209
    case MALL_SPAWN_ADAPT_POSTPONE:
    case MALL_SPAWN_COMPLETED:
      state = start_redistribution();
      malleability_checkpoint();
      break;
210

211
    case MALL_DIST_PENDING:
212
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
213
214
215
216
        state = thread_check();
      } else {
        state = check_redistribution();
      }
217
      if(state != MALL_DIST_PENDING) { 
218
219
220
221
222
223
224
225
        malleability_checkpoint();
      }
      break;

    case MALL_SPAWN_ADAPT_PENDING:
      mall_conf->results->spawn_start = MPI_Wtime();
      unset_spawn_postpone_flag(state);
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
226

227
      if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
228
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
229
	malleability_checkpoint();
230
      }
231
      break;
232

233
    case MALL_SPAWN_ADAPTED:
234
      state = shrink_redistribution();
235
      malleability_checkpoint();
236
      break;
237

238
239
240
241
    case MALL_DIST_COMPLETED: //TODO No es esto muy feo?
      state = MALL_COMPLETED;
      break;
  }
242
243
244
245
246
247
248
249
250
251
252
253
254
  return state;
}

// Funciones solo necesarias por el benchmark
//-------------------------------------------------------------------------------------------------------------
void set_benchmark_grp(int grp) {
  mall_conf->grp = grp;
}

void set_benchmark_configuration(configuration *config_file) {
  mall_conf->config_file = config_file;
}

255
void get_benchmark_configuration(configuration **config_file) {
256
257
258
259
260
261
262
  *config_file = mall_conf->config_file;
}

void set_benchmark_results(results_data *results) {
  mall_conf->results = results;
}

263
void get_benchmark_results(results_data **results) {
264
265
266
267
  *results = mall_conf->results;
}
//-------------------------------------------------------------------------------------------------------------

268
void set_malleability_configuration(int spawn_method, int spawn_strategies, int spawn_dist, int red_method, int red_strategies) {
269
270
  mall_conf->spawn_method = spawn_method;
  mall_conf->spawn_strategies = spawn_strategies;
271
  mall_conf->spawn_dist = spawn_dist;
272
273
  mall_conf->red_method = red_method;
  mall_conf->red_strategies = red_strategies;
274
275
276
277
}

/*
 * To be deprecated
278
 * Tiene que ser llamado despues de setear la config
279
280
 */
void set_children_number(int numC){
281
  if((mall_conf->spawn_method == MALL_SPAWN_MERGE) && (numC >= mall->numP)) {
282
283
284
285
286
    mall->numC = numC;
    mall->numC_spawned = numC - mall->numP;

    if(numC == mall->numP) { // Migrar
      mall->numC_spawned = numC;
287
      mall_conf->spawn_method = MALL_SPAWN_BASELINE;
288
289
290
291
292
293
294
295
296
297
298
    }
  } else {
    mall->numC = numC;
    mall->numC_spawned = numC;
  }
}

/*
 * TODO
 */
void get_malleability_user_comm(MPI_Comm *comm) {
299
300
301
302
303
304
  if(mall->dup_user_comm) {
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm));
    MPI_Comm_dup(mall->comm, &(mall->user_comm));
    MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
    mall->dup_user_comm = 0;
  }
305
  *comm = mall->user_comm;
306
307
308
309
310
311
312
313
314
}

/*
 * Anyade a la estructura concreta de datos elegida
 * el nuevo set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que anyadir cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "add_data".
315
316
 *
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
317
 */
318
void malleability_add_data(void *data, size_t total_qty, int type, int is_replicated, int is_constant) {
319
  size_t total_reqs = 0;
320
321
322

  if(is_constant) {
    if(is_replicated) {
323
      add_data(data, total_qty, type, total_reqs, rep_s_data);
324
    } else {
325
      add_data(data, total_qty, type, total_reqs, dist_s_data);
326
327
328
    }
  } else {
    if(is_replicated) {
329
      add_data(data, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
330
    } else {
331
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
332
        total_reqs = 1;
333
      } else if(mall_conf->red_method  == MALL_RED_IBARRIER) { //TODO This is a strategy, not a method
334
        total_reqs = 2;
335
      } else if(mall_conf->red_method  == MALL_RED_POINT) {
336
        total_reqs = mall->numC;
337
338
339
340
341
342
343
      }
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
    }
  }
}

344
345
346
347
348
349
350
/*
 * Modifica en la estructura concreta de datos elegida en el indice "index"
 * con el set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que modificar cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "modify_data".
351
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
352
353
 */
void malleability_modify_data(void *data, size_t index, size_t total_qty, int type, int is_replicated, int is_constant) {
354
355
  size_t total_reqs = 0;

