malleabilityManager.c 32 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
4
#include "malleabilityManager.h"
#include "malleabilityStates.h"
5
#include "malleabilityDataStructures.h"
6
#include "malleabilityTypes.h"
iker_martin's avatar
iker_martin committed
7
#include "malleabilityZombies.h"
8
#include "spawn_methods/GenericSpawn.h"
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "CommDist.h"

#define MALLEABILITY_USE_SYNCHRONOUS 0
#define MALLEABILITY_USE_ASYNCHRONOUS 1


void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

void Children_init();
int spawn_step();
int start_redistribution();
int check_redistribution();
int end_redistribution();
iker_martin's avatar
iker_martin committed
23
int shrink_redistribution();
24

25
26
27
void comm_node_data(int rootBcast, int is_child_group);
void def_nodeinfo_type(MPI_Datatype *node_type);

28
29
int thread_creation();
int thread_check();
30
void* thread_async_work();
31

32
void print_comms_state();
33
void malleability_comms_update(MPI_Comm comm);
34

35
typedef struct {
36
  int spawn_method;
37
  int spawn_dist;
38
  int spawn_strategies;
39
40
  int red_method;
  int red_strategies;
41

42
  int grp;
43
44
45
46
  configuration *config_file;
  results_data *results;
} malleability_config_t;

iker_martin's avatar
iker_martin committed
47
typedef struct { //FIXME numC_spawned no se esta usando
48
  int myId, numP, numC, numC_spawned, root, root_parents;
49
50
51
  pthread_t async_thread;
  MPI_Comm comm, thread_comm;
  MPI_Comm intercomm;
52
  MPI_Comm user_comm;
53
  int dup_user_comm;
54
  
55
  char *name_exec, *nodelist;
56
  int num_cpus, num_nodes, nodelist_len;
57
58
} malleability_t;

59
int state = MALL_UNRESERVED; //FIXME Mover a otro lado
60
61
62
63
64
65
66
67
68

malleability_config_t *mall_conf;
malleability_t *mall;

malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

69
/*
70
71
72
73
74
75
76
77
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
78
 */
79
int init_malleability(int myId, int numP, int root, MPI_Comm comm, char *name_exec, char *nodelist, int num_cpus, int num_nodes) {
80
81
82
83
84
85
86
87
88
  MPI_Comm dup_comm, thread_comm;

  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

89
  mall->dup_user_comm = 0;
90
91
  MPI_Comm_dup(comm, &dup_comm);
  MPI_Comm_dup(comm, &thread_comm);
92
93
  MPI_Comm_set_name(dup_comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(thread_comm, "MPI_COMM_MALL_THREAD");
94
95
96
97

  mall->myId = myId;
  mall->numP = numP;
  mall->root = root;
98
  mall->comm = dup_comm;
99
  mall->thread_comm = thread_comm;
100
  mall->user_comm = comm;
101

102
  mall->name_exec = name_exec;
103
104
105
  mall->nodelist = nodelist;
  mall->num_cpus = num_cpus;
  mall->num_nodes = num_nodes;
106
107
108
109
110
111

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

112
  state = MALL_NOT_STARTED;
113

114
115
  zombies_service_init();

116
117
118
119
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
  if(mall->intercomm != MPI_COMM_NULL ) { 
    Children_init();
120
    return MALLEABILITY_CHILDREN;
121
  }
iker_martin's avatar
iker_martin committed
122

123
124
125
126
127
128
129
  if(nodelist != NULL) { //TODO To be deprecated by using Slurm or else statement
    mall->nodelist_len = strlen(nodelist);
  } else { // If no nodelist is detected, get it from the actual run
    mall->nodelist = malloc(MPI_MAX_PROCESSOR_NAME * sizeof(char));
    MPI_Get_processor_name(mall->nodelist, &mall->nodelist_len);
    //TODO Get name of each process and create real nodelist
  }
130

131
  return MALLEABILITY_NOT_CHILDREN;
132
133
}

134
135
136
137
138
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
139
void free_malleability() {	  
140
141
142
143
144
145
146
147
148
149
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);

