malleabilityManager.c 36.4 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
4
#include "malleabilityManager.h"
#include "malleabilityStates.h"
5
#include "malleabilityDataStructures.h"
6
#include "malleabilityTypes.h"
iker_martin's avatar
iker_martin committed
7
#include "malleabilityZombies.h"
8
#include "malleabilityTimes.h"
9
#include "spawn_methods/GenericSpawn.h"
10
11
12
13
14
15
16
17
18
19
20
21
#include "CommDist.h"

#define MALLEABILITY_USE_SYNCHRONOUS 0
#define MALLEABILITY_USE_ASYNCHRONOUS 1


void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

void Children_init();
int spawn_step();
int start_redistribution();
22
int check_redistribution(int wait_completed);
23
int end_redistribution();
iker_martin's avatar
iker_martin committed
24
int shrink_redistribution();
25

26
27
28
void comm_node_data(int rootBcast, int is_child_group);
void def_nodeinfo_type(MPI_Datatype *node_type);

29
int thread_creation();
30
int thread_check(int wait_completed);
31
void* thread_async_work();
32

33
void print_comms_state();
34
void malleability_comms_update(MPI_Comm comm);
35

36
int state = MALL_UNRESERVED; //FIXME Mover a otro lado
37
38
39
40
41
42

malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

43
/*
44
45
46
47
48
49
50
51
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
52
 */
53
int init_malleability(int myId, int numP, int root, MPI_Comm comm, char *name_exec, char *nodelist, int num_cpus, int num_nodes) {
54
55
  MPI_Comm dup_comm, thread_comm;

56
57
58
59
  #if USE_MAL_DEBUG
    DEBUG_FUNC("Initializing MaM", myId, numP); fflush(stdout); MPI_Barrier(comm);
  #endif

60
61
  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
62

63
64
65
66
67
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

68
  mall->dup_user_comm = 0;
69
70
  MPI_Comm_dup(comm, &dup_comm);
  MPI_Comm_dup(comm, &thread_comm);
71
72
  MPI_Comm_set_name(dup_comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(thread_comm, "MPI_COMM_MALL_THREAD");
73
74
75
76

  mall->myId = myId;
  mall->numP = numP;
  mall->root = root;
77
  mall->comm = dup_comm;
78
  mall->thread_comm = thread_comm;
79
  mall->user_comm = comm;
80

81
  mall->name_exec = name_exec;
82
83
84
  mall->nodelist = nodelist;
  mall->num_cpus = num_cpus;
  mall->num_nodes = num_nodes;
85
86
87
88
89
90

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

91
  state = MALL_NOT_STARTED;
92

93
  zombies_service_init();
94
  init_malleability_times();
95

96
97
98
99
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
  if(mall->intercomm != MPI_COMM_NULL ) { 
    Children_init();
100
    return MALLEABILITY_CHILDREN;
101
  }
iker_martin's avatar
iker_martin committed
102

103
104
105
106
107
  #if USE_MAL_BARRIERS && USE_MAL_DEBUG
    if(mall->myId == mall->root)
      printf("MaM: Using barriers to record times.\n");
  #endif

108
109
110
111
112
113
114
  if(nodelist != NULL) { //TODO To be deprecated by using Slurm or else statement
    mall->nodelist_len = strlen(nodelist);
  } else { // If no nodelist is detected, get it from the actual run
    mall->nodelist = malloc(MPI_MAX_PROCESSOR_NAME * sizeof(char));
    MPI_Get_processor_name(mall->nodelist, &mall->nodelist_len);
    //TODO Get name of each process and create real nodelist
  }
115

116
117
118
119
  #if USE_MAL_DEBUG
    DEBUG_FUNC("MaM has been initialized correctly as parents", myId, numP); fflush(stdout); MPI_Barrier(comm);
  #endif

120
  return MALLEABILITY_NOT_CHILDREN;
121
122
}

123
124
125
126
127
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
128
void free_malleability() {	  
129
130
131
132
133
134
135
136
137
138
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);

139
  free_malleability_times();
140
141
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
142
143
  free(mall);
  free(mall_conf);
iker_martin's avatar
iker_martin committed
144
145
146
147

  zombies_awake();
  zombies_service_free();

