malleabilityManager.c 32.7 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
4
#include "malleabilityManager.h"
#include "malleabilityStates.h"
5
#include "malleabilityDataStructures.h"
6
#include "malleabilityTypes.h"
iker_martin's avatar
iker_martin committed
7
#include "malleabilityZombies.h"
8
#include "malleabilityTimes.h"
9
#include "spawn_methods/GenericSpawn.h"
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include "CommDist.h"

#define MALLEABILITY_USE_SYNCHRONOUS 0
#define MALLEABILITY_USE_ASYNCHRONOUS 1


void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

void Children_init();
int spawn_step();
int start_redistribution();
int check_redistribution();
int end_redistribution();
iker_martin's avatar
iker_martin committed
24
int shrink_redistribution();
25

26
27
28
void comm_node_data(int rootBcast, int is_child_group);
void def_nodeinfo_type(MPI_Datatype *node_type);

29
30
int thread_creation();
int thread_check();
31
void* thread_async_work();
32

33
void print_comms_state();
34
void malleability_comms_update(MPI_Comm comm);
35

36
int state = MALL_UNRESERVED; //FIXME Mover a otro lado
37
38
39
40
41
42

malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

43
/*
44
45
46
47
48
49
50
51
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
52
 */
53
int init_malleability(int myId, int numP, int root, MPI_Comm comm, char *name_exec, char *nodelist, int num_cpus, int num_nodes) {
54
55
56
57
  MPI_Comm dup_comm, thread_comm;

  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
58

59
60
61
62
63
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

64
  mall->dup_user_comm = 0;
65
66
  MPI_Comm_dup(comm, &dup_comm);
  MPI_Comm_dup(comm, &thread_comm);
67
68
  MPI_Comm_set_name(dup_comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(thread_comm, "MPI_COMM_MALL_THREAD");
69
70
71
72

  mall->myId = myId;
  mall->numP = numP;
  mall->root = root;
73
  mall->comm = dup_comm;
74
  mall->thread_comm = thread_comm;
75
  mall->user_comm = comm;
76

77
  mall->name_exec = name_exec;
78
79
80
  mall->nodelist = nodelist;
  mall->num_cpus = num_cpus;
  mall->num_nodes = num_nodes;
81
82
83
84
85
86

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

87
  state = MALL_NOT_STARTED;
88

89
  zombies_service_init();
90
  init_malleability_times();
91

92
93
94
95
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
  if(mall->intercomm != MPI_COMM_NULL ) { 
    Children_init();
96
    return MALLEABILITY_CHILDREN;
97
  }
iker_martin's avatar
iker_martin committed
98

99
100
101
102
103
  #if USE_MAL_BARRIERS && USE_MAL_DEBUG
    if(mall->myId == mall->root)
      printf("MaM: Using barriers to record times.\n");
  #endif

104
105
106
107
108
109
110
  if(nodelist != NULL) { //TODO To be deprecated by using Slurm or else statement
    mall->nodelist_len = strlen(nodelist);
  } else { // If no nodelist is detected, get it from the actual run
    mall->nodelist = malloc(MPI_MAX_PROCESSOR_NAME * sizeof(char));
    MPI_Get_processor_name(mall->nodelist, &mall->nodelist_len);
    //TODO Get name of each process and create real nodelist
  }
111

112
  return MALLEABILITY_NOT_CHILDREN;
113
114
}

115
116
117
118
119
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
120
void free_malleability() {	  
121
122
123
124
125
126
127
128
129
130
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);

131
  free_malleability_times();
132
133
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
134
135
  free(mall);
  free(mall_conf);
iker_martin's avatar
iker_martin committed
136
137
138
139

  zombies_awake();
  zombies_service_free();