150
151
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
152
153
  free(mall);
  free(mall_conf);
iker_martin's avatar
iker_martin committed
154
155
156
157

  zombies_awake();
  zombies_service_free();

158
  state = MALL_UNRESERVED;
159
160
}

161
162
/* 
 * TODO Reescribir
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
 * Se realiza el redimensionado de procesos por parte de los padres.
 *
 * Se crean los nuevos procesos con la distribucion fisica elegida y
 * a continuacion se transmite la informacion a los mismos.
 *
 * Si hay datos asincronos a transmitir, primero se comienza a
 * transmitir estos y se termina la funcion. Se tiene que comprobar con
 * llamando a la función de nuevo que se han terminado de enviar
 *
 * Si hay ademas datos sincronos a enviar, no se envian aun.
 *
 * Si solo hay datos sincronos se envian tras la creacion de los procesos
 * y finalmente se desconectan los dos grupos de procesos.
 */
int malleability_checkpoint() {
178
179
180
181
182
183
184
  double end_real_time;

  switch(state) {
    case MALL_UNRESERVED:
      break;
    case MALL_NOT_STARTED:
      // Comprobar si se tiene que realizar un redimensionado
185
      mall_conf->results->malleability_time[mall_conf->grp] = MPI_Wtime();
186
      //if(CHECK_RMS()) {return MALL_DENIED;}
187

188
189
190
191
192
193
      state = spawn_step();

      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPT_POSTPONE){
        malleability_checkpoint();
      }
      break;
194

195
196
197
198
199
200
    case MALL_SPAWN_PENDING: // Comprueba si el spawn ha terminado y comienza la redistribucion
    case MALL_SPAWN_SINGLE_PENDING:
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPTED) {
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
        mall_conf->results->spawn_real_time[mall_conf->grp] = end_real_time - mall_conf->results->spawn_start;
201

202
203
204
        malleability_checkpoint();
      }
      break;
205

206
207
208
209
210
    case MALL_SPAWN_ADAPT_POSTPONE:
    case MALL_SPAWN_COMPLETED:
      state = start_redistribution();
      malleability_checkpoint();
      break;
211

212
    case MALL_DIST_PENDING:
213
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
214
215
216
217
        state = thread_check();
      } else {
        state = check_redistribution();
      }
218
      if(state != MALL_DIST_PENDING) { 
219
220
221
222
223
224
225
226
        malleability_checkpoint();
      }
      break;

    case MALL_SPAWN_ADAPT_PENDING:
      mall_conf->results->spawn_start = MPI_Wtime();
      unset_spawn_postpone_flag(state);
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
227

228
      if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
229
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
230
	malleability_checkpoint();
231
      }
232
      break;
233

234
    case MALL_SPAWN_ADAPTED:
235
      state = shrink_redistribution();
236
      malleability_checkpoint();
237
      break;
238

239
    case MALL_DIST_COMPLETED: //TODO No es esto muy feo?
240
      mall_conf->results->malleability_end = MPI_Wtime();
241
242
243
      state = MALL_COMPLETED;
      break;
  }
244
245
246
247
248
249
250
251
252
253
254
255
256
  return state;
}

// Funciones solo necesarias por el benchmark
//-------------------------------------------------------------------------------------------------------------
void set_benchmark_grp(int grp) {
  mall_conf->grp = grp;
}

void set_benchmark_configuration(configuration *config_file) {
  mall_conf->config_file = config_file;
}

257
void get_benchmark_configuration(configuration **config_file) {
258
259
260
261
262
263
264
  *config_file = mall_conf->config_file;
}

void set_benchmark_results(results_data *results) {
  mall_conf->results = results;
}

265
void get_benchmark_results(results_data **results) {
266
267
268
269
  *results = mall_conf->results;
}
//-------------------------------------------------------------------------------------------------------------

270
void set_malleability_configuration(int spawn_method, int spawn_strategies, int spawn_dist, int red_method, int red_strategies) {
271
272
  mall_conf->spawn_method = spawn_method;
  mall_conf->spawn_strategies = spawn_strategies;
273
  mall_conf->spawn_dist = spawn_dist;
274
275
  mall_conf->red_method = red_method;
  mall_conf->red_strategies = red_strategies;
276
277
278
279
}