148
  state = MALL_UNRESERVED;
149
150
}

151
152
/* 
 * TODO Reescribir
153
154
155
156
157
158
159
160
161
162
163
164
165
166
 * Se realiza el redimensionado de procesos por parte de los padres.
 *
 * Se crean los nuevos procesos con la distribucion fisica elegida y
 * a continuacion se transmite la informacion a los mismos.
 *
 * Si hay datos asincronos a transmitir, primero se comienza a
 * transmitir estos y se termina la funcion. Se tiene que comprobar con
 * llamando a la función de nuevo que se han terminado de enviar
 *
 * Si hay ademas datos sincronos a enviar, no se envian aun.
 *
 * Si solo hay datos sincronos se envian tras la creacion de los procesos
 * y finalmente se desconectan los dos grupos de procesos.
 */
167
int malleability_checkpoint(int *mam_state, int wait_completed) {
168
169
170

  switch(state) {
    case MALL_UNRESERVED:
171
      *mam_state = MAM_UNRESERVED;
172
173
      break;
    case MALL_NOT_STARTED:
174
      *mam_state = MAM_NOT_STARTED;
175
      reset_malleability_times();
176
      // Comprobar si se tiene que realizar un redimensionado
177
178
179
180
      
      #if USE_MAL_BARRIERS
        MPI_Barrier(mall->comm);
      #endif
181
      mall_conf->times->malleability_start = MPI_Wtime();
182
      //if(CHECK_RMS()) {return MALL_DENIED;}
183

184
185
186
      state = spawn_step();

      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPT_POSTPONE){
187
        malleability_checkpoint(mam_state, wait_completed);
188
189
      }
      break;
190

191
192
    case MALL_SPAWN_PENDING: // Comprueba si el spawn ha terminado y comienza la redistribucion
    case MALL_SPAWN_SINGLE_PENDING:
193
      state = check_spawn_state(&(mall->intercomm), mall->comm, wait_completed);
194
      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPTED) {
195
196
197
        #if USE_MAL_BARRIERS
  	  MPI_Barrier(mall->comm);
	#endif
198
        mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
199

200
        malleability_checkpoint(mam_state, wait_completed);
201
202
      }
      break;
203

204
205
206
    case MALL_SPAWN_ADAPT_POSTPONE:
    case MALL_SPAWN_COMPLETED:
      state = start_redistribution();
207
      malleability_checkpoint(mam_state, wait_completed);
208
      break;
209

210
    case MALL_DIST_PENDING:
211
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
212
        state = thread_check(wait_completed);
213
      } else {
214
        state = check_redistribution(wait_completed);
215
      }
216
      if(state != MALL_DIST_PENDING) { 
217
        malleability_checkpoint(mam_state, wait_completed);
218
219
220
221
      }
      break;

    case MALL_SPAWN_ADAPT_PENDING:
222
223
224
225

      #if USE_MAL_BARRIERS
        MPI_Barrier(mall->comm);
      #endif
226
      mall_conf->times->spawn_start = MPI_Wtime();
227
      unset_spawn_postpone_flag(state);
228
      state = check_spawn_state(&(mall->intercomm), mall->comm, wait_completed);
229

230
      if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
231
232
233
        #if USE_MAL_BARRIERS
          MPI_Barrier(mall->comm);
	#endif
234
        mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
235
	malleability_checkpoint(mam_state, wait_completed);
236
      }
237
      break;
238

239
    case MALL_SPAWN_ADAPTED:
240
      state = shrink_redistribution();
241
242
      if(state == MALL_ZOMBIE) *mam_state = MAM_ZOMBIE;
      malleability_checkpoint(mam_state, wait_completed);
243
      break;
244

245
    case MALL_DIST_COMPLETED: //TODO No es esto muy feo?
246
247
248
      #if USE_MAL_BARRIERS
        MPI_Barrier(mall->comm);
      #endif
249
      mall_conf->times->malleability_end = MPI_Wtime();
250
      state = MALL_COMPLETED;
251
      *mam_state = MAM_COMPLETED;
252
253
      break;
  }
254
255

  if(state > MALL_ZOMBIE && state < MALL_COMPLETED) *mam_state = MAM_PENDING;
256
257
258
  return state;
}

