malleabilityManager.c 32.7 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
4
#include "malleabilityManager.h"
#include "malleabilityStates.h"
5
#include "malleabilityDataStructures.h"
6
#include "malleabilityTypes.h"
iker_martin's avatar
iker_martin committed
7
#include "malleabilityZombies.h"
8
#include "spawn_methods/GenericSpawn.h"
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "CommDist.h"

#define MALLEABILITY_USE_SYNCHRONOUS 0
#define MALLEABILITY_USE_ASYNCHRONOUS 1


void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

void Children_init();
int spawn_step();
int start_redistribution();
int check_redistribution();
int end_redistribution();
iker_martin's avatar
iker_martin committed
23
int shrink_redistribution();
24

25
26
27
void comm_node_data(int rootBcast, int is_child_group);
void def_nodeinfo_type(MPI_Datatype *node_type);

28
29
int thread_creation();
int thread_check();
30
void* thread_async_work();
31

32
void print_comms_state();
33
void malleability_comms_update(MPI_Comm comm);
34

35
typedef struct {
36
  int spawn_method;
37
  int spawn_dist;
38
  int spawn_strategies;
39
40
  int red_method;
  int red_strategies;
41

42
  int grp;
43
44
45
46
  configuration *config_file;
  results_data *results;
} malleability_config_t;

iker_martin's avatar
iker_martin committed
47
typedef struct { //FIXME numC_spawned no se esta usando
48
  int myId, numP, numC, numC_spawned, root, root_parents;
49
50
51
  pthread_t async_thread;
  MPI_Comm comm, thread_comm;
  MPI_Comm intercomm;
52
  MPI_Comm user_comm;
53
  int dup_user_comm;
54
  
55
  char *name_exec, *nodelist;
56
  int num_cpus, num_nodes, nodelist_len;
57
58
} malleability_t;

59
int state = MALL_UNRESERVED; //FIXME Mover a otro lado
60
61
62
63
64
65
66
67
68

malleability_config_t *mall_conf;
malleability_t *mall;

malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

69
/*
70
71
72
73
74
75
76
77
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
78
 */
79
int init_malleability(int myId, int numP, int root, MPI_Comm comm, char *name_exec, char *nodelist, int num_cpus, int num_nodes) {
80
81
82
83
84
85
86
87
88
  MPI_Comm dup_comm, thread_comm;

  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

89
  mall->dup_user_comm = 0;
90
91
  MPI_Comm_dup(comm, &dup_comm);
  MPI_Comm_dup(comm, &thread_comm);
92
93
  MPI_Comm_set_name(dup_comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(thread_comm, "MPI_COMM_MALL_THREAD");
94
95
96
97

  mall->myId = myId;
  mall->numP = numP;
  mall->root = root;
98
  mall->comm = dup_comm;
99
  mall->thread_comm = thread_comm;
100
  mall->user_comm = comm;
101

102
  mall->name_exec = name_exec;
103
104
105
  mall->nodelist = nodelist;
  mall->num_cpus = num_cpus;
  mall->num_nodes = num_nodes;
106
107
108
109
110
111

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

112
  state = MALL_NOT_STARTED;
113

114
115
  zombies_service_init();

116
117
118
119
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
  if(mall->intercomm != MPI_COMM_NULL ) { 
    Children_init();
120
    return MALLEABILITY_CHILDREN;
121
  }
iker_martin's avatar
iker_martin committed
122

123
124
125
126
127
128
129
  if(nodelist != NULL) { //TODO To be deprecated by using Slurm or else statement
    mall->nodelist_len = strlen(nodelist);
  } else { // If no nodelist is detected, get it from the actual run
    mall->nodelist = malloc(MPI_MAX_PROCESSOR_NAME * sizeof(char));
    MPI_Get_processor_name(mall->nodelist, &mall->nodelist_len);
    //TODO Get name of each process and create real nodelist
  }
130

131
  return MALLEABILITY_NOT_CHILDREN;
132
133
}

134
135
136
137
138
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
139
void free_malleability() {	  
140
141
142
143
144
145
146
147
148
149
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);

150
151
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
152
153
  free(mall);
  free(mall_conf);
iker_martin's avatar
iker_martin committed
154
155
156
157

  zombies_awake();
  zombies_service_free();

