malleabilityManager.c 31.9 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
4
#include "malleabilityManager.h"
#include "malleabilityStates.h"
5
#include "malleabilityDataStructures.h"
6
#include "malleabilityTypes.h"
iker_martin's avatar
iker_martin committed
7
#include "malleabilityZombies.h"
8
#include "malleabilityTimes.h"
9
#include "spawn_methods/GenericSpawn.h"
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include "CommDist.h"

#define MALLEABILITY_USE_SYNCHRONOUS 0
#define MALLEABILITY_USE_ASYNCHRONOUS 1


void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

void Children_init();
int spawn_step();
int start_redistribution();
int check_redistribution();
int end_redistribution();
iker_martin's avatar
iker_martin committed
24
int shrink_redistribution();
25

26
27
28
void comm_node_data(int rootBcast, int is_child_group);
void def_nodeinfo_type(MPI_Datatype *node_type);

29
30
int thread_creation();
int thread_check();
31
void* thread_async_work();
32

33
void print_comms_state();
34
void malleability_comms_update(MPI_Comm comm);
35

36
int state = MALL_UNRESERVED; //FIXME Mover a otro lado
37
38
39
40
41
42

malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

43
/*
44
45
46
47
48
49
50
51
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
52
 */
53
int init_malleability(int myId, int numP, int root, MPI_Comm comm, char *name_exec, char *nodelist, int num_cpus, int num_nodes) {
54
55
56
57
  MPI_Comm dup_comm, thread_comm;

  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
58

59
60
61
62
63
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

64
  mall->dup_user_comm = 0;
65
66
  MPI_Comm_dup(comm, &dup_comm);
  MPI_Comm_dup(comm, &thread_comm);
67
68
  MPI_Comm_set_name(dup_comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(thread_comm, "MPI_COMM_MALL_THREAD");
69
70
71
72

  mall->myId = myId;
  mall->numP = numP;
  mall->root = root;
73
  mall->comm = dup_comm;
74
  mall->thread_comm = thread_comm;
75
  mall->user_comm = comm;
76

77
  mall->name_exec = name_exec;
78
79
80
  mall->nodelist = nodelist;
  mall->num_cpus = num_cpus;
  mall->num_nodes = num_nodes;
81
82
83
84
85
86

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

87
  state = MALL_NOT_STARTED;
88

89
  zombies_service_init();
90
  init_malleability_times();
91

92
93
94
95
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
  if(mall->intercomm != MPI_COMM_NULL ) { 
    Children_init();
96
    return MALLEABILITY_CHILDREN;
97
  }
iker_martin's avatar
iker_martin committed
98

99
100
101
102
103
104
105
  if(nodelist != NULL) { //TODO To be deprecated by using Slurm or else statement
    mall->nodelist_len = strlen(nodelist);
  } else { // If no nodelist is detected, get it from the actual run
    mall->nodelist = malloc(MPI_MAX_PROCESSOR_NAME * sizeof(char));
    MPI_Get_processor_name(mall->nodelist, &mall->nodelist_len);
    //TODO Get name of each process and create real nodelist
  }
106

107
  return MALLEABILITY_NOT_CHILDREN;
108
109
}

110
111
112
113
114
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
115
void free_malleability() {	  
116
117
118
119
120
121
122
123
124
125
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);

126
  free_malleability_times();
127
128
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
129
130
  free(mall);
  free(mall_conf);
iker_martin's avatar
iker_martin committed
131
132
133
134

  zombies_awake();
  zombies_service_free();