259
260
261
262
263
264
265
266
void MAM_Commit(int *mam_state) {
  //Hacer borrado de comunicadores no necesarios
  //Update de comunicadores
  //Reiniciar algunas estructuras ¿Cuales?
  //Llamar a funcion de zombies
  //Devolver el estado de mam
}

267
268
269
270
271
272
273
274
// Funciones solo necesarias por el benchmark
//-------------------------------------------------------------------------------------------------------------
void set_benchmark_grp(int grp) {
  mall_conf->grp = grp;
}
void set_benchmark_configuration(configuration *config_file) {
  mall_conf->config_file = config_file;
}
275
void get_benchmark_configuration(configuration **config_file) {
276
277
278
  *config_file = mall_conf->config_file;
}

279
280
//-------------------------------------------------------------------------------------------------------------

281
282
void malleability_retrieve_times(double *sp_time, double *sy_time, double *asy_time, double *mall_time) {
  malleability_I_retrieve_times(sp_time, sy_time, asy_time, mall_time);
283
284
}

285
void set_malleability_configuration(int spawn_method, int spawn_strategies, int spawn_dist, int red_method, int red_strategies) {
286
287
  mall_conf->spawn_method = spawn_method;
  mall_conf->spawn_strategies = spawn_strategies;
288
  mall_conf->spawn_dist = spawn_dist;
289
290
291
292
293
294
295
  mall_conf->red_method = red_method;
  mall_conf->red_strategies = red_strategies;

  if(!malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL) && 
	(mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL)) {
    malleability_red_add_strat(&(mall_conf->red_strategies), MALL_RED_IBARRIER);
  }
296
297
298
299
}

/*
 * To be deprecated
300
 * Tiene que ser llamado despues de setear la config
301
302
 */
void set_children_number(int numC){
303
  if((mall_conf->spawn_method == MALL_SPAWN_MERGE) && (numC >= mall->numP)) {
304
305
306
307
308
    mall->numC = numC;
    mall->numC_spawned = numC - mall->numP;

    if(numC == mall->numP) { // Migrar
      mall->numC_spawned = numC;
309
      mall_conf->spawn_method = MALL_SPAWN_BASELINE;
310
311
312
313
314
315
316
317
318
319
320
    }
  } else {
    mall->numC = numC;
    mall->numC_spawned = numC;
  }
}

/*
 * TODO
 */
void get_malleability_user_comm(MPI_Comm *comm) {
321
322
323
324
325
326
  if(mall->dup_user_comm) {
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm));
    MPI_Comm_dup(mall->comm, &(mall->user_comm));
    MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
    mall->dup_user_comm = 0;
  }
327
  *comm = mall->user_comm;
328
329
330
331
332
333
334
335
336
}

/*
 * Anyade a la estructura concreta de datos elegida
 * el nuevo set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que anyadir cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "add_data".
337
338
 *
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
339
 */
340
void malleability_add_data(void *data, size_t total_qty, int type, int is_replicated, int is_constant) {
341
  size_t total_reqs = 0;
342
343
344

  if(is_constant) {
    if(is_replicated) {
345
      add_data(data, total_qty, type, total_reqs, rep_s_data);
346
    } else {
347
      add_data(data, total_qty, type, total_reqs, dist_s_data);
348
349
350
    }
  } else {
    if(is_replicated) {
351
      add_data(data, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
352
    } else {
353
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
354
        total_reqs = 1;
355
      } else if(mall_conf->red_method  == MALL_RED_POINT || mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL) {
356
        total_reqs = mall->numC;
357
      }
358
359
360
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
        total_reqs++;
      }
361
362
363
364
365
366
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
    }
  }
}

367
368
369
370
371
372
373
/*
 * Modifica en la estructura concreta de datos elegida en el indice "index"
 * con el set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que modificar cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "modify_data".
374
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
375
376
 */
void malleability_modify_data(void *data, size_t index, size_t total_qty, int type, int is_replicated, int is_constant) {
377
378
  size_t total_reqs = 0;

