MAM_Manager.c 40.9 KB
Newer Older
1
#include <pthread.h>
2
#include <string.h>
3
#include "MAM.h"
4
5
6
7
8
9
#include "MAM_Constants.h"
#include "MAM_DataStructures.h"
#include "MAM_Types.h"
#include "MAM_Zombies.h"
#include "MAM_Times.h"
#include "MAM_RMS.h"
10
#include "MAM_Init_Configuration.h"
11
#include "spawn_methods/GenericSpawn.h"
12
#include "distribution_methods/Distributed_CommDist.h"
13

14
15
#define MAM_USE_SYNCHRONOUS 0
#define MAM_USE_ASYNCHRONOUS 1
16

17
void MAM_Commit(int *mam_state);
18
19
20
21

void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous);
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous);

22

23
24
int MAM_St_rms(int *mam_state);
int MAM_St_spawn_start();
25
26
int MAM_St_spawn_pending(int wait_completed);
int MAM_St_red_start();
27
int MAM_St_red_pending(int wait_completed);
28
int MAM_St_user_start(int *mam_state);
29
30
31
32
33
34
35
36
int MAM_St_user_pending(int *mam_state, int wait_completed, void (*user_function)(void *), void *user_args);
int MAM_St_user_completed();
int MAM_St_spawn_adapt_pending(int wait_completed);
int MAM_St_spawn_adapted(int *mam_state);
int MAM_St_red_completed(int *mam_state);
int MAM_St_completed(int *mam_state);


37
void Children_init(void (*user_function)(void *), void *user_args);
38
39
int spawn_step();
int start_redistribution();
40
int check_redistribution(int wait_completed);
41
int end_redistribution();
iker_martin's avatar
iker_martin committed
42
int shrink_redistribution();
43
44

int thread_creation();
45
int thread_check(int wait_completed);
46
void* thread_async_work();
47

48
int MAM_I_convert_key(char *key);
49
void MAM_I_create_user_struct(int is_children_group);
50

51
52
53
54
55
malleability_data_t *rep_s_data;
malleability_data_t *dist_s_data;
malleability_data_t *rep_a_data;
malleability_data_t *dist_a_data;

56
57
mam_user_reconf_t *user_reconf;

58
/*
59
60
61
62
63
64
65
66
 * Inicializa la reserva de memoria para el modulo de maleabilidad
 * creando todas las estructuras necesarias y copias de comunicadores
 * para no interferir en la aplicación.
 *
 * Si es llamada por un grupo de procesos creados de forma dinámica,
 * inicializan la comunicacion con sus padres. En este caso, al terminar 
 * la comunicacion los procesos hijo estan preparados para ejecutar la
 * aplicacion.
67
 */
68
int MAM_Init(int root, MPI_Comm *comm, char *name_exec, void (*user_function)(void *), void *user_args) {
69
  MPI_Comm dup_comm, thread_comm, original_comm;
70
71
72

  mall_conf = (malleability_config_t *) malloc(sizeof(malleability_config_t));
  mall = (malleability_t *) malloc(sizeof(malleability_t));
73
74
75
76
77
  user_reconf = (mam_user_reconf_t *) malloc(sizeof(mam_user_reconf_t));

  MPI_Comm_rank(*comm, &(mall->myId));
  MPI_Comm_size(*comm, &(mall->numP));

78
  #if MAM_DEBUG
79
80
    DEBUG_FUNC("Initializing MaM", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(*comm);
  #endif
81

82
83
84
85
86
  rep_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_s_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  rep_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));
  dist_a_data = (malleability_data_t *) malloc(sizeof(malleability_data_t));

87
88
  MPI_Comm_dup(*comm, &dup_comm);
  MPI_Comm_dup(*comm, &thread_comm);
89
  MPI_Comm_dup(*comm, &original_comm);
90
91
  MPI_Comm_set_name(dup_comm, "MAM_MAIN");
  MPI_Comm_set_name(thread_comm, "MAM_THREAD");
92
  MPI_Comm_set_name(original_comm, "MAM_ORIGINAL");
93
94

  mall->root = root;
iker_martin's avatar
iker_martin committed
95
  mall->root_parents = root;
96
  mall->zombie = 0;
97
  mall->comm = dup_comm;
98
  mall->thread_comm = thread_comm;
99
  mall->original_comm = original_comm;
100
101
  mall->user_comm = comm; 
  mall->tmp_comm = MPI_COMM_NULL;
102

103
  mall->name_exec = name_exec;
104
  mall->nodelist = NULL;
105
  mall->nodelist_len = 0;
106
107
108
109
110
111

  rep_s_data->entries = 0;
  rep_a_data->entries = 0;
  dist_s_data->entries = 0;
  dist_a_data->entries = 0;

112
  state = MAM_I_NOT_STARTED;
113

114
  MAM_Init_configuration();
115
  MAM_Zombies_service_init();
116
  init_malleability_times();
117
  MAM_Def_main_datatype();
118

119
120
  // Si son el primer grupo de procesos, obtienen los datos de los padres
  MPI_Comm_get_parent(&(mall->intercomm));
121
  if(mall->intercomm != MPI_COMM_NULL) { 
122
    Children_init(user_function, user_args);
123
    return MAM_TARGETS;
124
  }
125