158
  state = MALL_UNRESERVED;
159
160
}

161
162
/* 
 * TODO Reescribir
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
 * Se realiza el redimensionado de procesos por parte de los padres.
 *
 * Se crean los nuevos procesos con la distribucion fisica elegida y
 * a continuacion se transmite la informacion a los mismos.
 *
 * Si hay datos asincronos a transmitir, primero se comienza a
 * transmitir estos y se termina la funcion. Se tiene que comprobar con
 * llamando a la función de nuevo que se han terminado de enviar
 *
 * Si hay ademas datos sincronos a enviar, no se envian aun.
 *
 * Si solo hay datos sincronos se envian tras la creacion de los procesos
 * y finalmente se desconectan los dos grupos de procesos.
 */
int malleability_checkpoint() {
178
179
180
181
182
183
184
  double end_real_time;

  switch(state) {
    case MALL_UNRESERVED:
      break;
    case MALL_NOT_STARTED:
      // Comprobar si se tiene que realizar un redimensionado
185
      //MPI_Barrier(mall->comm);
186
      mall_conf->results->malleability_time[mall_conf->grp] = MPI_Wtime();
187
      //if(CHECK_RMS()) {return MALL_DENIED;}
188

189
190
191
192
193
194
      state = spawn_step();

      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPT_POSTPONE){
        malleability_checkpoint();
      }
      break;
195

196
197
198
199
    case MALL_SPAWN_PENDING: // Comprueba si el spawn ha terminado y comienza la redistribucion
    case MALL_SPAWN_SINGLE_PENDING:
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
      if (state == MALL_SPAWN_COMPLETED || state == MALL_SPAWN_ADAPTED) {
200
        //MPI_Barrier(mall->comm);
201
202
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
        mall_conf->results->spawn_real_time[mall_conf->grp] = end_real_time - mall_conf->results->spawn_start;
203

204
205
206
        malleability_checkpoint();
      }
      break;
207

208
209
210
211
212
    case MALL_SPAWN_ADAPT_POSTPONE:
    case MALL_SPAWN_COMPLETED:
      state = start_redistribution();
      malleability_checkpoint();
      break;
213

214
    case MALL_DIST_PENDING:
215
      if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
216
217
218
219
        state = thread_check();
      } else {
        state = check_redistribution();
      }
220
      if(state != MALL_DIST_PENDING) { 
221
222
223
224
225
        malleability_checkpoint();
      }
      break;

    case MALL_SPAWN_ADAPT_PENDING:
226
      //MPI_Barrier(mall->comm);
227
228
229
      mall_conf->results->spawn_start = MPI_Wtime();
      unset_spawn_postpone_flag(state);
      state = check_spawn_state(&(mall->intercomm), mall->comm, &end_real_time);
230

231
      if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
232
        //MPI_Barrier(mall->comm);
233
        mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
234
	malleability_checkpoint();
235
      }
236
      break;
237

238
    case MALL_SPAWN_ADAPTED:
239
      state = shrink_redistribution();
240
      malleability_checkpoint();
241
      break;
242

243
    case MALL_DIST_COMPLETED: //TODO No es esto muy feo?
244
      //MPI_Barrier(mall->comm);
245
      mall_conf->results->malleability_end = MPI_Wtime();
246
247
248
      state = MALL_COMPLETED;
      break;
  }
249
250
251
252
253
254
255
256
257
258
259
260
261
  return state;
}

// Funciones solo necesarias por el benchmark
//-------------------------------------------------------------------------------------------------------------
void set_benchmark_grp(int grp) {
  mall_conf->grp = grp;
}

void set_benchmark_configuration(configuration *config_file) {
  mall_conf->config_file = config_file;
}

262
void get_benchmark_configuration(configuration **config_file) {
263
264
265
266
267
268
269
  *config_file = mall_conf->config_file;
}

void set_benchmark_results(results_data *results) {
  mall_conf->results = results;
}

270
void get_benchmark_results(results_data **results) {
271
272
273
274
  *results = mall_conf->results;
}
//-------------------------------------------------------------------------------------------------------------