135
  state = MALL_UNRESERVED;
136
137
}

138
139
/* 
 * TODO Reescribir
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
 * Se realiza el redimensionado de procesos por parte de los padres.
 *
 * Se crean los nuevos procesos con la distribucion fisica elegida y
 * a continuacion se transmite la informacion a los mismos.
 *
 * Si hay datos asincronos a transmitir, primero se comienza a
 * transmitir estos y se termina la funcion. Se tiene que comprobar con
 * llamando a la función de nuevo que se han terminado de enviar
 *
 * Si hay ademas datos sincronos a enviar, no se envian aun.
 *
 * Si solo hay datos sincronos se envian tras la creacion de los procesos
 * y finalmente se desconectan los dos grupos de procesos.
 */
int malleability_checkpoint() {
155
156
157
158
159
160
  double end_real_time;

  switch(state) {
    case MALL_UNRESERVED:
      break;
    case MALL_NOT_STARTED:
161
      reset_malleability_times();
162
      // Comprobar si se tiene que realizar un redimensionado
163
      //MPI_Barrier(mall->comm);
164
      mall_conf->times->malleability_start = MPI_Wtime();
165
      //if(CHECK_RMS()) {return MALL_DENIED;}
166

167
168
169
170
171
172
      state = spawn_step();

      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPT_POSTPONE){
        malleability_checkpoint();
      }
      break;
173

174
175
176
177
    case MALL_SPAWN_PENDING: // Comprueba si el spawn ha terminado y comienza la redistribucion
    case MALL_SPAWN_SINGLE_PENDING:
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPTED) {
178
	//MPI_Barrier(mall->comm);
179
        mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
180

181
182
183
        malleability_checkpoint();
      }
      break;
184

185
186
187
188
189
    case MALL_SPAWN_ADAPT_POSTPONE:
    case MALL_SPAWN_COMPLETED:
      state = start_redistribution();
      malleability_checkpoint();
      break;
190

191
    case MALL_DIST_PENDING:
192
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
193
194
195
196
        state = thread_check();
      } else {
        state = check_redistribution();
      }
197
      if(state != MALL_DIST_PENDING) { 
198
199
200
201
202
        malleability_checkpoint();
      }
      break;

    case MALL_SPAWN_ADAPT_PENDING:
203
      //MPI_Barrier(mall->comm);
204
      mall_conf->times->spawn_start = MPI_Wtime();
205
206
      unset_spawn_postpone_flag(state);
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
207

208
      if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
209
        //MPI_Barrier(mall->comm);
210
        mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
211
	malleability_checkpoint();
212
      }
213
      break;
214

215
    case MALL_SPAWN_ADAPTED:
216
      state = shrink_redistribution();
217
      malleability_checkpoint();
218
      break;
219

220
    case MALL_DIST_COMPLETED: //TODO No es esto muy feo?
221
      //MPI_Barrier(mall->comm);
222
      mall_conf->times->malleability_end = MPI_Wtime();
223
224
225
      state = MALL_COMPLETED;
      break;
  }
226
227
228
229
230
231
232
233
234
235
236
237
238
  return state;
}

// Funciones solo necesarias por el benchmark
//-------------------------------------------------------------------------------------------------------------
void set_benchmark_grp(int grp) {
  mall_conf->grp = grp;
}

void set_benchmark_configuration(configuration *config_file) {
  mall_conf->config_file = config_file;
}

239
void get_benchmark_configuration(configuration **config_file) {
240
241
242
  *config_file = mall_conf->config_file;
}

243
244
void malleability_retrieve_times(double *sp_time, double *sy_time, double *asy_time, double *mall_time) {
  malleability_I_retrieve_times(sp_time, sy_time, asy_time, mall_time);
245
246
247
}
//-------------------------------------------------------------------------------------------------------------

248
void set_malleability_configuration(int spawn_method, int spawn_strategies, int spawn_dist, int red_method, int red_strategies) {
249
250
  mall_conf->spawn_method = spawn_method;
  mall_conf->spawn_strategies = spawn_strategies;
251
  mall_conf->spawn_dist = spawn_dist;
252
253
254
255
256
257
258
  mall_conf->red_method = red_method;
  mall_conf->red_strategies = red_strategies;

  if(!malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL) && 
	(mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL)) {
    malleability_red_add_strat(&(mall_conf->red_strategies), MALL_RED_IBARRIER);
  }
259
260
261
262
}