356
357
  if(is_constant) {
    if(is_replicated) {
358
      modify_data(data, index, total_qty, type, total_reqs, rep_s_data);
359
    } else {
360
      modify_data(data, index, total_qty, type, total_reqs, dist_s_data);
361
362
363
    }
  } else {
    if(is_replicated) {
364
365
366
      modify_data(data, index, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
    } else {    
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
367
        total_reqs = 1;
368
      } else if(mall_conf->red_method  == MALL_RED_IBARRIER) { //TODO This is a strategy, not a method
369
        total_reqs = 2;
370
      } else if(mall_conf->red_method  == MALL_RED_POINT) {
371
372
373
        total_reqs = mall->numC;
      }
      
374
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data);
375
376
377
378
    }
  }
}

379
380
381
/*
 * Devuelve el numero de entradas para la estructura de descripcion de 
 * datos elegida.
382
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
383
 */
384
void malleability_get_entries(size_t *entries, int is_replicated, int is_constant){
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
  
  if(is_constant) {
    if(is_replicated) {
      *entries = rep_s_data->entries;
    } else {
      *entries = dist_s_data->entries;
    }
  } else {
    if(is_replicated) {
      *entries = rep_a_data->entries;
    } else {
      *entries = dist_a_data->entries;
    }
  }
}

/*
 * Devuelve el elemento de la lista "index" al usuario.
 * La devolución es en el mismo orden que lo han metido los padres
 * con la funcion "malleability_add_data()".
 * Es tarea del usuario saber el tipo de esos datos.
 * TODO Refactor a que sea automatico
407
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
408
 */
409
void malleability_get_data(void **data, size_t index, int is_replicated, int is_constant) {
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
      data_struct = rep_s_data;
    } else {
      data_struct = dist_s_data;
    }
  } else {
    if(is_replicated) {
      data_struct = rep_a_data;
    } else {
      data_struct = dist_a_data;
    }
  }

426
  *data = data_struct->arrays[index];
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
}


//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||


/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
443
  size_t i;
444
  char *aux_send, *aux_recv;
445
446
447

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
448
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
449
      aux_recv = NULL;
450
451
      async_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, mall->intercomm, 
		      &(data_struct->requests[i]), &(data_struct->request_qty[i]));
452
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
453
454
455
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
456
457
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
458
      sync_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall->intercomm);
459
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
460
461
462
463
464
465
466
467
468
469
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
470
  size_t i;
471
  char *aux, aux_s;
472
473
474
475

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
476
477
      async_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, mall->intercomm, 
		      &(data_struct->requests[i]), &(data_struct->request_qty[i]));
478
479
480
481
482
      data_struct->arrays[i] = (void *) aux;
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
483
      sync_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall->intercomm);
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
      data_struct->arrays[i] = (void *) aux;
    }
  }
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||

/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
void Children_init() {
502
503
  size_t i;
  int numP_parents, root_parents;
504
  int is_intercomm;
505

506
  malleability_connect_children(mall->myId, mall->numP, mall->root, mall->comm, &numP_parents, &root_parents, &(mall->intercomm));
507
508
509
510
511
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) { // For intracommunicators, these processes will be added
    MPI_Comm_rank(mall->intercomm, &(mall->myId));
    MPI_Comm_size(mall->intercomm, &(mall->numP));
  }
512

513
  recv_config_file(mall->root, mall->intercomm, &(mall_conf->config_file));
514
  comm_node_data(root_parents, MALLEABILITY_CHILDREN);
515
516
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, root_parents, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, root_parents, mall->intercomm);
517

518
  mall_conf->results = (results_data *) malloc(sizeof(results_data));
519
  init_results_data(mall_conf->results, mall_conf->config_file->n_resizes, mall_conf->config_file->n_stages, RESULTS_INIT_DATA_QTY);
520

521
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
522
523
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos

524
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
525
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
526
527
    } else {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
528
    }
529

530
531
    mall_conf->results->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
  }
532

533
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
534
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
535
    recv_data(numP_parents, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
536
537
538
539
540
541

    mall_conf->results->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona

    // TODO Crear funcion especifica y anyadir para Asinc
    // TODO Tener en cuenta el tipo y qty
    for(i=0; i<rep_s_data->entries; i++) {
542
543
544
545
546
547
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
548
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, root_parents, mall->intercomm);
549
550
551
    } 
  }

552
  // Guardar los resultados de esta transmision
553
  comm_results(mall_conf->results, mall->root, mall_conf->config_file->n_resizes, mall->intercomm);
554
  if(!is_intercomm) {
555
    malleability_comms_update(mall->intercomm);
556
  }
557