275
void set_malleability_configuration(int spawn_method, int spawn_strategies, int spawn_dist, int red_method, int red_strategies) {
276
277
  mall_conf->spawn_method = spawn_method;
  mall_conf->spawn_strategies = spawn_strategies;
278
  mall_conf->spawn_dist = spawn_dist;
279
280
  mall_conf->red_method = red_method;
  mall_conf->red_strategies = red_strategies;
281
282
283
284
}

/*
 * To be deprecated
285
 * Tiene que ser llamado despues de setear la config
286
287
 */
void set_children_number(int numC){
288
  if((mall_conf->spawn_method == MALL_SPAWN_MERGE) && (numC >= mall->numP)) {
289
290
291
292
293
    mall->numC = numC;
    mall->numC_spawned = numC - mall->numP;

    if(numC == mall->numP) { // Migrar
      mall->numC_spawned = numC;
294
      mall_conf->spawn_method = MALL_SPAWN_BASELINE;
295
296
297
298
299
300
301
302
303
304
305
    }
  } else {
    mall->numC = numC;
    mall->numC_spawned = numC;
  }
}

/*
 * TODO
 */
void get_malleability_user_comm(MPI_Comm *comm) {
306
307
308
309
310
311
  if(mall->dup_user_comm) {
    if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm));
    MPI_Comm_dup(mall->comm, &(mall->user_comm));
    MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
    mall->dup_user_comm = 0;
  }
312
  *comm = mall->user_comm;
313
314
315
316
317
318
319
320
321
}

/*
 * Anyade a la estructura concreta de datos elegida
 * el nuevo set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que anyadir cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "add_data".
322
323
 *
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
324
 */
325
void malleability_add_data(void *data, size_t total_qty, int type, int is_replicated, int is_constant) {
326
  size_t total_reqs = 0;
327
328
329

  if(is_constant) {
    if(is_replicated) {
330
      add_data(data, total_qty, type, total_reqs, rep_s_data);
331
    } else {
332
      add_data(data, total_qty, type, total_reqs, dist_s_data);
333
334
335
    }
  } else {
    if(is_replicated) {
336
      add_data(data, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
337
    } else {
338
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
339
        total_reqs = 1;
340
      } else if(mall_conf->red_method  == MALL_RED_IBARRIER) { //TODO This is a strategy, not a method
341
        total_reqs = 2;
342
      } else if(mall_conf->red_method  == MALL_RED_POINT) {
343
        total_reqs = mall->numC;
344
345
346
347
348
349
350
      }
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
    }
  }
}

351
352
353
354
355
356
357
/*
 * Modifica en la estructura concreta de datos elegida en el indice "index"
 * con el set de datos "data" de un total de "total_qty" elementos.
 *
 * Los datos variables se tienen que modificar cuando quieran ser mandados, no antes
 *
 * Mas informacion en la funcion "modify_data".
358
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
359
360
 */
void malleability_modify_data(void *data, size_t index, size_t total_qty, int type, int is_replicated, int is_constant) {
361
362
  size_t total_reqs = 0;

363
364
  if(is_constant) {
    if(is_replicated) {
365
      modify_data(data, index, total_qty, type, total_reqs, rep_s_data);
366
    } else {
367
      modify_data(data, index, total_qty, type, total_reqs, dist_s_data);
368
369
370
    }
  } else {
    if(is_replicated) {
371
372
373
      modify_data(data, index, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
    } else {    
      if(mall_conf->red_method  == MALL_RED_BASELINE) {
374
        total_reqs = 1;
375
      } else if(mall_conf->red_method  == MALL_RED_IBARRIER) { //TODO This is a strategy, not a method
376
        total_reqs = 2;
377
      } else if(mall_conf->red_method  == MALL_RED_POINT) {
378
379
380
        total_reqs = mall->numC;
      }
      
381
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data);
382
383
384
385
    }
  }
}

386
387
388
/*
 * Devuelve el numero de entradas para la estructura de descripcion de 
 * datos elegida.
389
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
390
 */
391
void malleability_get_entries(size_t *entries, int is_replicated, int is_constant){
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
  
  if(is_constant) {
    if(is_replicated) {
      *entries = rep_s_data->entries;
    } else {
      *entries = dist_s_data->entries;
    }
  } else {
    if(is_replicated) {
      *entries = rep_a_data->entries;
    } else {
      *entries = dist_a_data->entries;
    }
  }
}