126
  //TODO Check potential improvement - If check_hosts does not use slurm, internode_group could be obtained there
127
  MAM_check_hosts();
128
  mall->internode_group = MAM_Is_internode_group();
129
  MAM_Set_initial_configuration();
iker_martin's avatar
iker_martin committed
130

131
  #if MAM_USE_BARRIERS && MAM_DEBUG
132
133
134
135
    if(mall->myId == mall->root)
      printf("MaM: Using barriers to record times.\n");
  #endif

136
  #if MAM_DEBUG
137
    DEBUG_FUNC("MaM has been initialized correctly as parents", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(*comm);
138
139
  #endif

140
  return MAM_SOURCES;
141
142
}

143
144
145
146
147
/*
 * Elimina toda la memoria reservado por el modulo
 * de maleabilidad y asegura que los zombies
 * despierten si los hubiese.
 */
148
149
int MAM_Finalize() {	  
  int request_abort;
150
151
152
153
154
155
156
157
158
  free_malleability_data_struct(rep_s_data);
  free_malleability_data_struct(rep_a_data);
  free_malleability_data_struct(dist_s_data);
  free_malleability_data_struct(dist_a_data);

  free(rep_s_data);
  free(rep_a_data);
  free(dist_s_data);
  free(dist_a_data);
159
  if(mall->nodelist != NULL) free(mall->nodelist);
160

161
  MAM_Free_main_datatype();
162
  request_abort = MAM_Zombies_service_free();
163
  free_malleability_times();
164
165
  if(mall->comm != MPI_COMM_WORLD && mall->comm != MPI_COMM_NULL) MPI_Comm_disconnect(&(mall->comm));
  if(mall->thread_comm != MPI_COMM_WORLD && mall->thread_comm != MPI_COMM_NULL) MPI_Comm_disconnect(&(mall->thread_comm));
166
  if(mall->intercomm != MPI_COMM_WORLD && mall->intercomm != MPI_COMM_NULL) { MPI_Comm_disconnect(&(mall->intercomm)); } //FIXME Error en OpenMPI + Merge
167
  if(mall->original_comm != MPI_COMM_WORLD && mall->original_comm != MPI_COMM_NULL) MPI_Comm_free(&(mall->original_comm));
168
169
  free(mall);
  free(mall_conf);
170
  free(user_reconf);
iker_martin's avatar
iker_martin committed
171

172
  state = MAM_I_UNRESERVED;
173
  return request_abort;
174
175
}

176
177
/* 
 * TODO Reescribir
178
179
180
181
 * Comprueba el estado de la maleabilidad. Intenta avanzar en la misma
 * si es posible. Funciona como una máquina de estados.
 * Retorna el estado de la maleabilidad concreto y modifica el argumento
 * "mam_state" a uno generico.
182
 *
183
184
 * El argumento "wait_completed" se utiliza para esperar a la finalización de
 * las tareas llevadas a cabo por parte de MAM.
185
186
 *
 */
187
int MAM_Checkpoint(int *mam_state, int wait_completed, void (*user_function)(void *), void *user_args) {
188
  int call_checkpoint = 0;
189

190
  //TODO This could be changed to an array with the functions to call in each case
191
  switch(state) {
192
    case MAM_I_UNRESERVED:
193
      *mam_state = MAM_UNRESERVED;
194
      break;
195
    case MAM_I_NOT_STARTED:
196
197
      call_checkpoint = MAM_St_rms(mam_state);
      break;
198
    case MAM_I_RMS_COMPLETED:
199
      call_checkpoint = MAM_St_spawn_start();
200
      break;
201

202
203
    case MAM_I_SPAWN_PENDING: // Comprueba si el spawn ha terminado
    case MAM_I_SPAWN_SINGLE_PENDING:
204
      call_checkpoint = MAM_St_spawn_pending(wait_completed);
205
      break;
206

207
208
    case MAM_I_SPAWN_ADAPT_POSTPONE:
    case MAM_I_SPAWN_COMPLETED:
209
      call_checkpoint = MAM_St_red_start();
210
      break;
211

212
    case MAM_I_DIST_PENDING:
213
      call_checkpoint = MAM_St_red_pending(wait_completed);
214
215
      break;

216
    case MAM_I_USER_START:
217
218
219
      call_checkpoint = MAM_St_user_start(mam_state);
      break;

220
    case MAM_I_USER_PENDING:
221
      call_checkpoint = MAM_St_user_pending(mam_state, wait_completed, user_function, user_args);
222
      break;
223

224
    case MAM_I_USER_COMPLETED:
225
      call_checkpoint = MAM_St_user_completed();
226
      break;
227

228
    case MAM_I_SPAWN_ADAPT_PENDING:
229
      call_checkpoint = MAM_St_spawn_adapt_pending(wait_completed);
230
231
      break;

232
233
    case MAM_I_SPAWN_ADAPTED:
    case MAM_I_DIST_COMPLETED:
234
      call_checkpoint = MAM_St_completed(mam_state);
235
236
      break;
  }
237

238
  if(call_checkpoint) { MAM_Checkpoint(mam_state, wait_completed, user_function, user_args); }
239
  if(state > MAM_I_NOT_STARTED && state < MAM_I_COMPLETED) *mam_state = MAM_PENDING;
240
241
242
  return state;
}

243
244
245
/*
 * TODO
 */
246
void MAM_Resume_redistribution(int *mam_state) {
247
  state = MAM_I_USER_COMPLETED;
248
  if(mam_state != NULL) *mam_state = MAM_PENDING;
249
250
}