379
380
  if(is_constant) {
    if(is_replicated) {
381
      modify_data(data, index, total_qty, type, total_reqs, rep_s_data);
382
    } else {
383
      modify_data(data, index, total_qty, type, total_reqs, dist_s_data);
384
385
386
    }
  } else {
    if(is_replicated) {
387
388
389
      modify_data(data, index, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
    } else {    
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
390
        total_reqs = 1;
391
      } else if(mall_conf->red_method  == MALL_RED_POINT || mall_conf->red_method  == MALL_RED_RMA_LOCK || mall_conf->red_method  == MALL_RED_RMA_LOCKALL) {
392
393
        total_reqs = mall->numC;
      }
394
395
396
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
        total_reqs++;
      }
397
      
398
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data);
399
400
401
402
    }
  }
}

403
404
405
/*
 * Devuelve el numero de entradas para la estructura de descripcion de 
 * datos elegida.
406
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
407
 */
408
void malleability_get_entries(size_t *entries, int is_replicated, int is_constant){
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
  
  if(is_constant) {
    if(is_replicated) {
      *entries = rep_s_data->entries;
    } else {
      *entries = dist_s_data->entries;
    }
  } else {
    if(is_replicated) {
      *entries = rep_a_data->entries;
    } else {
      *entries = dist_a_data->entries;
    }
  }
}

/*
 * Devuelve el elemento de la lista "index" al usuario.
 * La devolución es en el mismo orden que lo han metido los padres
 * con la funcion "malleability_add_data()".
 * Es tarea del usuario saber el tipo de esos datos.
 * TODO Refactor a que sea automatico
431
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
432
 */
433
void malleability_get_data(void **data, size_t index, int is_replicated, int is_constant) {
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
      data_struct = rep_s_data;
    } else {
      data_struct = dist_s_data;
    }
  } else {
    if(is_replicated) {
      data_struct = rep_a_data;
    } else {
      data_struct = dist_a_data;
    }
  }

450
  *data = data_struct->arrays[index];
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
}


//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||

/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
466
  size_t i;
467
  char *aux_send, *aux_recv;
468
469
470

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
471
472
473
474
475
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
      async_communication_start(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, 
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
476
477
478
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
479
480
481
482
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
      sync_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall->intercomm);
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
483
484
485
486
487
488
489
490
491
492
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
493
  size_t i;
494
  char *aux, aux_s;
495
496
497
498

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
499
500
      async_communication_start(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, 
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
501
502
503
504
505
      data_struct->arrays[i] = (void *) aux;
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
506
      sync_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall->intercomm);
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
      data_struct->arrays[i] = (void *) aux;
    }
  }
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||
/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
void Children_init() {
524
525
  size_t i;
  int numP_parents, root_parents;
526
  int is_intercomm;
527

528
529
530
531
  #if USE_MAL_DEBUG
    DEBUG_FUNC("MaM will now initialize children", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
  #endif

532
533
  malleability_connect_children(mall->myId, mall->numP, mall->root, mall->comm, &numP_parents, &root_parents, &(mall->intercomm));
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
534
535
536
537
  if(!is_intercomm) { // For intracommunicators, these processes will be added
    MPI_Comm_rank(mall->intercomm, &(mall->myId));
    MPI_Comm_size(mall->intercomm, &(mall->numP));
  }
538

539
  recv_config_file(mall->root, mall->intercomm, &(mall_conf->config_file));
540
  comm_node_data(root_parents, MALLEABILITY_CHILDREN);
541
542
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, root_parents, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, root_parents, mall->intercomm);
543

544
  #if USE_MAL_DEBUG
545
    DEBUG_FUNC("Targets have completed spawn step", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
546
547
  #endif

548
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
549
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos
550
551
552
    #if USE_MAL_DEBUG >= 2
      DEBUG_FUNC("Children start asynchronous redistribution", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
    #endif
553
554
555
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
556

557
558
559
560
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
    } else {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS); 
561