/*
 * To be deprecated
263
 * Tiene que ser llamado despues de setear la config
264
265
 */
void set_children_number(int numC){
266
  if((mall_conf->spawn_method == MALL_SPAWN_MERGE) && (numC >= mall->numP)) {
267
268
269
270
271
    mall->numC = numC;
    mall->numC_spawned = numC - mall->numP;

    if(numC == mall->numP) { // Migrar
      mall->numC_spawned = numC;
272
      mall_conf->spawn_method = MALL_SPAWN_BASELINE;
273
274
275
276
277
278
279
280
281
282
283
    }
  } else {
    mall->numC = numC;
    mall->numC_spawned = numC;
  }
}

/*
 * TODO
 */
void get_malleability_user_comm(MPI_Comm *comm) {
284
285
286
287
288
289
  if(mall->dup_user_comm) {
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm));
    MPI_Comm_dup(mall->comm, &(mall->user_comm));
    MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
    mall->dup_user_comm = 0;
  }
290
  *comm = mall->user_comm;
291
292
293
294
295
296
297
298
299
}

/*
 * Anyade a la estructura concreta de datos elegida
 * el nuevo set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que anyadir cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "add_data".
300
301
 *
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
302
 */
303
void malleability_add_data(void *data, size_t total_qty, int type, int is_replicated, int is_constant) {
304
  size_t total_reqs = 0;
305
306
307

  if(is_constant) {
    if(is_replicated) {
308
      add_data(data, total_qty, type, total_reqs, rep_s_data);
309
    } else {
310
      add_data(data, total_qty, type, total_reqs, dist_s_data);
311
312
313
    }
  } else {
    if(is_replicated) {
314
      add_data(data, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
315
    } else {
316
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
317
        total_reqs = 1;
318
      } else if(mall_conf->red_method  == MALL_RED_POINT || mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL) {
319
        total_reqs = mall->numC;
320
      }
321
322
323
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
        total_reqs++;
      }
324
325
326
327
328
329
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
    }
  }
}

330
331
332
333
334
335
336
/*
 * Modifica en la estructura concreta de datos elegida en el indice "index"
 * con el set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que modificar cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "modify_data".
337
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
338
339
 */
void malleability_modify_data(void *data, size_t index, size_t total_qty, int type, int is_replicated, int is_constant) {
340
341
  size_t total_reqs = 0;

342
343
  if(is_constant) {
    if(is_replicated) {
344
      modify_data(data, index, total_qty, type, total_reqs, rep_s_data);
345
    } else {
346
      modify_data(data, index, total_qty, type, total_reqs, dist_s_data);
347
348
349
    }
  } else {
    if(is_replicated) {
350
351
352
      modify_data(data, index, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
    } else {    
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
353
        total_reqs = 1;
354
      } else if(mall_conf->red_method  == MALL_RED_POINT || mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL) {
355
356
        total_reqs = mall->numC;
      }
357
358
359
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
        total_reqs++;
      }
360
      
361
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data);
362
363
364
365
    }
  }
}

366
367
368
/*
 * Devuelve el numero de entradas para la estructura de descripcion de 
 * datos elegida.
369
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
370
 */
371
void malleability_get_entries(size_t *entries, int is_replicated, int is_constant){
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
  
  if(is_constant) {
    if(is_replicated) {
      *entries = rep_s_data->entries;
    } else {
      *entries = dist_s_data->entries;
    }
  } else {
    if(is_replicated) {
      *entries = rep_a_data->entries;
    } else {
      *entries = dist_a_data->entries;
    }
  }
}

/*
 * Devuelve el elemento de la lista "index" al usuario.
 * La devolución es en el mismo orden que lo han metido los padres
 * con la funcion "malleability_add_data()".
 * Es tarea del usuario saber el tipo de esos datos.
 * TODO Refactor a que sea automatico
394
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
395
 */
396
void malleability_get_data(void **data, size_t index, int is_replicated, int is_constant) {
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
      data_struct = rep_s_data;
    } else {
      data_struct = dist_s_data;
    }
  } else {
    if(is_replicated) {
      data_struct = rep_a_data;
    } else {
      data_struct = dist_a_data;
    }
  }