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//BEGIN ADDED FOR DMR
int MAM_DMR_Is_zombie() {
  return mall->zombie;
}

void MAM_DMR_Update_nodelist(char *nodelist, int num_nodes) {
  if(mall->nodelist!= NULL) {
    free(mall->nodelist);
    mall->nodelist = NULL;
  }
  mall->nodelist_len = strlen(nodelist)+1;
  mall->nodelist = (char *) malloc(mall->nodelist_len * sizeof(char));
  strcpy(mall->nodelist, nodelist);
  mall->num_nodes = num_nodes;
}
//END ADDED FOR DMR

268
269
270
/*
 * TODO
 */
271
void MAM_Commit(int *mam_state) {
272
  //int request_abort; Removed for DMR
273
  #if MAM_DEBUG
274
    if(mall->myId == mall->root){ DEBUG_FUNC("Trying to commit", mall->myId, mall->numP); } fflush(stdout);
275
276
  #endif

277
  // Get times before commiting
278
  if(mall_conf->spawn_method == MAM_SPAWN_BASELINE) {
279
    // This communication is only needed when the root process will become a zombie
280
    malleability_times_broadcast(mall->root_collectives);
281
  }
282

283
  // Free unneded communicators
284
285
  if(mall->tmp_comm != MPI_COMM_WORLD && mall->tmp_comm != MPI_COMM_NULL) MPI_Comm_disconnect(&(mall->tmp_comm));
  if(*(mall->user_comm) != MPI_COMM_WORLD && *(mall->user_comm) != MPI_COMM_NULL) MPI_Comm_disconnect(mall->user_comm);
286

287
288
  // Zombies Treatment
  MAM_Zombies_update();
289
  if(mall->zombie) {
290
    #if MAM_DEBUG >= 1
291
292
      DEBUG_FUNC("Is terminating as zombie", mall->myId, mall->numP); fflush(stdout);
    #endif
293
    /* BEGIN REMOVED FOR DMR
294
295
    request_abort = MAM_Finalize();
    if(request_abort) { MPI_Abort(MPI_COMM_WORLD, -101); }
296
    MPI_Finalize();
297
    exit(0);
298
299
300
301
302
303
304
305
    END REMOVED FOR DMR
    */ 
    //BEGIN ADDED FOR DMR
    if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) { MPI_Comm_disconnect(&(mall->intercomm)); }
    state = MAM_I_NOT_STARTED;
    if(mam_state != NULL) *mam_state = MAM_COMPLETED;
    return;
    //END ADDED FOR DMR
306
307
  }

308
  // Reset/Free communicators
309
  if(mall_conf->spawn_method == MAM_SPAWN_MERGE) { MAM_comms_update(mall->intercomm); }
310
311
  if(mall->intercomm != MPI_COMM_NULL && mall->intercomm != MPI_COMM_WORLD) { MPI_Comm_disconnect(&(mall->intercomm)); } //FIXME Error en OpenMPI + Merge

iker_martin's avatar
iker_martin committed
312
313
  MPI_Comm_rank(mall->comm, &mall->myId);
  MPI_Comm_size(mall->comm, &mall->numP);
314
  mall->root = mall_conf->spawn_method == MAM_SPAWN_BASELINE ? mall->root : mall->root_parents;
315
  mall->root_parents = mall->root;
316
  state = MAM_I_NOT_STARTED;
317
  if(mam_state != NULL) *mam_state = MAM_COMPLETED;
318

319
  // Set new communicator
320
  MPI_Comm_dup(mall->comm, mall->user_comm);
321
  #if MAM_DEBUG
322
    if(mall->myId == mall->root) DEBUG_FUNC("Reconfiguration has been commited", mall->myId, mall->numP); fflush(stdout);
323
  #endif
324

325
  #if MAM_USE_BARRIERS
326
327
328
    MPI_Barrier(mall->comm);
  #endif
  mall_conf->times->malleability_end = MPI_Wtime();
329
330
}

331
/*
332
333
334
335
336
337
338
339
340
 * This function adds data to a data structure based on whether the operation is synchronous or asynchronous,
 * and whether the data is replicated or distributed. It takes the following parameters:
 * - data: a pointer to the data to be added
 * - index: a pointer to a size_t variable where the index of the added data will be stored
 * - total_qty: the amount of elements in data
 * - type: the MPI datatype of the data
 * - is_replicated: a flag indicating whether the data is replicated (MAM_DATA_REPLICATED) or not (MAM_DATA_DISTRIBUTED)
 * - is_constant: a flag indicating whether the operation is asynchronous (MAM_DATA_CONSTANT) or synchronous (MAM_DATA_VARIABLE)
 * Finally, it updates the index with the index of the last added data if index is not NULL.
341
 */
342
343
void MAM_Data_add(void *data, size_t *index, size_t total_qty, MPI_Datatype type, int is_replicated, int is_constant) {
  size_t total_reqs = 0, returned_index;
344