140
  state = MALL_UNRESERVED;
141
142
}

143
144
/* 
 * TODO Reescribir
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
 * Se realiza el redimensionado de procesos por parte de los padres.
 *
 * Se crean los nuevos procesos con la distribucion fisica elegida y
 * a continuacion se transmite la informacion a los mismos.
 *
 * Si hay datos asincronos a transmitir, primero se comienza a
 * transmitir estos y se termina la funcion. Se tiene que comprobar con
 * llamando a la función de nuevo que se han terminado de enviar
 *
 * Si hay ademas datos sincronos a enviar, no se envian aun.
 *
 * Si solo hay datos sincronos se envian tras la creacion de los procesos
 * y finalmente se desconectan los dos grupos de procesos.
 */
int malleability_checkpoint() {
160
161
162
163
164
165
  double end_real_time;

  switch(state) {
    case MALL_UNRESERVED:
      break;
    case MALL_NOT_STARTED:
166
      reset_malleability_times();
167
      // Comprobar si se tiene que realizar un redimensionado
168
169
170
171
      
      #if USE_MAL_BARRIERS
        MPI_Barrier(mall->comm);
      #endif
172
      mall_conf->times->malleability_start = MPI_Wtime();
173
      //if(CHECK_RMS()) {return MALL_DENIED;}
174

175
176
177
178
179
180
      state = spawn_step();

      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPT_POSTPONE){
        malleability_checkpoint();
      }
      break;
181

182
183
184
185
    case MALL_SPAWN_PENDING: // Comprueba si el spawn ha terminado y comienza la redistribucion
    case MALL_SPAWN_SINGLE_PENDING:
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPTED) {
186
187
188
        #if USE_MAL_BARRIERS
  	  MPI_Barrier(mall->comm);
	#endif
189
        mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
190

191
192
193
        malleability_checkpoint();
      }
      break;
194

195
196
197
198
199
    case MALL_SPAWN_ADAPT_POSTPONE:
    case MALL_SPAWN_COMPLETED:
      state = start_redistribution();
      malleability_checkpoint();
      break;
200

201
    case MALL_DIST_PENDING:
202
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
203
204
205
206
        state = thread_check();
      } else {
        state = check_redistribution();
      }
207
      if(state != MALL_DIST_PENDING) { 
208
209
210
211
212
        malleability_checkpoint();
      }
      break;

    case MALL_SPAWN_ADAPT_PENDING:
213
214
215
216

      #if USE_MAL_BARRIERS
        MPI_Barrier(mall->comm);
      #endif
217
      mall_conf->times->spawn_start = MPI_Wtime();
218
219
      unset_spawn_postpone_flag(state);
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
220

221
      if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
222
223
224
        #if USE_MAL_BARRIERS
          MPI_Barrier(mall->comm);
	#endif
225
        mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
226
	malleability_checkpoint();
227
      }
228
      break;
229

230
    case MALL_SPAWN_ADAPTED:
231
      state = shrink_redistribution();
232
      malleability_checkpoint();
233
      break;
234

235
    case MALL_DIST_COMPLETED: //TODO No es esto muy feo?
236
237
238
      #if USE_MAL_BARRIERS
        MPI_Barrier(mall->comm);
      #endif
239
      mall_conf->times->malleability_end = MPI_Wtime();
240
241
242
      state = MALL_COMPLETED;
      break;
  }
243
244
245
246
247
248
249
250
251
252
253
254
255
  return state;
}

// Funciones solo necesarias por el benchmark
//-------------------------------------------------------------------------------------------------------------
void set_benchmark_grp(int grp) {
  mall_conf->grp = grp;
}

void set_benchmark_configuration(configuration *config_file) {
  mall_conf->config_file = config_file;
}

256
void get_benchmark_configuration(configuration **config_file) {
257
258
259
  *config_file = mall_conf->config_file;
}

260
261
void malleability_retrieve_times(double *sp_time, double *sy_time, double *asy_time, double *mall_time) {
  malleability_I_retrieve_times(sp_time, sy_time, asy_time, mall_time);
262
263
264
}
//-------------------------------------------------------------------------------------------------------------

265
void set_malleability_configuration(int spawn_method, int spawn_strategies, int spawn_dist, int red_method, int red_strategies) {
266
267
  mall_conf->spawn_method = spawn_method;
  mall_conf->spawn_strategies = spawn_strategies;
268
  mall_conf->spawn_dist = spawn_dist;
269
270
271
272
273
274
275
  mall_conf->red_method = red_method;
  mall_conf->red_strategies = red_strategies;

  if(!malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL) && 
	(mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL)) {
    malleability_red_add_strat(&(mall_conf->red_strategies), MALL_RED_IBARRIER);
  }
276
277
278
279
}