/*
 * Devuelve el elemento de la lista "index" al usuario.
 * La devolución es en el mismo orden que lo han metido los padres
 * con la funcion "malleability_add_data()".
 * Es tarea del usuario saber el tipo de esos datos.
 * TODO Refactor a que sea automatico
414
 * //FIXME Si es constante se debería ir a asincrono, no sincrono
415
 */
416
void malleability_get_data(void **data, size_t index, int is_replicated, int is_constant) {
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
      data_struct = rep_s_data;
    } else {
      data_struct = dist_s_data;
    }
  } else {
    if(is_replicated) {
      data_struct = rep_a_data;
    } else {
      data_struct = dist_a_data;
    }
  }

433
  *data = data_struct->arrays[index];
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
}


//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||


/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
450
  size_t i;
451
  char *aux_send, *aux_recv;
452
453
454

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
455
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
456
      aux_recv = NULL;
457
458
      async_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, mall->intercomm, 
		      &(data_struct->requests[i]), &(data_struct->request_qty[i]));
459
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
460
461
462
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
463
464
      aux_send = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
      aux_recv = NULL;
465
      sync_communication(aux_send, &aux_recv, data_struct->qty[i], mall->myId, mall->numP, numP_children, MALLEABILITY_NOT_CHILDREN, mall_conf->red_method, mall->intercomm);
466
      if(aux_recv != NULL) data_struct->arrays[i] = (void *) aux_recv;
467
468
469
470
471
472
473
474
475
476
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
477
  size_t i;
478
  char *aux, aux_s;
479
480
481
482

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
483
484
      async_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall_conf->red_strategies, mall->intercomm, 
		      &(data_struct->requests[i]), &(data_struct->request_qty[i]));
485
486
487
488
489
      data_struct->arrays[i] = (void *) aux;
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
      aux = (char *) data_struct->arrays[i]; //TODO Comprobar que realmente es un char
490
      sync_communication(&aux_s, &aux, data_struct->qty[i], mall->myId, mall->numP, numP_parents, MALLEABILITY_CHILDREN, mall_conf->red_method, mall->intercomm);
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
      data_struct->arrays[i] = (void *) aux;
    }
  }
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||
/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
void Children_init() {
508
509
  size_t i;
  int numP_parents, root_parents;
510
  int is_intercomm;
511

512
  malleability_connect_children(mall->myId, mall->numP, mall->root, mall->comm, &numP_parents, &root_parents, &(mall->intercomm));
513
514
515
516
517
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  if(!is_intercomm) { // For intracommunicators, these processes will be added
    MPI_Comm_rank(mall->intercomm, &(mall->myId));
    MPI_Comm_size(mall->intercomm, &(mall->numP));
  }
518

519
  recv_config_file(mall->root, mall->intercomm, &(mall_conf->config_file));
520
  comm_node_data(root_parents, MALLEABILITY_CHILDREN);
521
522
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, root_parents, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, root_parents, mall->intercomm);
523

524
  mall_conf->results = (results_data *) malloc(sizeof(results_data));
525
  init_results_data(mall_conf->results, mall_conf->config_file->n_resizes, mall_conf->config_file->n_stages, RESULTS_INIT_DATA_QTY);
526

527
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
528
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos
529
    //MPI_Barrier(mall->intercomm);
530

531
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
532
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
533
534
    } else {
      recv_data(numP_parents, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
535
    }
536

537
    //MPI_Barrier(mall->intercomm);
538
539
    mall_conf->results->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
  }
540

541
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_CHILDREN, mall->myId, root_parents, mall->intercomm);
542
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
543
    //MPI_Barrier(mall->intercomm);
544
    recv_data(numP_parents, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);
545
546
547
548

    // TODO Crear funcion especifica y anyadir para Asinc
    // TODO Tener en cuenta el tipo y qty
    for(i=0; i<rep_s_data->entries; i++) {
549
550
551
552
553
554
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
555
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, root_parents, mall->intercomm);
556
    } 
557
558
    //MPI_Barrier(mall->intercomm);
    mall_conf->results->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona
559
  }
560
  