413
  *data = data_struct->arrays[index];
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
}


//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||

/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
429
  size_t i;
430
  char *aux_send, *aux_recv;
431
432
433

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
434
435
436
437
438
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
      async_communication_start(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, 
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
439
440
441
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
442
443
444
445
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
      sync_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall->intercomm);
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
446
447
448
449
450
451
452
453
454
455
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
456
  size_t i;
457
  char *aux, aux_s;
458
459
460
461

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
462
463
      async_communication_start(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, 
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
464
465
466
467
468
      data_struct->arrays[i] = (void *) aux;
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
469
      sync_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall->intercomm);
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
      data_struct->arrays[i] = (void *) aux;
    }
  }
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||
/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
void Children_init() {
487
488
  size_t i;
  int numP_parents, root_parents;
489
  int is_intercomm;
490

491
492
  malleability_connect_children(mall->myId, mall->numP, mall->root, mall->comm, &numP_parents, &root_parents, &(mall->intercomm));
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
493
494
495
496
  if(!is_intercomm) { // For intracommunicators, these processes will be added
    MPI_Comm_rank(mall->intercomm, &(mall->myId));
    MPI_Comm_size(mall->intercomm, &(mall->numP));
  }
497

498
  recv_config_file(mall->root, mall->intercomm, &(mall_conf->config_file));
499
  comm_node_data(root_parents, MALLEABILITY_CHILDREN);
500
501
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, root_parents, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, root_parents, mall->intercomm);
502

503
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
504
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos
505
    //MPI_Barrier(mall->intercomm);
506

507
508
509
510
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
    } else {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS); 
511

512
513
514
515
516
517
      for(i=0; i<dist_a_data->entries; i++) {
        async_communication_wait(mall_conf->red_strategies, mall->intercomm, dist_a_data->requests[i], dist_a_data->request_qty[i]);
      }
      for(i=0; i<dist_a_data->entries; i++) {
        async_communication_end(mall_conf->red_method, mall_conf->red_strategies, dist_a_data->requests[i], dist_a_data->request_qty[i], &(dist_a_data->windows[i]));
      }
518
    }
519

520
    //MPI_Barrier(mall->intercomm);
521
    mall_conf->times->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
522
  }
523

524
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
525
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
526
    //MPI_Barrier(mall->intercomm);
527
    recv_data(numP_parents, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
528
529
530
531

    // TODO Crear funcion especifica y anyadir para Asinc
    // TODO Tener en cuenta el tipo y qty
    for(i=0; i<rep_s_data->entries; i++) {
532
533
534
535
536
537
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
538
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, root_parents, mall->intercomm);
539
    } 
540
    //MPI_Barrier(mall->intercomm);
541
    mall_conf->times->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona
542
543
  }

544
  // Guardar los resultados de esta transmision
545
  malleability_times_broadcast(mall->root);
546
  if(!is_intercomm) {
547
    malleability_comms_update(mall->intercomm);
548
  }
549

550
  //MPI_Barrier(mall->comm);
551
  mall_conf->times->malleability_end = MPI_Wtime(); // Obtener timestamp de cuando termina maleabilidad
552
  MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
553
554
555
556
557
558
559
560
561
562
563
564
565
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
566
  //MPI_Barrier(mall->comm);
567
  mall_conf->times->spawn_start = MPI_Wtime();
568
 
569
  state = init_spawn(mall->name_exec, mall->num_cpus, mall->num_nodes, mall->nodelist, mall->myId, mall->numP, mall->numC, mall->root, mall_conf->spawn_dist, mall_conf->spawn_method, mall_conf->spawn_strategies, mall->thread_comm, &(mall->intercomm));
570

571
  if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
572
      //MPI_Barrier(mall->comm);
573
      mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
574
575
576
577
  }
  return state;
}

578

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
594
595
596
597
598
599
600
601
  int rootBcast, is_intercomm;

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
602
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
603
  }
604