/*
 * To be deprecated
280
 * Tiene que ser llamado despues de setear la config
281
282
 */
void set_children_number(int numC){
283
  if((mall_conf->spawn_method == MALL_SPAWN_MERGE) && (numC >= mall->numP)) {
284
285
286
287
288
    mall->numC = numC;
    mall->numC_spawned = numC - mall->numP;

    if(numC == mall->numP) { // Migrar
      mall->numC_spawned = numC;
289
      mall_conf->spawn_method = MALL_SPAWN_BASELINE;
290
291
292
293
294
295
296
297
298
299
300
    }
  } else {
    mall->numC = numC;
    mall->numC_spawned = numC;
  }
}

/*
 * TODO
 */
void get_malleability_user_comm(MPI_Comm *comm) {
301
302
303
304
305
306
  if(mall->dup_user_comm) {
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm));
    MPI_Comm_dup(mall->comm, &(mall->user_comm));
    MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
    mall->dup_user_comm = 0;
  }
307
  *comm = mall->user_comm;
308
309
310
311
312
313
314
315
316
}

/*
 * Anyade a la estructura concreta de datos elegida
 * el nuevo set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que anyadir cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "add_data".
317
318
 *
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
319
 */
320
void malleability_add_data(void *data, size_t total_qty, int type, int is_replicated, int is_constant) {
321
  size_t total_reqs = 0;
322
323
324

  if(is_constant) {
    if(is_replicated) {
325
      add_data(data, total_qty, type, total_reqs, rep_s_data);
326
    } else {
327
      add_data(data, total_qty, type, total_reqs, dist_s_data);
328
329
330
    }
  } else {
    if(is_replicated) {
331
      add_data(data, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
332
    } else {
333
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
334
        total_reqs = 1;
335
      } else if(mall_conf->red_method  == MALL_RED_POINT || mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL) {
336
        total_reqs = mall->numC;
337
      }
338
339
340
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
        total_reqs++;
      }
341
342
343
344
345
346
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
    }
  }
}

347
348
349
350
351
352
353
/*
 * Modifica en la estructura concreta de datos elegida en el indice "index"
 * con el set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que modificar cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "modify_data".
354
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
355
356
 */
void malleability_modify_data(void *data, size_t index, size_t total_qty, int type, int is_replicated, int is_constant) {
357
358
  size_t total_reqs = 0;

359
360
  if(is_constant) {
    if(is_replicated) {
361
      modify_data(data, index, total_qty, type, total_reqs, rep_s_data);
362
    } else {
363
      modify_data(data, index, total_qty, type, total_reqs, dist_s_data);
364
365
366
    }
  } else {
    if(is_replicated) {
367
368
369
      modify_data(data, index, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
    } else {    
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
370
        total_reqs = 1;
371
      } else if(mall_conf->red_method  == MALL_RED_POINT || mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL) {
372
373
        total_reqs = mall->numC;
      }
374
375
376
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
        total_reqs++;
      }
377
      
378
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data);
379
380
381
382
    }
  }
}

383
384
385
/*
 * Devuelve el numero de entradas para la estructura de descripcion de 
 * datos elegida.
386
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
387
 */
388
void malleability_get_entries(size_t *entries, int is_replicated, int is_constant){
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
  
  if(is_constant) {
    if(is_replicated) {
      *entries = rep_s_data->entries;
    } else {
      *entries = dist_s_data->entries;
    }
  } else {
    if(is_replicated) {
      *entries = rep_a_data->entries;
    } else {
      *entries = dist_a_data->entries;
    }
  }
}

/*
 * Devuelve el elemento de la lista "index" al usuario.
 * La devolución es en el mismo orden que lo han metido los padres
 * con la funcion "malleability_add_data()".
 * Es tarea del usuario saber el tipo de esos datos.
 * TODO Refactor a que sea automatico
411
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
412
 */
413
void malleability_get_data(void **data, size_t index, int is_replicated, int is_constant) {
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
      data_struct = rep_s_data;
    } else {
      data_struct = dist_s_data;
    }
  } else {
    if(is_replicated) {
      data_struct = rep_a_data;
    } else {
      data_struct = dist_a_data;
    }
  }