345
  if(is_constant) { //Async
346
    if(is_replicated) {
347
      total_reqs = 1;
348
      add_data(data, total_qty, type, total_reqs, rep_a_data);
349
      returned_index = rep_a_data->entries-1;
350
    } else {
351
      if(mall_conf->red_method  == MAM_RED_BASELINE) {
352
        total_reqs = 1;
353
      } else if(mall_conf->red_method  == MAM_RED_POINT || mall_conf->red_method  == MAM_RED_RMA_LOCK || mall_conf->red_method  == MAM_RED_RMA_LOCKALL) {
354
        total_reqs = mall->numC;
355
      } 
356
357
      
      add_data(data, total_qty, type, total_reqs, dist_a_data);
358
      returned_index = dist_a_data->entries-1;
359
    }
360
  } else { //Sync
361
362
    if(is_replicated) {
      add_data(data, total_qty, type, total_reqs, rep_s_data);
363
      returned_index = rep_s_data->entries-1;
364
365
    } else {
      add_data(data, total_qty, type, total_reqs, dist_s_data);
366
      returned_index = dist_s_data->entries-1;
367
    }
368
  }
369
370

  if(index != NULL) *index = returned_index;
371
372
}

373
/*
374
375
376
377
378
379
380
381
 * This function modifies a data entry to a data structure based on whether the operation is synchronous or asynchronous,
 * and whether the data is replicated or distributed. It takes the following parameters:
 * - data: a pointer to the data to be added
 * - index: a value indicating which entry will be modified
 * - total_qty: the amount of elements in data
 * - type: the MPI datatype of the data
 * - is_replicated: a flag indicating whether the data is replicated (MAM_DATA_REPLICATED) or not (MAM_DATA_DISTRIBUTED)
 * - is_constant: a flag indicating whether the operation is asynchronous (MAM_DATA_CONSTANT) or synchronous (MAM_DATA_VARIABLE)
382
 */
383
void MAM_Data_modify(void *data, size_t index, size_t total_qty, MPI_Datatype type, int is_replicated, int is_constant) {
384
385
  size_t total_reqs = 0;

386
387
  if(is_constant) {
    if(is_replicated) {
388
      total_reqs = 1;
389
390
      modify_data(data, index, total_qty, type, total_reqs, rep_a_data); //FIXME total_reqs==0 ??? 
    } else {    
391
      if(mall_conf->red_method  == MAM_RED_BASELINE) {
392
        total_reqs = 1;
393
      } else if(mall_conf->red_method  == MAM_RED_POINT || mall_conf->red_method  == MAM_RED_RMA_LOCK || mall_conf->red_method  == MAM_RED_RMA_LOCKALL) {
394
395
396
        total_reqs = mall->numC;
      }
      
397
      modify_data(data, index, total_qty, type, total_reqs, dist_a_data);
398
    }
399
400
401
402
403
404
  } else {
    if(is_replicated) {
      modify_data(data, index, total_qty, type, total_reqs, rep_s_data);
    } else {
      modify_data(data, index, total_qty, type, total_reqs, dist_s_data);
    }
405
406
407
  }
}

408
/*
409
410
411
412
413
 * This functions returns how many data entries are available for one of the specific data structures.
 * It takes the following parameters:
 * - is_replicated: a flag indicating whether the structure is replicated (MAM_DATA_REPLICATED) or not (MAM_DATA_DISTRIBUTED)
 * - is_constant: a flag indicating whether the operation is asynchronous (MAM_DATA_CONSTANT) or synchronous (MAM_DATA_VARIABLE)
 * - entries: a pointer where the amount of entries will be stored
414
 */
415
void MAM_Data_get_entries(int is_replicated, int is_constant, size_t *entries){
416
417
418
  
  if(is_constant) {
    if(is_replicated) {
419
      *entries = rep_a_data->entries;
420
    } else {
421
      *entries = dist_a_data->entries;
422
423
424
    }
  } else {
    if(is_replicated) {
425
      *entries = rep_s_data->entries;
426
    } else {
427
      *entries = dist_s_data->entries;
428
429
430
431
432
    }
  }
}

/*
433
434
435
436
437
438
439
440
 * This function returns a data entry to a data structure based on whether the operation is synchronous or asynchronous,
 * and whether the data is replicated or distributed. It takes the following parameters:
 * - index: a value indicating which entry will be modified
 * - is_replicated: a flag indicating whether the data is replicated (MAM_DATA_REPLICATED) or not (MAM_DATA_DISTRIBUTED)
 * - is_constant: a flag indicating whether the operation is asynchronous (MAM_DATA_CONSTANT) or synchronous (MAM_DATA_VARIABLE)
 * - data: a pointer where the data will be stored. The user must free it
 * - total_qty: the amount of elements in data for all ranks
 * - local_qty: the amount of elements in data for this rank
441
 */
442
void MAM_Data_get_pointer(void **data, size_t index, size_t *total_qty, MPI_Datatype *type, int is_replicated, int is_constant) {
443
444
445
446
  malleability_data_t *data_struct;

  if(is_constant) {
    if(is_replicated) {
447
      data_struct = rep_a_data;
448
    } else {
449
      data_struct = dist_a_data;
450
451
452
    }
  } else {
    if(is_replicated) {
453
      data_struct = rep_s_data;
454
    } else {
455
      data_struct = dist_s_data;
456
457
458
    }
  }

459
  *data = data_struct->arrays[index];
460
461
  if(total_qty != NULL) *total_qty = data_struct->qty[index];
  if(type != NULL) *type = data_struct->types[index];
462
  //get_block_dist(qty, mall->myId, mall->numP, &dist_data); //FIXME Asegurar que numP es correcto
463
464
}