562
      #if USE_MAL_DEBUG >= 2
563
        DEBUG_FUNC("Targets started asynchronous redistribution", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
564
      #endif
565
566
567

      int post_ibarrier = 0; 
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) { post_ibarrier=1; }
568
      for(i=0; i<dist_a_data->entries; i++) {
569
        async_communication_wait(mall->intercomm, dist_a_data->requests[i], dist_a_data->request_qty[i], post_ibarrier);
570
      }
571
      #if USE_MAL_DEBUG >= 2
572
        DEBUG_FUNC("Targets waited for all asynchronous redistributions", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
573
      #endif
574
575
576
      for(i=0; i<dist_a_data->entries; i++) {
        async_communication_end(mall_conf->red_method, mall_conf->red_strategies, dist_a_data->requests[i], dist_a_data->request_qty[i], &(dist_a_data->windows[i]));
      }
577
    }
578

579
580
581
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
582
    mall_conf->times->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
583
  }
584
  #if USE_MAL_DEBUG
585
    DEBUG_FUNC("Targets have completed asynchronous data redistribution step", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
586
  #endif
587

588
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
589
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
590
591
592
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
593
    recv_data(numP_parents, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
594
595
596
597

    // TODO Crear funcion especifica y anyadir para Asinc
    // TODO Tener en cuenta el tipo y qty
    for(i=0; i<rep_s_data->entries; i++) {
598
599
600
601
602
603
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
604
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, root_parents, mall->intercomm);
605
    } 
606
607
608
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
609
    mall_conf->times->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona
610
  }
611
  #if USE_MAL_DEBUG
612
    DEBUG_FUNC("Targets have completed synchronous data redistribution step", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
613
  #endif
614

615
  // Guardar los resultados de esta transmision
616
  malleability_times_broadcast(mall->root);
617
  if(!is_intercomm) {
618
    malleability_comms_update(mall->intercomm);
619
  }
620

621
622
623
  #if USE_MAL_BARRIERS
    MPI_Barrier(mall->comm);
  #endif
624
  mall_conf->times->malleability_end = MPI_Wtime(); // Obtener timestamp de cuando termina maleabilidad
625
  MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
626
627
628
629

  #if USE_MAL_DEBUG
    DEBUG_FUNC("MaM has been initialized correctly as children", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
  #endif
630
631
632
633
634
635
636
637
638
639
640
641
642
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
643
644
645
  #if USE_MAL_BARRIERS
    MPI_Barrier(mall->comm);
  #endif
646
  mall_conf->times->spawn_start = MPI_Wtime();
647
 
648
  state = init_spawn(mall->name_exec, mall->num_cpus, mall->num_nodes, mall->nodelist, mall->myId, mall->numP, mall->numC, mall->root, mall_conf->spawn_dist, mall_conf->spawn_method, mall_conf->spawn_strategies, mall->thread_comm, &(mall->intercomm));
649

650
  if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
651
652
653
      #if USE_MAL_BARRIERS
        MPI_Barrier(mall->comm);
      #endif
654
      mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
655
656
657
658
  }
  return state;
}

659

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
675
676
677
678
679
680
681
682
  int rootBcast, is_intercomm;

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
683
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
684
  }
685

686
687
688
689
690
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
691

692
  send_config_file(mall_conf->config_file, rootBcast, mall->intercomm);
693
  comm_node_data(rootBcast, MALLEABILITY_NOT_CHILDREN);
694
695
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, rootBcast, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, rootBcast, mall->intercomm);
696

697
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
698
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
699
    //FIXME No se envian los datos replicados (rep_a_data)
700
701
702
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
703
    mall_conf->times->async_start = MPI_Wtime();
704
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
705
706
707
      return thread_creation();
    } else {
      send_data(mall->numC, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
708
      return MALL_DIST_PENDING; 
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
    }
  } 
  return end_redistribution();
}


/*
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
727
 * //FIXME Modificar para que se tenga en cuenta rep_a_data
728
 */
729
730
int check_redistribution(int wait_completed) {
  int is_intercomm, completed, local_completed, all_completed, post_ibarrier;
731
  size_t i, req_qty;
732
  MPI_Request *req_completed;
733
  MPI_Win window;
734
  post_ibarrier = 0;
735
  local_completed = 1;
736
  #if USE_MAL_DEBUG >= 2
737
    DEBUG_FUNC("Sources are testing for all asynchronous redistributions", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
738
  #endif
739
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
740