430
  *data = data_struct->arrays[index];
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
}


//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||

/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
446
  size_t i;
447
  char *aux_send, *aux_recv;
448
449
450

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
451
452
453
454
455
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
      async_communication_start(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, 
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
456
457
458
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
459
460
461
462
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
      sync_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall->intercomm);
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
463
464
465
466
467
468
469
470
471
472
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
473
  size_t i;
474
  char *aux, aux_s;
475
476
477
478

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
479
480
      async_communication_start(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, 
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
481
482
483
484
485
      data_struct->arrays[i] = (void *) aux;
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
486
      sync_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall->intercomm);
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
      data_struct->arrays[i] = (void *) aux;
    }
  }
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||
/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
void Children_init() {
504
505
  size_t i;
  int numP_parents, root_parents;
506
  int is_intercomm;
507

508
509
  malleability_connect_children(mall->myId, mall->numP, mall->root, mall->comm, &numP_parents, &root_parents, &(mall->intercomm));
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
510
511
512
513
  if(!is_intercomm) { // For intracommunicators, these processes will be added
    MPI_Comm_rank(mall->intercomm, &(mall->myId));
    MPI_Comm_size(mall->intercomm, &(mall->numP));
  }
514

515
  recv_config_file(mall->root, mall->intercomm, &(mall_conf->config_file));
516
  comm_node_data(root_parents, MALLEABILITY_CHILDREN);
517
518
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, root_parents, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, root_parents, mall->intercomm);
519

520
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
521
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos
522
523
524
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
525

526
527
528
529
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
    } else {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS); 
530

531
532
533
534
535
536
      for(i=0; i<dist_a_data->entries; i++) {
        async_communication_wait(mall_conf->red_strategies, mall->intercomm, dist_a_data->requests[i], dist_a_data->request_qty[i]);
      }
      for(i=0; i<dist_a_data->entries; i++) {
        async_communication_end(mall_conf->red_method, mall_conf->red_strategies, dist_a_data->requests[i], dist_a_data->request_qty[i], &(dist_a_data->windows[i]));
      }
537
    }
538

539
540
541
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
542
    mall_conf->times->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
543
  }
544

545
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
546
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
547
548
549
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
550
    recv_data(numP_parents, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
551
552
553
554

    // TODO Crear funcion especifica y anyadir para Asinc
    // TODO Tener en cuenta el tipo y qty
    for(i=0; i<rep_s_data->entries; i++) {
555
556
557
558
559
560
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
561
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, root_parents, mall->intercomm);
562
    } 
563
564
565
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
566
    mall_conf->times->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona
567
568
  }

569
  // Guardar los resultados de esta transmision
570
  malleability_times_broadcast(mall->root);
571
  if(!is_intercomm) {
572
    malleability_comms_update(mall->intercomm);
573
  }
574

575
576
577
  #if USE_MAL_BARRIERS
    MPI_Barrier(mall->comm);
  #endif
578
  mall_conf->times->malleability_end = MPI_Wtime(); // Obtener timestamp de cuando termina maleabilidad
579
  MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
580
581
582
583
584
585
586
587
588
589
590
591
592
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
593
594
595
  #if USE_MAL_BARRIERS
    MPI_Barrier(mall->comm);
  #endif
596
  mall_conf->times->spawn_start = MPI_Wtime();
597
 
598
  state = init_spawn(mall->name_exec, mall->num_cpus, mall->num_nodes, mall->nodelist, mall->myId, mall->numP, mall->numC, mall->root, mall_conf->spawn_dist, mall_conf->spawn_method, mall_conf->spawn_strategies, mall->thread_comm, &(mall->intercomm));
599

600
  if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
601
602
603
      #if USE_MAL_BARRIERS
        MPI_Barrier(mall->comm);
      #endif
604
      mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
605
606
607
608
  }
  return state;
}