561
  // Guardar los resultados de esta transmision
562
  comm_results(mall_conf->results, mall->root, mall_conf->config_file->n_resizes, mall->intercomm);
563
  if(!is_intercomm) {
564
    malleability_comms_update(mall->intercomm);
565
  }
566
567
  //MPI_Barrier(mall->comm);
  mall_conf->results->malleability_end = MPI_Wtime(); // Obtener timestamp de cuando termina maleabilidad
568

569
  MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
570
571
572
573
574
575
576
577
578
579
580
581
582
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
583
  //MPI_Barrier(mall->comm);
584
  mall_conf->results->spawn_start = MPI_Wtime();
585
 
586
  state = init_spawn(mall->name_exec, mall->num_cpus, mall->num_nodes, mall->nodelist, mall->myId, mall->numP, mall->numC, mall->root, mall_conf->spawn_dist, mall_conf->spawn_method, mall_conf->spawn_strategies, mall->thread_comm, &(mall->intercomm));
587

588
  if(!malleability_spawn_contains_strat(mall_conf->spawn_strategies, MALL_SPAWN_PTHREAD, NULL)) {
589
      //MPI_Barrier(mall->comm);
590
591
592
593
594
      mall_conf->results->spawn_time[mall_conf->grp] = MPI_Wtime() - mall_conf->results->spawn_start;
  }
  return state;
}

595

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
611
612
613
614
615
616
617
618
  int rootBcast, is_intercomm;

  is_intercomm = 0;
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
  } else { 
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
619
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
620
  }
621

622
623
624
625
626
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
627

628
  send_config_file(mall_conf->config_file, rootBcast, mall->intercomm);
629
  comm_node_data(rootBcast, MALLEABILITY_NOT_CHILDREN);
630
631
  MPI_Bcast(&(mall_conf->red_method), 1, MPI_INT, rootBcast, mall->intercomm);
  MPI_Bcast(&(mall_conf->red_strategies), 1, MPI_INT, rootBcast, mall->intercomm);
632

633
  comm_data_info(rep_a_data, dist_a_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
634
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
635
    //FIXME No se envian los datos replicados (rep_a_data)
636
    //MPI_Barrier(mall->intercomm);
637
    mall_conf->results->async_time[mall_conf->grp] = MPI_Wtime();
638
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_THREAD, NULL)) {
639
640
641
      return thread_creation();
    } else {
      send_data(mall->numC, dist_a_data, MALLEABILITY_USE_ASYNCHRONOUS);
642
      return MALL_DIST_PENDING; 
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    }
  } 
  return end_redistribution();
}


/*
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
 */
int check_redistribution() {
663
664
  int is_intercomm, completed, local_completed, all_completed, test_err;
  size_t i, j, req_qty;
665
  MPI_Request *req_completed;
666
  local_completed = 1;
667
  test_err = 0;
668
669
670
671
672
673
674

  //FIXME Modificar para que se tenga en cuenta rep_a_data
  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) { //FIXME Strategy not fully implemented
      test_err = MPI_Test(&(req_completed[req_qty-1]), &completed, MPI_STATUS_IGNORE);
675
      local_completed = local_completed && completed;
676
    } else {
677
678
679
680
681
      for(j=0; j<req_qty; j++) {
	test_err = MPI_Test(&(req_completed[j]), &completed, MPI_STATUS_IGNORE);
	local_completed = local_completed && completed;
      }
//      test_err = MPI_Testall(req_qty, req_completed, &completed, MPI_STATUSES_IGNORE);
682
    }
683
684
685
686
687
688
689
  }
 
  if (test_err != MPI_SUCCESS && test_err != MPI_ERR_PENDING) {
    printf("P%d aborting -- Test Async\n", mall->myId);
    MPI_Abort(MPI_COMM_WORLD, test_err);
  }

690
  MPI_Allreduce(&local_completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
691
  if(!all_completed) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
692
  
693
694
  if(malleability_red_contains_strat(mall_conf->red_strategies, MALL_RED_IBARRIER, NULL)) { //FIXME Strategy not fully implemented
    MPI_Waitall(req_qty, req_completed, MPI_STATUSES_IGNORE);
695
696
697
    //Para la desconexión de ambos grupos de procesos es necesario indicar a MPI que esta comm
    //ha terminado, aunque solo se pueda llegar a este punto cuando ha terminado
  }
698
699