/*
 * To be deprecated
280
 * Tiene que ser llamado despues de setear la config
281
282
 */
void set_children_number(int numC){
283
  if((mall_conf->spawn_method == MALL_SPAWN_MERGE) && (numC >= mall->numP)) {
284
285
286
287
288
    mall->numC = numC;
    mall->numC_spawned = numC - mall->numP;

    if(numC == mall->numP) { // Migrar
      mall->numC_spawned = numC;
289
      mall_conf->spawn_method = MALL_SPAWN_BASELINE;
290
291
292
293
294
295
296
297
298
299
300
    }
  } else {
    mall->numC = numC;
    mall->numC_spawned = numC;
  }
}

/*
 * TODO
 */
void get_malleability_user_comm(MPI_Comm *comm) {
301
302
303
304
305
306
  if(mall->dup_user_comm) {
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm));
    MPI_Comm_dup(mall->comm, &(mall->user_comm));
    MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
    mall->dup_user_comm = 0;
  }
307
  *comm = mall->user_comm;
308
309
310
311
312
313
314
315
316
}

/*
 * Anyade a la estructura concreta de datos elegida
 * el nuevo set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que anyadir cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "add_data".
317
318
 *
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
319
 */
320
void malleability_add_data(void *data, size_t total_qty, int type, int is_replicated, int is_constant) {
321
  size_t total_reqs = 0;
322
323
324

  if(is_constant) {
    if(is_replicated) {
325
      add_data(data, total_qty, type, total_reqs, rep_s_data);
326
    } else {
327
      add_data(data, total_qty, type, total_reqs, dist_s_data);
328
329
330
    }
  } else {
    if(is_replicated) {
331
      add_data(data, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
332
    } else {
333
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
334
        total_reqs = 1;
335
      } else if(mall_conf->red_method  == MALL_RED_IBARRIER) { //TODO This is a strategy, not a method
336
        total_reqs = 2;
337
      } else if(mall_conf->red_method  == MALL_RED_POINT) {
338
        total_reqs = mall->numC;
339
340
341
342
343
344
345
      }
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
    }
  }
}

346
347
348
349
350
351
352
/*
 * Modifica en la estructura concreta de datos elegida en el indice "index"
 * con el set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que modificar cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "modify_data".
353
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
354
355
 */
void malleability_modify_data(void *data, size_t index, size_t total_qty, int type, int is_replicated, int is_constant) {
356
357
  size_t total_reqs = 0;

358
359
  if(is_constant) {
    if(is_replicated) {
360
      modify_data(data, index, total_qty, type, total_reqs, rep_s_data);
361
    } else {
362
      modify_data(data, index, total_qty, type, total_reqs, dist_s_data);
363
364
365
    }
  } else {
    if(is_replicated) {
366
367
368
      modify_data(data, index, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
    } else {    
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
369
        total_reqs = 1;
370
      } else if(mall_conf->red_method  == MALL_RED_IBARRIER) { //TODO This is a strategy, not a method
371
        total_reqs = 2;
372
      } else if(mall_conf->red_method  == MALL_RED_POINT) {
373
374
375
        total_reqs = mall->numC;
      }
      
376
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data);
377
378
379
380
    }
  }
}

381
382
383
/*
 * Devuelve el numero de entradas para la estructura de descripcion de 
 * datos elegida.
384
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
385
 */
386
void malleability_get_entries(size_t *entries, int is_replicated, int is_constant){
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
  
  if(is_constant) {
    if(is_replicated) {
      *entries = rep_s_data->entries;
    } else {
      *entries = dist_s_data->entries;
    }
  } else {
    if(is_replicated) {
      *entries = rep_a_data->entries;
    } else {
      *entries = dist_a_data->entries;
    }
  }
}

/*
 * Devuelve el elemento de la lista "index" al usuario.
 * La devolución es en el mismo orden que lo han metido los padres
 * con la funcion "malleability_add_data()".
 * Es tarea del usuario saber el tipo de esos datos.
 * TODO Refactor a que sea automatico
409
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
410
 */
411
void malleability_get_data(void **data, size_t index, int is_replicated, int is_constant) {
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
      data_struct = rep_s_data;
    } else {
      data_struct = dist_s_data;
    }
  } else {
    if(is_replicated) {
      data_struct = rep_a_data;
    } else {
      data_struct = dist_a_data;
    }
  }