465
466
467
/*
 * @brief Returns a structure to perform data redistribution during a reconfiguration.
 *
468
 * This function is intended to be called when the state of MaM is MAM_I_USER_PENDING only. 
469
470
471
472
473
474
475
 * It is designed to provide the necessary information for the user to perform data redistribution.
 *
 * Parameters:
 *   - mam_user_reconf_t *reconf_info: A pointer to a mam_user_reconf_t structure where the function will store the required information for data redistribution.
 *
 * Return Value:
 *   - MAM_OK: If the function successfully retrieves the reconfiguration information.
476
 *   - MAM_DENIED: If the function is called when the state of the MaM is not MAM_I_USER_PENDING.
477
478
 */
int MAM_Get_Reconf_Info(mam_user_reconf_t *reconf_info) {
479
  if(state != MAM_I_USER_PENDING) return MAM_DENIED;
480
481
482
483
484

  *reconf_info = *user_reconf;
  return MAM_OK;
}

485
486
487
488
489
490
491
492
493
494
495
496
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//================DATA COMMUNICATION====================||
//======================================================||
//======================================================||

/*
 * Funcion generalizada para enviar datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void send_data(int numP_children, malleability_data_t *data_struct, int is_asynchronous) {
497
  size_t i;
498
  void *aux_send, *aux_recv;
499
500
501

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
502
      aux_send = data_struct->arrays[i];
503
      aux_recv = NULL;
504
      async_communication_start(aux_send, &aux_recv, data_struct->qty[i], data_struct->types[i], mall->numP, numP_children, MAM_SOURCES,  
505
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
506
      if(aux_recv != NULL) data_struct->arrays[i] = aux_recv;
507
508
509
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
510
      aux_send = data_struct->arrays[i];
511
      aux_recv = NULL;
512
      sync_communication(aux_send, &aux_recv, data_struct->qty[i], data_struct->types[i], mall->numP, numP_children, MAM_SOURCES, mall->intercomm);
513
      if(aux_recv != NULL) data_struct->arrays[i] = aux_recv;
514
515
516
517
518
519
520
521
522
523
    }
  }
}

/*
 * Funcion generalizada para recibir datos desde los hijos.
 * La asincronizidad se refiere a si el hilo padre e hijo lo hacen
 * de forma bloqueante o no. El padre puede tener varios hilos.
 */
void recv_data(int numP_parents, malleability_data_t *data_struct, int is_asynchronous) {
524
  size_t i;
525
  void *aux, *aux_s = NULL;
526
527
528

  if(is_asynchronous) {
    for(i=0; i < data_struct->entries; i++) {
529
      aux = data_struct->arrays[i];
530
      async_communication_start(aux_s, &aux, data_struct->qty[i], data_struct->types[i], mall->numP, numP_parents, MAM_TARGETS,
531
		      mall->intercomm, &(data_struct->requests[i]), &(data_struct->request_qty[i]), &(data_struct->windows[i]));
532
      data_struct->arrays[i] = aux;
533
534
535
    }
  } else {
    for(i=0; i < data_struct->entries; i++) {
536
      aux = data_struct->arrays[i];
537
      sync_communication(aux_s, &aux, data_struct->qty[i], data_struct->types[i], mall->numP, numP_parents, MAM_TARGETS, mall->intercomm);
538
      data_struct->arrays[i] = aux;
539
540
541
542
    }
  }
}

543
544
545
546
547
548

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//====================MAM STAGES========================||
//======================================================||
//======================================================||
549
550
551
552
//======================================================||
//======================================================||
//======================================================||
//======================================================||
553

554
int MAM_St_rms(int *mam_state) {
555
  reset_malleability_times();
556
  #if MAM_USE_BARRIERS
557
558
559
    MPI_Barrier(mall->comm);
  #endif
  mall_conf->times->malleability_start = MPI_Wtime();
560

561
  MAM_Check_configuration();
562
  *mam_state = MAM_NOT_STARTED;
563
  state = MAM_I_RMS_COMPLETED;
564
565
  mall->wait_targets_posted = 0;

566
  //if(CHECK_RMS()) {return MAM_DENIED;}    
567
568
  return 1;
}
569

570
int MAM_St_spawn_start() {
571
  mall->num_parents = mall->numP;
572
573
  state = spawn_step();
  //FIXME Esto es necesario pero feo
574
575
  if(mall_conf->spawn_method == MAM_SPAWN_MERGE && mall->myId >= mall->numC){ mall->zombie = 1; }
  else if(mall_conf->spawn_method == MAM_SPAWN_BASELINE){ mall->zombie = 1; }
576

577
  if (state == MAM_I_SPAWN_COMPLETED || state == MAM_I_SPAWN_ADAPT_POSTPONE){
578
579
580
581
582
583
584
    return 1;
  }
  return 0;
}

int MAM_St_spawn_pending(int wait_completed) {
  state = check_spawn_state(&(mall->intercomm), mall->comm, wait_completed);
585
  if (state == MAM_I_SPAWN_COMPLETED || state == MAM_I_SPAWN_ADAPTED) {
586
    #if MAM_USE_BARRIERS
587
588
589
590
591
592
593
594
595
      MPI_Barrier(mall->comm);
    #endif
    mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
    return 1;
  }
  return 0;
}

int MAM_St_red_start() {
596
597
598
599
600
601
  if(MAM_Contains_strat(MAM_SPAWN_STRATEGIES, MAM_STRAT_SPAWN_INTERCOMM, NULL)) {
    mall->root_collectives = mall->myId == mall->root ? MPI_ROOT : MPI_PROC_NULL;
  } else {
    mall->root_collectives = mall->root;
  }