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
  if(wait_completed) {
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) {
      if( is_intercomm || mall->myId >= mall->numC) {
        post_ibarrier=1;
      }
    }
    for(i=0; i<dist_a_data->entries; i++) {
      req_completed = dist_a_data->requests[i];
      req_qty = dist_a_data->request_qty[i];
      async_communication_wait(mall->intercomm, req_completed, req_qty, post_ibarrier);
    }
  } else {
    for(i=0; i<dist_a_data->entries; i++) {
      req_completed = dist_a_data->requests[i];
      req_qty = dist_a_data->request_qty[i];
      completed = async_communication_check(mall->myId, MALLEABILITY_NOT_CHILDREN, mall_conf->red_strategies, mall->intercomm, req_completed, req_qty);
      local_completed = local_completed && completed;
    }
    #if USE_MAL_DEBUG >= 2
      DEBUG_FUNC("Sources will now check a global decision", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
    #endif

    MPI_Allreduce(&local_completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
    if(!all_completed) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
765
766
  }

767
  #if USE_MAL_DEBUG >= 2
768
    DEBUG_FUNC("Sources sent asynchronous redistributions", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
769
  #endif
770

771
772
773
774
775
  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    window = dist_a_data->windows[i];
    async_communication_end(mall_conf->red_method, mall_conf->red_strategies, req_completed, req_qty, &window);
776
  }
777

778
779
780
  #if USE_MAL_BARRIERS
    MPI_Barrier(mall->intercomm);
  #endif
781
  if(!is_intercomm) mall_conf->times->async_end = MPI_Wtime(); // Merge method only
782
783
784
785
786
787
788
789
790
791
792
793
794
  return end_redistribution();
}


/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
795
796
  size_t i;
  int is_intercomm, rootBcast, local_state;
797

798
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
799
800
801
802
803
804
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
  
805
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
806
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
807
808
809
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
810
    mall_conf->times->sync_start = MPI_Wtime();
811
812
813
    send_data(mall->numC, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);

    // TODO Crear funcion especifica y anyadir para Asinc
814
    // TODO Tener en cuenta el tipo
815
    for(i=0; i<rep_s_data->entries; i++) {
816
817
818
819
820
821
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
822
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, rootBcast, mall->intercomm);
823
    } 
824
825
826
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->intercomm);
    #endif
827
    if(!is_intercomm) mall_conf->times->sync_end = MPI_Wtime(); // Merge method only
828
  }
iker_martin's avatar
iker_martin committed
829

830
  malleability_times_broadcast(rootBcast);
iker_martin's avatar
iker_martin committed
831

832
833
834
  local_state = MALL_DIST_COMPLETED;
  if(!is_intercomm) { // Merge Spawn
    if(mall->numP < mall->numC) { // Expand
835
      malleability_comms_update(mall->intercomm);
836
837
838
839
    } else { // Shrink || Merge Shrink requiere de mas tareas
      local_state = MALL_SPAWN_ADAPT_PENDING;
    }
  }
840

841
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) {
842
    MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
843
  }
844

845
  return local_state;
846
847
}

848
849
850
851

///=============================================
///=============================================
///=============================================
852
//TODO Add comment
iker_martin's avatar
iker_martin committed
853
int shrink_redistribution() {
854
855
856
    #if USE_MAL_BARRIERS
      MPI_Barrier(mall->comm);
    #endif
857
    double time_extra = MPI_Wtime();
858

859
860
861
    //TODO Create Commit function. Processes can perform tasks before that. Then call again Malleability to commit the change
    MPI_Abort(MPI_COMM_WORLD, -20); //                                                         (void *) mall_conf->results
    zombies_collect_suspended(mall->user_comm, mall->myId, mall->numP, mall->numC, mall->root, NULL, mall_conf->config_file->n_stages, mall_conf->config_file->capture_method);
iker_martin's avatar
iker_martin committed
862
863
    
    if(mall->myId < mall->numC) {
864
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm)); //FIXME Modificar a que se pida pro el usuario el cambio y se llama a comms_update
865
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
866
      mall->dup_user_comm = 1;
867
868
869
870

      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));

871
872
873
      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");

874
875
      MPI_Comm_free(&(mall->intercomm));