428
  *data = data_struct->arrays[index];
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
}


//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||


/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
445
  size_t i;
446
  char *aux_send, *aux_recv;
447
448
449

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
450
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
451
      aux_recv = NULL;
452
453
      async_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, mall->intercomm, 
		      &(data_struct->requests[i]), &(data_struct->request_qty[i]));
454
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
455
456
457
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
458
459
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
460
      sync_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall->intercomm);
461
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
462
463
464
465
466
467
468
469
470
471
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
472
  size_t i;
473
  char *aux, aux_s;
474
475
476
477

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
478
479
      async_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, mall->intercomm, 
		      &(data_struct->requests[i]), &(data_struct->request_qty[i]));
480
481
482
483
484
      data_struct->arrays[i] = (void *) aux;
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
485
      sync_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall->intercomm);
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
      data_struct->arrays[i] = (void *) aux;
    }
  }
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||
/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
void Children_init() {
503
504
  size_t i;
  int numP_parents, root_parents;
505
  int is_intercomm;
506

507
  malleability_connect_children(mall->myId, mall->numP, mall->root, mall->comm, &numP_parents, &root_parents, &(mall->intercomm));
508
509
510
511
512
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) { // For intracommunicators, these processes will be added
    MPI_Comm_rank(mall->intercomm, &(mall->myId));
    MPI_Comm_size(mall->intercomm, &(mall->numP));
  }
513

514
  recv_config_file(mall->root, mall->intercomm, &(mall_conf->config_file));
515
  comm_node_data(root_parents, MALLEABILITY_CHILDREN);
516
517
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, root_parents, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, root_parents, mall->intercomm);
518

519
  mall_conf->results = (results_data *) malloc(sizeof(results_data));
520
  init_results_data(mall_conf->results, mall_conf->config_file->n_resizes, mall_conf->config_file->n_stages, RESULTS_INIT_DATA_QTY);
521

522
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
523
524
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos

525
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
526
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
527
528
    } else {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
529
    }
530

531
532
    mall_conf->results->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
  }
533

534
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
535
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
536
    recv_data(numP_parents, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
537
538
539
540
541
    mall_conf->results->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona

    // TODO Crear funcion especifica y anyadir para Asinc
    // TODO Tener en cuenta el tipo y qty
    for(i=0; i<rep_s_data->entries; i++) {
542
543
544
545
546
547
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
548
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, root_parents, mall->intercomm);
549
550
    } 
  }
551
552
  mall_conf->results->malleability_end = MPI_Wtime(); // Obtener timestamp de cuando termina maleabilidad
  
553
  // Guardar los resultados de esta transmision
554
  comm_results(mall_conf->results, mall->root, mall_conf->config_file->n_resizes, mall->intercomm);
555
  if(!is_intercomm) {
556
    malleability_comms_update(mall->intercomm);
557
  }
558

559
  MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
560
561
562
563
564
565
566
567
568
569
570
571
572
573
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
  mall_conf->results->spawn_start = MPI_Wtime();
574
 
575
  state = init_spawn(mall->name_exec, mall->num_cpus, mall->num_nodes, mall->nodelist, mall->myId, mall->numP, mall->numC, mall->root, mall_conf->spawn_dist, mall_conf->spawn_method, mall_conf->spawn_strategies, mall->thread_comm, &(mall->intercomm));
576

577
  if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
578
579
580
581
582
      mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
  }
  return state;
}

583

584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
599
600
601
602
603
604
605
606
  int rootBcast, is_intercomm;

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
607
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
608
  }
609

610
611
612
613
614
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
615

616
  send_config_file(mall_conf->config_file, rootBcast, mall->intercomm);
617
  comm_node_data(rootBcast, MALLEABILITY_NOT_CHILDREN);
618
619
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, rootBcast, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, rootBcast, mall->intercomm);
620