602
603
604
605
  state = start_redistribution();
  return 1;
}

606
int MAM_St_red_pending(int wait_completed) {
607
  if(MAM_Contains_strat(MAM_RED_STRATEGIES, MAM_STRAT_RED_PTHREAD, NULL)) {
608
609
610
611
612
    state = thread_check(wait_completed);
  } else {
    state = check_redistribution(wait_completed);
  }

613
614
  if(state != MAM_I_DIST_PENDING) { 
    state = MAM_I_USER_START;
615
616
617
618
619
    return 1;
  }
  return 0;
}

620
int MAM_St_user_start(int *mam_state) {
621
  #if MAM_USE_BARRIERS
622
623
624
    MPI_Barrier(mall->intercomm);
  #endif
  mall_conf->times->user_start = MPI_Wtime(); // Obtener timestamp de cuando termina user redist
625
  if(MAM_Contains_strat(MAM_SPAWN_STRATEGIES, MAM_STRAT_SPAWN_INTERCOMM, NULL)) {
626
    MPI_Intercomm_merge(mall->intercomm, MAM_SOURCES, &mall->tmp_comm); //El que pone 0 va primero
627
628
629
630
  } else {
    MPI_Comm_dup(mall->intercomm, &mall->tmp_comm);
  }
  MPI_Comm_set_name(mall->tmp_comm, "MAM_USER_TMP");
631
  state = MAM_I_USER_PENDING;
632
633
634
635
  *mam_state = MAM_USER_PENDING;
  return 1;
}

636
int MAM_St_user_pending(int *mam_state, int wait_completed, void (*user_function)(void *), void *user_args) {
637
  #if MAM_DEBUG
638
639
640
    if(mall->myId == mall->root) DEBUG_FUNC("Starting USER redistribution", mall->myId, mall->numP); fflush(stdout);
  #endif
  if(user_function != NULL) {
641
    MAM_I_create_user_struct(MAM_SOURCES);
642
643
    do {
      user_function(user_args);
644
    } while(wait_completed && state == MAM_I_USER_PENDING);
645
646
647
648
  } else {
    MAM_Resume_redistribution(mam_state);
  }

649
  if(state != MAM_I_USER_PENDING) {
650
    #if MAM_USE_BARRIERS
651
652
      MPI_Barrier(mall->intercomm);
    #endif
653
    if(mall_conf->spawn_method == MAM_SPAWN_MERGE) mall_conf->times->user_end = MPI_Wtime(); // Obtener timestamp de cuando termina user redist
654
    #if MAM_DEBUG
655
656
657
658
659
660
661
662
663
664
665
666
667
      if(mall->myId == mall->root) DEBUG_FUNC("Ended USER redistribution", mall->myId, mall->numP); fflush(stdout);
    #endif
    return 1;
  }
  return 0;
}

int MAM_St_user_completed() {
  state = end_redistribution();
  return 1;
}

int MAM_St_spawn_adapt_pending(int wait_completed) {
668
  wait_completed = MAM_WAIT_COMPLETION;
669
  #if MAM_USE_BARRIERS
670
671
672
673
674
    MPI_Barrier(mall->comm);
  #endif
  mall_conf->times->spawn_start = MPI_Wtime();
  unset_spawn_postpone_flag(state);
  state = check_spawn_state(&(mall->intercomm), mall->comm, wait_completed);
675
676
/* TODO Comentar problema, basicamente indicar que no es posible de la forma actual
 * Ademas es solo para una operación que hemos visto como "extremadamente" rápida
677
678
 * NO es posible debido a que solo se puede hacer tras enviar los datos variables 
 * y por tanto pierden validez dichos datos
679
  if(!MAM_Contains_strat(MAM_SPAWN_STRATEGIES, MAM_STRAT_SPAWN_PTHREAD, NULL)) {
680
    #if MAM_USE_BARRIERS
681
682
      MPI_Barrier(mall->comm);
    #endif
683
    mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->spawn_start;
684
685
686
    return 1;
  }
  return 0;
687
  */
688
  #if MAM_USE_BARRIERS
689
690
691
692
    MPI_Barrier(mall->comm);
  #endif
  mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->spawn_start;
  return 1;
693
694
695
}

int MAM_St_completed(int *mam_state) {
696
  MAM_Commit(mam_state);
697
698
699
700
  return 0;
}


701
702
703
704
705
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================CHILDREN=========================||
//======================================================||
//======================================================||
706
707
708
709
//======================================================||
//======================================================||
//======================================================||
//======================================================||
710
711
712
713
714
715
/*
 * Inicializacion de los datos de los hijos.
 * En la misma se reciben datos de los padres: La configuracion
 * de la ejecucion a realizar; y los datos a recibir de los padres
 * ya sea de forma sincrona, asincrona o ambas.
 */
716
void Children_init(void (*user_function)(void *), void *user_args) {
717
  size_t i;
718

719
  #if MAM_DEBUG
720
    DEBUG_FUNC("MaM will now initialize spawned processes", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
721
722
  #endif