  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
700
  //MPI_Barrier(mall->intercomm);
701
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
702
703
704
705
706
707
708
709
710
711
712
713
714
  return end_redistribution();
}


/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
715
716
  size_t i;
  int is_intercomm, rootBcast, local_state;
717

718
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
719
720
721
722
723
724
  if(is_intercomm) {
    rootBcast = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    rootBcast = mall->root;
  }
  
725
  comm_data_info(rep_s_data, dist_s_data, MALLEABILITY_NOT_CHILDREN, mall->myId, mall->root, mall->intercomm);
726
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
727
    //MPI_Barrier(mall->intercomm);
728
    mall_conf->results->sync_time[mall_conf->grp] = MPI_Wtime();
729
730
731
    send_data(mall->numC, dist_s_data, MALLEABILITY_USE_SYNCHRONOUS);

    // TODO Crear funcion especifica y anyadir para Asinc
732
    // TODO Tener en cuenta el tipo
733
    for(i=0; i<rep_s_data->entries; i++) {
734
735
736
737
738
739
      MPI_Datatype datatype;
      if(rep_s_data->types[i] == MAL_INT) {
        datatype = MPI_INT;
      } else {
        datatype = MPI_CHAR;
      }
740
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], datatype, rootBcast, mall->intercomm);
741
    } 
742
743
    //MPI_Barrier(mall->intercomm);
    if(!is_intercomm) mall_conf->results->sync_end = MPI_Wtime(); // Merge method only
744
  }
iker_martin's avatar
iker_martin committed
745

746
  comm_results(mall_conf->results, rootBcast, mall_conf->config_file->n_resizes, mall->intercomm);
iker_martin's avatar
iker_martin committed
747

748
749
750
  local_state = MALL_DIST_COMPLETED;
  if(!is_intercomm) { // Merge Spawn
    if(mall->numP < mall->numC) { // Expand
751
      malleability_comms_update(mall->intercomm);
752
753
754
755
    } else { // Shrink || Merge Shrink requiere de mas tareas
      local_state = MALL_SPAWN_ADAPT_PENDING;
    }
  }
756

757
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) {
758
    MPI_Comm_disconnect(&(mall->intercomm)); //FIXME Error en OpenMPI + Merge
759
  }
760

761
  return local_state;
762
763
}

764
765
766
767

///=============================================
///=============================================
///=============================================
768
//TODO Add comment
iker_martin's avatar
iker_martin committed
769
int shrink_redistribution() {
770
    //MPI_Barrier(mall->comm);
771
    double time_extra = MPI_Wtime();
772

773
    //TODO Create new state before collecting zombies. Processes can perform tasks before that. Then call again Malleability to commit the change
774
    zombies_collect_suspended(mall->user_comm, mall->myId, mall->numP, mall->numC, mall->root, (void *) mall_conf->results, mall_conf->config_file->n_stages);
iker_martin's avatar
iker_martin committed
775
776
    
    if(mall->myId < mall->numC) {
777
      if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm)); //FIXME Modificar a que se pida pro el usuario el cambio y se llama a comms_update
778
      if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
779
      mall->dup_user_comm = 1;
780
781
782
783

      MPI_Comm_dup(mall->intercomm, &(mall->thread_comm));
      MPI_Comm_dup(mall->intercomm, &(mall->comm));

784
785
786
      MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
      MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");

787
788
      MPI_Comm_free(&(mall->intercomm));

789
      //MPI_Barrier(mall->comm);
790
791
792
      mall_conf->results->spawn_time[mall_conf->grp] += MPI_Wtime() - time_extra;
      if(malleability_spawn_contains_strat(mall_conf->spawn_strategies,MALL_SPAWN_PTHREAD, NULL)) {
          mall_conf->results->spawn_real_time[mall_conf->grp] += MPI_Wtime() - time_extra;
793
      }
794
      return MALL_DIST_COMPLETED;
iker_martin's avatar
iker_martin committed
795
    } else {
796
      return MALL_ZOMBIE;
iker_martin's avatar
iker_martin committed
797
798
799
    }
}