605
606
607
608
609
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
610

611
  send_config_file(mall_conf->config_file, rootBcast, mall->intercomm);
612
  comm_node_data(rootBcast, MALLEABILITY_NOT_CHILDREN);
613
614
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, rootBcast, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, rootBcast, mall->intercomm);
615

616
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
617
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
618
    //FIXME No se envian los datos replicados (rep_a_data)
619
    //MPI_Barrier(mall->intercomm);
620
    mall_conf->times->async_start = MPI_Wtime();
621
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
622
623
624
      return thread_creation();
    } else {
      send_data(mall->numC, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
625
      return MALL_DIST_PENDING; 
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
    }
  } 
  return end_redistribution();
}


/*
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
644
 * //FIXME Modificar para que se tenga en cuenta rep_a_data
645
646
 */
int check_redistribution() {
647
648
  int is_intercomm, completed, local_completed, all_completed;
  size_t i, req_qty;
649
  MPI_Request *req_completed;
650
651
652
653
654
655
656
657
  MPI_Win window;
  local_completed = 1;

  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    completed = async_communication_check(mall->myId, MALLEABILITY_NOT_CHILDREN, mall_conf->red_strategies, mall->intercomm, req_completed, req_qty);
    local_completed = local_completed && completed;
658
659
  }

660
  MPI_Allreduce(&local_completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
661
  if(!all_completed) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
662

663
664
665
666
667
  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    window = dist_a_data->windows[i];
    async_communication_end(mall_conf->red_method, mall_conf->red_strategies, req_completed, req_qty, &window);
668
  }
669
670

  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
671
  //MPI_Barrier(mall->intercomm);
672
  if(!is_intercomm) mall_conf->times->async_end = MPI_Wtime(); // Merge method only
673
674
675
676
677
678
679
680
681
682
683
684
685
  return end_redistribution();
}


/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
686
687
  size_t i;
  int is_intercomm, rootBcast, local_state;
688

689
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
690
691
692
693
694
695
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
  
696
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
697
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
698
    //MPI_Barrier(mall->intercomm);
699
    mall_conf->times->sync_start = MPI_Wtime();
700
701
702
    send_data(mall->numC, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);

    // TODO Crear funcion especifica y anyadir para Asinc
703
    // TODO Tener en cuenta el tipo
704
    for(i=0; i<rep_s_data->entries; i++) {
705
706
707
708
709
710
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
711
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, rootBcast, mall->intercomm);
712
    } 
713
    //MPI_Barrier(mall->intercomm);
714
    if(!is_intercomm) mall_conf->times->sync_end = MPI_Wtime(); // Merge method only
715
  }
iker_martin's avatar
iker_martin committed
716

717
  malleability_times_broadcast(rootBcast);
iker_martin's avatar
iker_martin committed
718

719
720
721
  local_state = MALL_DIST_COMPLETED;
  if(!is_intercomm) { // Merge Spawn
    if(mall->numP < mall->numC) { // Expand
722
      malleability_comms_update(mall->intercomm);
723
724
725
726
    } else { // Shrink || Merge Shrink requiere de mas tareas
      local_state = MALL_SPAWN_ADAPT_PENDING;
    }
  }
727

728
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) {
729
    MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
730
  }
731

732
  return local_state;
733
734
}

735
736
737
738

///=============================================
///=============================================
///=============================================
739
//TODO Add comment
iker_martin's avatar
iker_martin committed
740
int shrink_redistribution() {
741
    //MPI_Barrier(mall->comm);
742
    double time_extra = MPI_Wtime();
743

744
745
746
    //TODO Create Commit function. Processes can perform tasks before that. Then call again Malleability to commit the change
    MPI_Abort(MPI_COMM_WORLD, -20); //                                                         (void *) mall_conf->results
    zombies_collect_suspended(mall->user_comm, mall->myId, mall->numP, mall->numC, mall->root, NULL, mall_conf->config_file->n_stages, mall_conf->config_file->capture_method);
iker_martin's avatar
iker_martin committed
747
748
    
    if(mall->myId < mall->numC) {
749
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm)); //FIXME Modificar a que se pida pro el usuario el cambio y se llama a comms_update
750
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
751
      mall->dup_user_comm = 1;
752
753
754
755