609

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
625
626
627
628
629
630
631
632
  int rootBcast, is_intercomm;

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
633
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
634
  }
635

636
637
638
639
640
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
641

642
  send_config_file(mall_conf->config_file, rootBcast, mall->intercomm);
643
  comm_node_data(rootBcast, MALLEABILITY_NOT_CHILDREN);
644
645
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, rootBcast, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, rootBcast, mall->intercomm);
646

647
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
648
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
649
    //FIXME No se envian los datos replicados (rep_a_data)
650
651
652
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
653
    mall_conf->times->async_start = MPI_Wtime();
654
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
655
656
657
      return thread_creation();
    } else {
      send_data(mall->numC, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
658
      return MALL_DIST_PENDING; 
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    }
  } 
  return end_redistribution();
}


/*
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
677
 * //FIXME Modificar para que se tenga en cuenta rep_a_data
678
679
 */
int check_redistribution() {
680
681
  int is_intercomm, completed, local_completed, all_completed;
  size_t i, req_qty;
682
  MPI_Request *req_completed;
683
684
685
686
687
688
689
690
  MPI_Win window;
  local_completed = 1;

  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    completed = async_communication_check(mall->myId, MALLEABILITY_NOT_CHILDREN, mall_conf->red_strategies, mall->intercomm, req_completed, req_qty);
    local_completed = local_completed && completed;
691
692
  }

693
  MPI_Allreduce(&local_completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
694
  if(!all_completed) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
695

696
697
698
699
700
  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    window = dist_a_data->windows[i];
    async_communication_end(mall_conf->red_method, mall_conf->red_strategies, req_completed, req_qty, &window);
701
  }
702
703

  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
704
705
706
  #if USE_MAL_BARRIERS
    MPI_Barrier(mall->intercomm);
  #endif
707
  if(!is_intercomm) mall_conf->times->async_end = MPI_Wtime(); // Merge method only
708
709
710
711
712
713
714
715
716
717
718
719
720
  return end_redistribution();
}


/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
721
722
  size_t i;
  int is_intercomm, rootBcast, local_state;
723

724
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
725
726
727
728
729
730
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
  
731
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
732
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
733
734
735
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
736
    mall_conf->times->sync_start = MPI_Wtime();
737
738
739
    send_data(mall->numC, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);

    // TODO Crear funcion especifica y anyadir para Asinc
740
    // TODO Tener en cuenta el tipo
741
    for(i=0; i<rep_s_data->entries; i++) {
742
743
744
745
746
747
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
748
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, rootBcast, mall->intercomm);
749
    } 
750
751
752
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
753
    if(!is_intercomm) mall_conf->times->sync_end = MPI_Wtime(); // Merge method only
754
  }
iker_martin's avatar
iker_martin committed
755

756
  malleability_times_broadcast(rootBcast);
iker_martin's avatar
iker_martin committed
757

758
759
760
  local_state = MALL_DIST_COMPLETED;
  if(!is_intercomm) { // Merge Spawn
    if(mall->numP < mall->numC) { // Expand
761
      malleability_comms_update(mall->intercomm);
762
763
764
765
    } else { // Shrink || Merge Shrink requiere de mas tareas
      local_state = MALL_SPAWN_ADAPT_PENDING;
    }
  }
766

767
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) {
768
    MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
769
  }
770

771
  return local_state;
772
773
}

774
775
776
777

///=============================================
///=============================================
///=============================================
778
//TODO Add comment
iker_martin's avatar
iker_martin committed
779
int shrink_redistribution() {
780
781
782
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->comm);
    #endif
783
    double time_extra = MPI_Wtime();
784

785
786
787
    //TODO Create Commit function. Processes can perform tasks before that. Then call again Malleability to commit the change
    MPI_Abort(MPI_COMM_WORLD, -20); //                                                         (void *) mall_conf->results
    zombies_collect_suspended(mall->user_comm, mall->myId, mall->numP, mall->numC, mall->root, NULL, mall_conf->config_file->n_stages, mall_conf->config_file->capture_method);
iker_martin's avatar
iker_martin committed
788
789
    
    if(mall->myId < mall->numC) {
790
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm)); //FIXME Modificar a que se pida pro el usuario el cambio y se llama a comms_update
791
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
792
      mall->dup_user_comm = 1;
793
794
795
796