876
877
878
879

      #if USE_MAL_BARRIERS
        MPI_Barrier(mall->comm);
      #endif
880
      mall_conf->times->spawn_time += MPI_Wtime() - time_extra;
881
      return MALL_DIST_COMPLETED;
iker_martin's avatar
iker_martin committed
882
    } else {
883
      return MALL_ZOMBIE;
iker_martin's avatar
iker_martin committed
884
885
886
    }
}

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=================COMM NODE INFO ======================||
//======================================================||
//======================================================||
//TODO Add comment
void comm_node_data(int rootBcast, int is_child_group) {
  MPI_Datatype node_type;

  def_nodeinfo_type(&node_type);
  MPI_Bcast(mall, 1, node_type, rootBcast, mall->intercomm);

  if(is_child_group) {
    mall->nodelist = malloc((mall->nodelist_len+1) * sizeof(char));
    mall->nodelist[mall->nodelist_len] = '\0';
  }
  MPI_Bcast(mall->nodelist, mall->nodelist_len, MPI_CHAR, rootBcast, mall->intercomm);

  MPI_Type_free(&node_type);
}

//TODO Add comment
void def_nodeinfo_type(MPI_Datatype *node_type) {
  int i, counts = 3;
  int blocklengths[3] = {1, 1, 1};
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
  types[0] = types[1] = types[2] = MPI_INT;

  // Rellenar vector displs
  MPI_Get_address(mall, &dir);

  MPI_Get_address(&(mall->num_cpus), &displs[0]);
  MPI_Get_address(&(mall->num_nodes), &displs[1]);
  MPI_Get_address(&(mall->nodelist_len), &displs[2]);

  for(i=0;i<counts;i++) displs[i] -= dir;

  MPI_Type_create_struct(counts, blocklengths, displs, types, node_type);
  MPI_Type_commit(node_type);
}

931
932
933
934
935
936
937
// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

938
939

int comm_state; //FIXME Usar un handler
940
941
942
943
/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
944
  comm_state = MALL_DIST_PENDING;
945
946
947
948
949
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
950
  return comm_state;
951
952
953
954
955
956
957
958
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
959
int thread_check(int wait_completed) {
960
  int all_completed = 0, is_intercomm;
961

962
963
964
965
966
967
968
969
  if(wait_completed && comm_state == MALL_DIST_PENDING) {
    if(pthread_join(mall->async_thread, NULL)) {
      printf("Error al esperar al hilo\n");
      MPI_Abort(MPI_COMM_WORLD, -1);
      return -2;
    } 
  }

970
  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
971
  MPI_Allreduce(&comm_state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
972
973
  if(all_completed != MALL_DIST_COMPLETED) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
  //FIXME No se tiene en cuenta el estado MALL_APP_ENDED
974
975
976
977
978
979

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
980
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
981
982
983
984

  #if USE_MAL_BARRIERS
    MPI_Barrier(mall->intercomm);
  #endif
985
  if(!is_intercomm) mall_conf->times->async_end = MPI_Wtime(); // Merge method only
986
987
988
989
990
991
992
993
994
995
996
997
  return end_redistribution();
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
998
void* thread_async_work() {
999
  send_data(mall->numC, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
1000
  comm_state = MALL_DIST_COMPLETED;
1001
1002
  pthread_exit(NULL);
}
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022


//==============================================================================
/*
 * Muestra por pantalla el estado actual de todos los comunicadores
 */
void print_comms_state() {
  int tester;
  char *test = malloc(MPI_MAX_OBJECT_NAME * sizeof(char));

  MPI_Comm_get_name(mall->comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->comm, test);
  MPI_Comm_get_name(mall->user_comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->user_comm, test);
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_get_name(mall->intercomm, test, &tester);
    printf("P%d Comm=%d Name=%s\n", mall->myId, mall->intercomm, test);
  }
  free(test);
}
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

void malleability_comms_update(MPI_Comm comm) {
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

  MPI_Comm_dup(comm, &(mall->thread_comm));
  MPI_Comm_dup(comm, &(mall->comm));
  MPI_Comm_dup(comm, &(mall->user_comm)); 

  MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
  MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
}
1037