      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));

756
757
758
      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");

759
760
      MPI_Comm_free(&(mall->intercomm));

761
      //MPI_Barrier(mall->comm);
762
      mall_conf->times->spawn_time += MPI_Wtime() - time_extra;
763
      return MALL_DIST_COMPLETED;
iker_martin's avatar
iker_martin committed
764
    } else {
765
      return MALL_ZOMBIE;
iker_martin's avatar
iker_martin committed
766
767
768
    }
}

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=================COMM NODE INFO ======================||
//======================================================||
//======================================================||
//TODO Add comment
void comm_node_data(int rootBcast, int is_child_group) {
  MPI_Datatype node_type;

  def_nodeinfo_type(&node_type);
  MPI_Bcast(mall, 1, node_type, rootBcast, mall->intercomm);

  if(is_child_group) {
    mall->nodelist = malloc((mall->nodelist_len+1) * sizeof(char));
    mall->nodelist[mall->nodelist_len] = '\0';
  }
  MPI_Bcast(mall->nodelist, mall->nodelist_len, MPI_CHAR, rootBcast, mall->intercomm);

  MPI_Type_free(&node_type);
}

//TODO Add comment
void def_nodeinfo_type(MPI_Datatype *node_type) {
  int i, counts = 3;
  int blocklengths[3] = {1, 1, 1};
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
  types[0] = types[1] = types[2] = MPI_INT;

  // Rellenar vector displs
  MPI_Get_address(mall, &dir);

  MPI_Get_address(&(mall->num_cpus), &displs[0]);
  MPI_Get_address(&(mall->num_nodes), &displs[1]);
  MPI_Get_address(&(mall->nodelist_len), &displs[2]);

  for(i=0;i<counts;i++) displs[i] -= dir;

  MPI_Type_create_struct(counts, blocklengths, displs, types, node_type);
  MPI_Type_commit(node_type);
}

813
814
815
816
817
818
819
// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

820
821

int comm_state; //FIXME Usar un handler
822
823
824
825
/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
826
  comm_state = MALL_DIST_PENDING;
827
828
829
830
831
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
832
  return comm_state;
833
834
835
836
837
838
839
840
841
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
int thread_check() {
842
  int all_completed = 0, is_intercomm;
843
844

  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
845
  MPI_Allreduce(&comm_state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
846
847
  if(all_completed != MALL_DIST_COMPLETED) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
  //FIXME No se tiene en cuenta el estado MALL_APP_ENDED
848
849
850
851
852
853

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
854
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
855
  //MPI_Barrier(mall->intercomm);
856
  if(!is_intercomm) mall_conf->times->async_end = MPI_Wtime(); // Merge method only
857
858
859
860
861
862
863
864
865
866
867
868
  return end_redistribution();
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
869
void* thread_async_work() {
870
  send_data(mall->numC, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
871
  comm_state = MALL_DIST_COMPLETED;
872
873
  pthread_exit(NULL);
}
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893


//==============================================================================
/*
 * Muestra por pantalla el estado actual de todos los comunicadores
 */
void print_comms_state() {
  int tester;
  char *test = malloc(MPI_MAX_OBJECT_NAME * sizeof(char));

  MPI_Comm_get_name(mall->comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->comm, test);
  MPI_Comm_get_name(mall->user_comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->user_comm, test);
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_get_name(mall->intercomm, test, &tester);
    printf("P%d Comm=%d Name=%s\n", mall->myId, mall->intercomm, test);
  }
  free(test);
}
894
895
896
897
898
899
900
901
902
903
904
905
906
907

void malleability_comms_update(MPI_Comm comm) {
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

  MPI_Comm_dup(comm, &(mall->thread_comm));
  MPI_Comm_dup(comm, &(mall->comm));
  MPI_Comm_dup(comm, &(mall->user_comm)); 

  MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
  MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
}