621
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
622
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
623
    //FIXME No se envian los datos replicados (rep_a_data)
624
    mall_conf->results->async_time[mall_conf->grp] = MPI_Wtime();
625
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
626
627
628
      return thread_creation();
    } else {
      send_data(mall->numC, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
629
      return MALL_DIST_PENDING; 
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
    }
  } 
  return end_redistribution();
}


/*
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
 */
int check_redistribution() {
650
651
  int is_intercomm, completed, local_completed, all_completed, test_err;
  size_t i, j, req_qty;
652
  MPI_Request *req_completed;
653
  local_completed = 1;
654
  test_err = 0;
655
656
657
658
659
660
661

  //FIXME Modificar para que se tenga en cuenta rep_a_data
  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) { //FIXME Strategy not fully implemented
      test_err = MPI_Test(&(req_completed[req_qty-1]), &completed, MPI_STATUS_IGNORE);
662
      local_completed = local_completed && completed;
663
    } else {
664
665
666
667
668
      for(j=0; j<req_qty; j++) {
	test_err = MPI_Test(&(req_completed[j]), &completed, MPI_STATUS_IGNORE);
	local_completed = local_completed && completed;
      }
//      test_err = MPI_Testall(req_qty, req_completed, &completed, MPI_STATUSES_IGNORE);
669
    }
670
671
672
673
674
675
676
  }
 
  if (test_err != MPI_SUCCESS && test_err != MPI_ERR_PENDING) {
    printf("P%d aborting -- Test Async\n", mall->myId);
    MPI_Abort(MPI_COMM_WORLD, test_err);
  }

677
  MPI_Allreduce(&local_completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
678
  if(!all_completed) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
679
  
680
681
  if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) { //FIXME Strategy not fully implemented
    MPI_Waitall(req_qty, req_completed, MPI_STATUSES_IGNORE);
682
683
684
    //Para la desconexión de ambos grupos de procesos es necesario indicar a MPI que esta comm
    //ha terminado, aunque solo se pueda llegar a este punto cuando ha terminado
  }
685
686
687

  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
688
689
690
691
692
693
694
695
696
697
698
699
700
  return end_redistribution();
}


/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
701
702
  size_t i;
  int is_intercomm, rootBcast, local_state;
703

704
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
705
706
707
708
709
710
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
  
711
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
712
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
713
    mall_conf->results->sync_time[mall_conf->grp] = MPI_Wtime();
714
    send_data(mall->numC, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
715
    if(!is_intercomm) mall_conf->results->sync_end = MPI_Wtime(); // Merge method only
716
717

    // TODO Crear funcion especifica y anyadir para Asinc
718
    // TODO Tener en cuenta el tipo
719
    for(i=0; i<rep_s_data->entries; i++) {
720
721
722
723
724
725
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
726
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, rootBcast, mall->intercomm);
727
728
    } 
  }
iker_martin's avatar
iker_martin committed
729

730
  comm_results(mall_conf->results, rootBcast, mall_conf->config_file->n_resizes, mall->intercomm);
iker_martin's avatar
iker_martin committed
731

732
733
734
  local_state = MALL_DIST_COMPLETED;
  if(!is_intercomm) { // Merge Spawn
    if(mall->numP < mall->numC) { // Expand
735
      malleability_comms_update(mall->intercomm);
736
737
738
739
    } else { // Shrink || Merge Shrink requiere de mas tareas
      local_state = MALL_SPAWN_ADAPT_PENDING;
    }
  }
740

741
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) {
742
    MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
743
  }
744

745
  return local_state;
746
747
}

748
749
750
751

///=============================================
///=============================================
///=============================================
752
//TODO Add comment
iker_martin's avatar
iker_martin committed
753
int shrink_redistribution() {
754
    double time_extra = MPI_Wtime();
755

756
    //TODO Create new state before collecting zombies. Processes can perform tasks before that. Then call again Malleability to commit the change
757
    zombies_collect_suspended(mall->user_comm, mall->myId, mall->numP, mall->numC, mall->root, (void *) mall_conf->results, mall_conf->config_file->n_stages);
iker_martin's avatar
iker_martin committed
758
759
    
    if(mall->myId < mall->numC) {
760
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm)); //FIXME Modificar a que se pida pro el usuario el cambio y se llama a comms_update
761
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
762
      mall->dup_user_comm = 1;
763
764
765
766