558
  MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
559
560
561
562
563
564
565
566
567
568
569
570
571
572
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
  mall_conf->results->spawn_start = MPI_Wtime();
573
 
574
  state = init_spawn(mall->name_exec, mall->num_cpus, mall->num_nodes, mall->nodelist, mall->myId, mall->numP, mall->numC, mall->root, mall_conf->spawn_dist, mall_conf->spawn_method, mall_conf->spawn_strategies, mall->thread_comm, &(mall->intercomm));
575

576
  if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
577
578
579
580
581
      mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
  }
  return state;
}

582

583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
598
599
600
601
602
603
604
605
  int rootBcast, is_intercomm;

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
606
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
607
  }
608

609
610
611
612
613
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
614

615
  send_config_file(mall_conf->config_file, rootBcast, mall->intercomm);
616
  comm_node_data(rootBcast, MALLEABILITY_NOT_CHILDREN);
617
618
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, rootBcast, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, rootBcast, mall->intercomm);
619

620
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
621
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
622
	  //FIXME No se envian los datos replicados (rep_a_data)
623
    mall_conf->results->async_time[mall_conf->grp] = MPI_Wtime();
624
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
625
626
627
      return thread_creation();
    } else {
      send_data(mall->numC, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
628
      return MALL_DIST_PENDING; 
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    }
  } 
  return end_redistribution();
}


/*
 * @deprecated
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
 */
int check_redistribution() {
650
651
  int is_intercomm, completed, local_completed, all_completed, test_err;
  size_t i, j, req_qty;
652
  MPI_Request *req_completed;
653
  local_completed = 1;
654
  test_err = 0;
655
656
657
658
659
660
661

  //FIXME Modificar para que se tenga en cuenta rep_a_data
  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) { //FIXME Strategy not fully implemented
      test_err = MPI_Test(&(req_completed[req_qty-1]), &completed, MPI_STATUS_IGNORE);
662
      local_completed = local_completed && completed;
663
    } else {
664
665
666
667
668
      for(j=0; j<req_qty; j++) {
	test_err = MPI_Test(&(req_completed[j]), &completed, MPI_STATUS_IGNORE);
	local_completed = local_completed && completed;
      }
//      test_err = MPI_Testall(req_qty, req_completed, &completed, MPI_STATUSES_IGNORE);
669
    }
670
671
672
673
674
675
676
  }
 
  if (test_err != MPI_SUCCESS && test_err != MPI_ERR_PENDING) {
    printf("P%d aborting -- Test Async\n", mall->myId);
    MPI_Abort(MPI_COMM_WORLD, test_err);
  }

677
  MPI_Allreduce(&local_completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
678
  if(!all_completed) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
679
  
680
681
  if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) { //FIXME Strategy not fully implemented
    MPI_Waitall(req_qty, req_completed, MPI_STATUSES_IGNORE);
682
683
684
    //Para la desconexión de ambos grupos de procesos es necesario indicar a MPI que esta comm
    //ha terminado, aunque solo se pueda llegar a este punto cuando ha terminado
  }
685
686
687
688


  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
689
690
691
692
693
694
695
696
697
698
699
700
701
  return end_redistribution();
}


/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
702
703
  size_t i;
  int is_intercomm, rootBcast, local_state;
704

705
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
706
707
708
709
710
711
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
  
712
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
713
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
714
    mall_conf->results->sync_time[mall_conf->grp] = MPI_Wtime();
715
    send_data(mall->numC, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
716
    if(!is_intercomm) mall_conf->results->sync_end = MPI_Wtime(); // Merge method only
717
718

    // TODO Crear funcion especifica y anyadir para Asinc
719
    // TODO Tener en cuenta el tipo
720
    for(i=0; i<rep_s_data->entries; i++) {
721
722
723
724
725
726
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
727
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, rootBcast, mall->intercomm);
728
729
    } 
  }
iker_martin's avatar
iker_martin committed
730

731
  comm_results(mall_conf->results, rootBcast, mall_conf->config_file->n_resizes, mall->intercomm);
iker_martin's avatar
iker_martin committed
732

733
734
735
  local_state = MALL_DIST_COMPLETED;
  if(!is_intercomm) { // Merge Spawn
    if(mall->numP < mall->numC) { // Expand
736
      malleability_comms_update(mall->intercomm);
737
738
739
740
    } else { // Shrink || Merge Shrink requiere de mas tareas
      local_state = MALL_SPAWN_ADAPT_PENDING;
    }
  }
741

742
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) {
743
    MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
744
  }
745