723
  malleability_connect_children(&(mall->intercomm));
724
  if(mall_conf->spawn_method == MAM_SPAWN_MERGE) { // For Merge Method, these processes will be added
iker_martin's avatar
iker_martin committed
725
726
    MPI_Comm_rank(mall->intercomm, &mall->myId);
    MPI_Comm_size(mall->intercomm, &mall->numP);
727
  }
728
  mall->root_collectives = mall->root_parents;
729

730
731
  if(MAM_Contains_strat(MAM_SPAWN_STRATEGIES, MAM_STRAT_SPAWN_MULTIPLE, NULL)
    || MAM_Contains_strat(MAM_SPAWN_STRATEGIES, MAM_STRAT_SPAWN_PARALLEL, NULL)) {
732
733
734
735
736
    mall->internode_group = 0;
  } else {
    mall->internode_group = MAM_Is_internode_group();
  }

737
  #if MAM_DEBUG
738
    DEBUG_FUNC("Spawned have completed spawn step", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
739
740
  #endif

741
  comm_data_info(rep_a_data, dist_a_data, MAM_TARGETS);
742
  if(dist_a_data->entries || rep_a_data->entries) { // Recibir datos asincronos
743
    #if MAM_DEBUG >= 2
744
      DEBUG_FUNC("Spawned start asynchronous redistribution", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
745
    #endif
746
    #if MAM_USE_BARRIERS
747
748
      MPI_Barrier(mall->intercomm);
    #endif
749

750
    if(MAM_Contains_strat(MAM_RED_STRATEGIES, MAM_STRAT_RED_PTHREAD, NULL)) {
751
      recv_data(mall->num_parents, dist_a_data, MAM_USE_SYNCHRONOUS);
752
      for(i=0; i<rep_a_data->entries; i++) {
753
        MPI_Bcast(rep_a_data->arrays[i], rep_a_data->qty[i], rep_a_data->types[i], mall->root_collectives, mall->intercomm);
754
      } 
755
    } else {
756
      recv_data(mall->num_parents, dist_a_data, MAM_USE_ASYNCHRONOUS); 
757

758
      for(i=0; i<rep_a_data->entries; i++) {
759
        MPI_Ibcast(rep_a_data->arrays[i], rep_a_data->qty[i], rep_a_data->types[i], mall->root_collectives, mall->intercomm, &(rep_a_data->requests[i][0]));
760
      } 
761
      #if MAM_DEBUG >= 2
762
        DEBUG_FUNC("Spawned started asynchronous redistribution", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
763
      #endif
764

765
      for(i=0; i<rep_a_data->entries; i++) {
766
        async_communication_wait(rep_a_data->requests[i], rep_a_data->request_qty[i]);
767
      }
768
      for(i=0; i<dist_a_data->entries; i++) {
769
        async_communication_wait(dist_a_data->requests[i], dist_a_data->request_qty[i]);
770
      }
771
772
773
774
775
776
      if(MAM_Contains_strat(MAM_RED_STRATEGIES, MAM_STRAT_RED_WAIT_TARGETS, NULL)) {
        MPI_Ibarrier(mall->intercomm, &mall->wait_targets);
        mall->wait_targets_posted = 1;
        MPI_Wait(&mall->wait_targets, MPI_STATUS_IGNORE);
      }

777
      #if MAM_DEBUG >= 2
778
        DEBUG_FUNC("Spawned waited for all asynchronous redistributions", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
779
      #endif
780
      for(i=0; i<dist_a_data->entries; i++) {
781
        async_communication_end(dist_a_data->requests[i], dist_a_data->request_qty[i], &(dist_a_data->windows[i]));
782
      }
783
      for(i=0; i<rep_a_data->entries; i++) {
784
        async_communication_end(rep_a_data->requests[i], rep_a_data->request_qty[i], &(rep_a_data->windows[i]));
785
      }
786
    }
787

788
    #if MAM_USE_BARRIERS
789
790
      MPI_Barrier(mall->intercomm);
    #endif
791
    mall_conf->times->async_end= MPI_Wtime(); // Obtener timestamp de cuando termina comm asincrona
792
  }
793
  #if MAM_DEBUG
794
    DEBUG_FUNC("Spawned have completed asynchronous data redistribution step", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
795
  #endif
796

797
  #if MAM_USE_BARRIERS
798
799
    MPI_Barrier(mall->intercomm);
  #endif
800
  if(MAM_Contains_strat(MAM_SPAWN_STRATEGIES, MAM_STRAT_SPAWN_INTERCOMM, NULL)) {
801
    MPI_Intercomm_merge(mall->intercomm, MAM_TARGETS, &mall->tmp_comm); //El que pone 0 va primero
802
803
804
805
806
  } else {
    MPI_Comm_dup(mall->intercomm, &mall->tmp_comm);
  }
  MPI_Comm_set_name(mall->tmp_comm, "MAM_USER_TMP");
  if(user_function != NULL) {
807
    state = MAM_I_USER_PENDING;
808
    MAM_I_create_user_struct(MAM_TARGETS);
809
810
    user_function(user_args);
  }
811
  #if MAM_USE_BARRIERS
812
813
814
    MPI_Barrier(mall->intercomm);
  #endif
  mall_conf->times->user_end = MPI_Wtime(); // Obtener timestamp de cuando termina user redist
815