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=================COMM NODE INFO ======================||
//======================================================||
//======================================================||
//TODO Add comment
void comm_node_data(int rootBcast, int is_child_group) {
  MPI_Datatype node_type;

  def_nodeinfo_type(&node_type);
  MPI_Bcast(mall, 1, node_type, rootBcast, mall->intercomm);

  if(is_child_group) {
    mall->nodelist = malloc((mall->nodelist_len+1) * sizeof(char));
    mall->nodelist[mall->nodelist_len] = '\0';
  }
  MPI_Bcast(mall->nodelist, mall->nodelist_len, MPI_CHAR, rootBcast, mall->intercomm);

  MPI_Type_free(&node_type);
}

//TODO Add comment
void def_nodeinfo_type(MPI_Datatype *node_type) {
  int i, counts = 3;
  int blocklengths[3] = {1, 1, 1};
  MPI_Aint displs[counts], dir;
  MPI_Datatype types[counts];

  // Rellenar vector types
  types[0] = types[1] = types[2] = MPI_INT;

  // Rellenar vector displs
  MPI_Get_address(mall, &dir);

  MPI_Get_address(&(mall->num_cpus), &displs[0]);
  MPI_Get_address(&(mall->num_nodes), &displs[1]);
  MPI_Get_address(&(mall->nodelist_len), &displs[2]);

  for(i=0;i<counts;i++) displs[i] -= dir;

  MPI_Type_create_struct(counts, blocklengths, displs, types, node_type);
  MPI_Type_commit(node_type);
}

844
845
846
847
848
849
850
// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

851

852
int comm_state; //FIXME Usar un handler
853
854
855
856
/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
857
  comm_state = MALL_DIST_PENDING;
858
859
860
861
862
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
863
  return comm_state;
864
865
866
867
868
869
870
871
872
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
int thread_check() {
873
  int all_completed = 0, is_intercomm;
874
875

  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
876
  MPI_Allreduce(&comm_state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
877
878
  if(all_completed != MALL_DIST_COMPLETED) return MALL_DIST_PENDING; // Continue only if asynchronous send has ended 
  //FIXME No se tiene en cuenta el estado MALL_APP_ENDED
879
880
881
882
883
884

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
885
  MPI_Comm_test_inter(mall->intercomm, &is_intercomm);
886
  //MPI_Barrier(mall->intercomm);
887
  if(!is_intercomm) mall_conf->results->async_end = MPI_Wtime(); // Merge method only
888
889
890
891
892
893
894
895
896
897
898
899
  return end_redistribution();
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
900
void* thread_async_work() {
901
  send_data(mall->numC, dist_a_data, MALLEABILITY_USE_SYNCHRONOUS);
902
  comm_state = MALL_DIST_COMPLETED;
903
904
  pthread_exit(NULL);
}
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924


//==============================================================================
/*
 * Muestra por pantalla el estado actual de todos los comunicadores
 */
void print_comms_state() {
  int tester;
  char *test = malloc(MPI_MAX_OBJECT_NAME * sizeof(char));

  MPI_Comm_get_name(mall->comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->comm, test);
  MPI_Comm_get_name(mall->user_comm, test, &tester);
  printf("P%d Comm=%d Name=%s\n", mall->myId, mall->user_comm, test);
  if(mall->intercomm != MPI_COMM_NULL) {
    MPI_Comm_get_name(mall->intercomm, test, &tester);
    printf("P%d Comm=%d Name=%s\n", mall->myId, mall->intercomm, test);
  }
  free(test);
}
925
926
927
928
929
930
931
932
933
934
935
936
937
938

void malleability_comms_update(MPI_Comm comm) {
  if(mall->thread_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->thread_comm));
  if(mall->comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->comm));
  if(mall->user_comm != MPI_COMM_WORLD) MPI_Comm_free(&(mall->user_comm)); //TODO No es peligroso?

  MPI_Comm_dup(comm, &(mall->thread_comm));
  MPI_Comm_dup(comm, &(mall->comm));
  MPI_Comm_dup(comm, &(mall->user_comm)); 

  MPI_Comm_set_name(mall->thread_comm, "MPI_COMM_MALL_THREAD");
  MPI_Comm_set_name(mall->comm, "MPI_COMM_MALL");
  MPI_Comm_set_name(mall->user_comm, "MPI_COMM_MALL_USER");
}