746
  return local_state;
747
748
}

749
750
751
752

///=============================================
///=============================================
///=============================================
753
//TODO Add comment
iker_martin's avatar
iker_martin committed
754
int shrink_redistribution() {
755
    double time_extra = MPI_Wtime();
756

757
    //TODO Create new state before collecting zombies. Processes can perform tasks before that. Then call again Malleability to commit the change
758
    zombies_collect_suspended(mall->user_comm, mall->myId, mall->numP, mall->numC, mall->root, (void *) mall_conf->results, mall_conf->config_file->n_stages);
iker_martin's avatar
iker_martin committed
759
760
    
    if(mall->myId < mall->numC) {
761
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm)); //FIXME Modificar a que se pida pro el usuario el cambio y se llama a comms_update
762
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
763
      mall->dup_user_comm = 1;
764
765
766
767

      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));

768
769
770
      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");

771
772
      MPI_Comm_free(&(mall->intercomm));

773
774
775
      mall_conf->results->spawn_time[mall_conf->grp] += MPI_Wtime() - time_extra;
      if(malleability_spawn_contains_strat(mall_conf->spawn_strategies,MALL_SPAWN_PTHREAD, NULL)) {
          mall_conf->results->spawn_real_time[mall_conf->grp] += MPI_Wtime() - time_extra;
776
      }
777
      return MALL_DIST_COMPLETED;
iker_martin's avatar
iker_martin committed
778
    } else {
779
      return MALL_ZOMBIE;
iker_martin's avatar
iker_martin committed
780
781
782
    }
}

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=================COMM NODE INFO ======================||
//======================================================||
//======================================================||
//TODO Add comment
void comm_node_data(int rootBcast, int is_child_group) {
  MPI_Datatype node_type;

  def_nodeinfo_type(&node_type);
  MPI_Bcast(mall, 1, node_type, rootBcast, mall->intercomm);

  if(is_child_group) {
    mall->nodelist = malloc((mall->nodelist_len+1) * sizeof(char));
    mall->nodelist[mall->nodelist_len] = '\0';
  }
  MPI_Bcast(mall->nodelist, mall->nodelist_len, MPI_CHAR, rootBcast, mall->intercomm);

  MPI_Type_free(&node_type);
}

//TODO Add comment
void def_nodeinfo_type(MPI_Datatype *node_type) {
  int i, counts = 3;
  int blocklengths[3] = {1, 1, 1};
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
  types[0] = types[1] = types[2] = MPI_INT;

  // Rellenar vector displs
  MPI_Get_address(mall, &dir);

  MPI_Get_address(&(mall->num_cpus), &displs[0]);
  MPI_Get_address(&(mall->num_nodes), &displs[1]);
  MPI_Get_address(&(mall->nodelist_len), &displs[2]);

  for(i=0;i<counts;i++) displs[i] -= dir;

  MPI_Type_create_struct(counts, blocklengths, displs, types, node_type);
  MPI_Type_commit(node_type);
}

827
828
829
830
831
832
833
// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

834

835
int comm_state; //FIXME Usar un handler
836
837
838
839
/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
840
  comm_state = MALL_DIST_PENDING;
841
842
843
844
845
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
846
  return comm_state;
847
848
849
850
851
852
853
854
855
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
int thread_check() {
856
  int all_completed = 0, is_intercomm;
857
858

  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
859
  MPI_Allreduce(&comm_state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
860
861
  if(all_completed != MALL_DIST_COMPLETED) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
  //FIXME No se tiene en cuenta el estado MALL_APP_ENDED
862
863
864
865
866
867

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
868
869
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
870
871
872
873
874
875
876
877
878
879
880
881
  return end_redistribution();
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
882
void* thread_async_work() {
883
  send_data(mall->numC, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
884
  comm_state = MALL_DIST_COMPLETED;
885
886
  pthread_exit(NULL);
}
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906


//==============================================================================
/*
 * Muestra por pantalla el estado actual de todos los comunicadores
 */
void print_comms_state() {
  int tester;
  char *test = malloc(MPI_MAX_OBJECT_NAME * sizeof(char));

  MPI_Comm_get_name(mall->comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->comm, test);
  MPI_Comm_get_name(mall->user_comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->user_comm, test);
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_get_name(mall->intercomm, test, &tester);
    printf("P%d Comm=%d Name=%s\n", mall->myId, mall->intercomm, test);
  }
  free(test);
}
907
908
909
910
911
912
913
914
915
916
917
918
919
920

void malleability_comms_update(MPI_Comm comm) {
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

  MPI_Comm_dup(comm, &(mall->thread_comm));
  MPI_Comm_dup(comm, &(mall->comm));
  MPI_Comm_dup(comm, &(mall->user_comm)); 

  MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
  MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
}