      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));

797
798
799
      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");

800
801
      MPI_Comm_free(&(mall->intercomm));

802
803
804
805

      #if USE_MAL_BARRIERS
        MPI_Barrier(mall->comm);
      #endif
806
      mall_conf->times->spawn_time += MPI_Wtime() - time_extra;
807
      return MALL_DIST_COMPLETED;
iker_martin's avatar
iker_martin committed
808
    } else {
809
      return MALL_ZOMBIE;
iker_martin's avatar
iker_martin committed
810
811
812
    }
}

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=================COMM NODE INFO ======================||
//======================================================||
//======================================================||
//TODO Add comment
void comm_node_data(int rootBcast, int is_child_group) {
  MPI_Datatype node_type;

  def_nodeinfo_type(&node_type);
  MPI_Bcast(mall, 1, node_type, rootBcast, mall->intercomm);

  if(is_child_group) {
    mall->nodelist = malloc((mall->nodelist_len+1) * sizeof(char));
    mall->nodelist[mall->nodelist_len] = '\0';
  }
  MPI_Bcast(mall->nodelist, mall->nodelist_len, MPI_CHAR, rootBcast, mall->intercomm);

  MPI_Type_free(&node_type);
}

//TODO Add comment
void def_nodeinfo_type(MPI_Datatype *node_type) {
  int i, counts = 3;
  int blocklengths[3] = {1, 1, 1};
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
  types[0] = types[1] = types[2] = MPI_INT;

  // Rellenar vector displs
  MPI_Get_address(mall, &dir);

  MPI_Get_address(&(mall->num_cpus), &displs[0]);
  MPI_Get_address(&(mall->num_nodes), &displs[1]);
  MPI_Get_address(&(mall->nodelist_len), &displs[2]);

  for(i=0;i<counts;i++) displs[i] -= dir;

  MPI_Type_create_struct(counts, blocklengths, displs, types, node_type);
  MPI_Type_commit(node_type);
}

857
858
859
860
861
862
863
// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

864
865

int comm_state; //FIXME Usar un handler
866
867
868
869
/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
870
  comm_state = MALL_DIST_PENDING;
871
872
873
874
875
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
876
  return comm_state;
877
878
879
880
881
882
883
884
885
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
int thread_check() {
886
  int all_completed = 0, is_intercomm;
887
888

  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
889
  MPI_Allreduce(&comm_state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
890
891
  if(all_completed != MALL_DIST_COMPLETED) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
  //FIXME No se tiene en cuenta el estado MALL_APP_ENDED
892
893
894
895
896
897

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
898
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
899
900
901
902

  #if USE_MAL_BARRIERS
    MPI_Barrier(mall->intercomm);
  #endif
903
  if(!is_intercomm) mall_conf->times->async_end = MPI_Wtime(); // Merge method only
904
905
906
907
908
909
910
911
912
913
914
915
  return end_redistribution();
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
916
void* thread_async_work() {
917
  send_data(mall->numC, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
918
  comm_state = MALL_DIST_COMPLETED;
919
920
  pthread_exit(NULL);
}
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940


//==============================================================================
/*
 * Muestra por pantalla el estado actual de todos los comunicadores
 */
void print_comms_state() {
  int tester;
  char *test = malloc(MPI_MAX_OBJECT_NAME * sizeof(char));

  MPI_Comm_get_name(mall->comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->comm, test);
  MPI_Comm_get_name(mall->user_comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->user_comm, test);
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_get_name(mall->intercomm, test, &tester);
    printf("P%d Comm=%d Name=%s\n", mall->myId, mall->intercomm, test);
  }
  free(test);
}
941
942
943
944
945
946
947
948
949
950
951
952
953
954

void malleability_comms_update(MPI_Comm comm) {
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

  MPI_Comm_dup(comm, &(mall->thread_comm));
  MPI_Comm_dup(comm, &(mall->comm));
  MPI_Comm_dup(comm, &(mall->user_comm)); 

  MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
  MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
}