      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));

767
768
769
      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");

770
771
      MPI_Comm_free(&(mall->intercomm));

772
773
774
      mall_conf->results->spawn_time[mall_conf->grp] += MPI_Wtime() - time_extra;
      if(malleability_spawn_contains_strat(mall_conf->spawn_strategies,MALL_SPAWN_PTHREAD, NULL)) {
          mall_conf->results->spawn_real_time[mall_conf->grp] += MPI_Wtime() - time_extra;
775
      }
776
      return MALL_DIST_COMPLETED;
iker_martin's avatar
iker_martin committed
777
    } else {
778
      return MALL_ZOMBIE;
iker_martin's avatar
iker_martin committed
779
780
781
    }
}

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=================COMM NODE INFO ======================||
//======================================================||
//======================================================||
//TODO Add comment
void comm_node_data(int rootBcast, int is_child_group) {
  MPI_Datatype node_type;

  def_nodeinfo_type(&node_type);
  MPI_Bcast(mall, 1, node_type, rootBcast, mall->intercomm);

  if(is_child_group) {
    mall->nodelist = malloc((mall->nodelist_len+1) * sizeof(char));
    mall->nodelist[mall->nodelist_len] = '\0';
  }
  MPI_Bcast(mall->nodelist, mall->nodelist_len, MPI_CHAR, rootBcast, mall->intercomm);

  MPI_Type_free(&node_type);
}

//TODO Add comment
void def_nodeinfo_type(MPI_Datatype *node_type) {
  int i, counts = 3;
  int blocklengths[3] = {1, 1, 1};
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
  types[0] = types[1] = types[2] = MPI_INT;

  // Rellenar vector displs
  MPI_Get_address(mall, &dir);

  MPI_Get_address(&(mall->num_cpus), &displs[0]);
  MPI_Get_address(&(mall->num_nodes), &displs[1]);
  MPI_Get_address(&(mall->nodelist_len), &displs[2]);

  for(i=0;i<counts;i++) displs[i] -= dir;

  MPI_Type_create_struct(counts, blocklengths, displs, types, node_type);
  MPI_Type_commit(node_type);
}

826
827
828
829
830
831
832
// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

833

834
int comm_state; //FIXME Usar un handler
835
836
837
838
/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
839
  comm_state = MALL_DIST_PENDING;
840
841
842
843
844
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
845
  return comm_state;
846
847
848
849
850
851
852
853
854
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
int thread_check() {
855
  int all_completed = 0, is_intercomm;
856
857

  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
858
  MPI_Allreduce(&comm_state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
859
860
  if(all_completed != MALL_DIST_COMPLETED) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
  //FIXME No se tiene en cuenta el estado MALL_APP_ENDED
861
862
863
864
865
866

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
867
868
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
869
870
871
872
873
874
875
876
877
878
879
880
  return end_redistribution();
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
881
void* thread_async_work() {
882
  send_data(mall->numC, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
883
  comm_state = MALL_DIST_COMPLETED;
884
885
  pthread_exit(NULL);
}
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905


//==============================================================================
/*
 * Muestra por pantalla el estado actual de todos los comunicadores
 */
void print_comms_state() {
  int tester;
  char *test = malloc(MPI_MAX_OBJECT_NAME * sizeof(char));

  MPI_Comm_get_name(mall->comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->comm, test);
  MPI_Comm_get_name(mall->user_comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->user_comm, test);
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_get_name(mall->intercomm, test, &tester);
    printf("P%d Comm=%d Name=%s\n", mall->myId, mall->intercomm, test);
  }
  free(test);
}
906
907
908
909
910
911
912
913
914
915
916
917
918
919

void malleability_comms_update(MPI_Comm comm) {
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

  MPI_Comm_dup(comm, &(mall->thread_comm));
  MPI_Comm_dup(comm, &(mall->comm));
  MPI_Comm_dup(comm, &(mall->user_comm)); 

  MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
  MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
}