816
  comm_data_info(rep_s_data, dist_s_data, MAM_TARGETS);
817
  if(dist_s_data->entries || rep_s_data->entries) { // Recibir datos sincronos
818
    #if MAM_USE_BARRIERS
819
820
      MPI_Barrier(mall->intercomm);
    #endif
821
    recv_data(mall->num_parents, dist_s_data, MAM_USE_SYNCHRONOUS);
822
823

    for(i=0; i<rep_s_data->entries; i++) {
824
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], rep_s_data->types[i], mall->root_collectives, mall->intercomm);
825
    } 
826
    #if MAM_USE_BARRIERS
827
828
      MPI_Barrier(mall->intercomm);
    #endif
829
    mall_conf->times->sync_end = MPI_Wtime(); // Obtener timestamp de cuando termina comm sincrona
830
  }
831
  #if MAM_DEBUG
832
    DEBUG_FUNC("Targets have completed synchronous data redistribution step", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
833
  #endif
834

835
  MAM_Commit(NULL);
836

837
  #if MAM_DEBUG
838
    DEBUG_FUNC("MaM has been initialized correctly for new ranks", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
839
  #endif
840
841
842
843
844
845
846
}

//======================================================||
//================PRIVATE FUNCTIONS=====================||
//=====================PARENTS==========================||
//======================================================||
//======================================================||
847
848
//======================================================||
//======================================================||
849
850
851
852
853
854

/*
 * Se encarga de realizar la creacion de los procesos hijos.
 * Si se pide en segundo plano devuelve el estado actual.
 */
int spawn_step(){
855
  #if MAM_USE_BARRIERS
856
857
    MPI_Barrier(mall->comm);
  #endif
858
  mall_conf->times->spawn_start = MPI_Wtime();
859
 
iker_martin's avatar
iker_martin committed
860
  state = init_spawn(mall->thread_comm, &(mall->intercomm));
861

862
  if(!MAM_Contains_strat(MAM_SPAWN_STRATEGIES, MAM_STRAT_SPAWN_PTHREAD, NULL)) {
863
      #if MAM_USE_BARRIERS
864
865
        MPI_Barrier(mall->comm);
      #endif
866
      mall_conf->times->spawn_time = MPI_Wtime() - mall_conf->times->malleability_start;
867
868
869
870
  }
  return state;
}

871

872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
/*
 * Comienza la redistribucion de los datos con el nuevo grupo de procesos.
 *
 * Primero se envia la configuracion a utilizar al nuevo grupo de procesos y a continuacion
 * se realiza el envio asincrono y/o sincrono si lo hay.
 *
 * En caso de que haya comunicacion asincrona, se comienza y se termina la funcion 
 * indicando que se ha comenzado un envio asincrono.
 *
 * Si no hay comunicacion asincrono se pasa a realizar la sincrona si la hubiese.
 *
 * Finalmente se envian datos sobre los resultados a los hijos y se desconectan ambos
 * grupos de procesos.
 */
int start_redistribution() {
887
  size_t i;
888

889
  if(mall->intercomm == MPI_COMM_NULL) {
890
891
    // Si no tiene comunicador creado, se debe a que se ha pospuesto el Spawn
    //   y se trata del spawn Merge Shrink
892
    MPI_Comm_dup(mall->comm, &(mall->intercomm));
893
  }
894

895
  comm_data_info(rep_a_data, dist_a_data, MAM_SOURCES);
896
  if(dist_a_data->entries || rep_a_data->entries) { // Enviar datos asincronos
897
    #if MAM_USE_BARRIERS
898
899
      MPI_Barrier(mall->intercomm);
    #endif
900
    mall_conf->times->async_start = MPI_Wtime();
901
    if(MAM_Contains_strat(MAM_RED_STRATEGIES, MAM_STRAT_RED_PTHREAD, NULL)) {
902
903
      return thread_creation();
    } else {
904
      send_data(mall->numC, dist_a_data, MAM_USE_ASYNCHRONOUS);
905
      for(i=0; i<rep_a_data->entries; i++) {
906
        MPI_Ibcast(rep_a_data->arrays[i], rep_a_data->qty[i], rep_a_data->types[i], mall->root_collectives, mall->intercomm, &(rep_a_data->requests[i][0]));
907
      } 
908
909
910
911
912

      if(mall->zombie && MAM_Contains_strat(MAM_RED_STRATEGIES, MAM_STRAT_RED_WAIT_TARGETS, NULL)) {
        MPI_Ibarrier(mall->intercomm, &mall->wait_targets);
        mall->wait_targets_posted = 1;
      }
913
      return MAM_I_DIST_PENDING; 
914
915
    }
  } 
916
  return MAM_I_USER_START;
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
}


/*
 * Comprueba si la redistribucion asincrona ha terminado. 
 * Si no ha terminado la funcion termina indicandolo, en caso contrario,
 * se continua con la comunicacion sincrona, el envio de resultados y
 * se desconectan los grupos de procesos.
 *
 * Esta funcion permite dos modos de funcionamiento al comprobar si la
 * comunicacion asincrona ha terminado.
 * Si se utiliza el modo "MAL_USE_NORMAL" o "MAL_USE_POINT", se considera 
 * terminada cuando los padres terminan de enviar.
 * Si se utiliza el modo "MAL_USE_IBARRIER", se considera terminada cuando
 * los hijos han terminado de recibir.
932
 * //FIXME Modificar para que se tenga en cuenta rep_a_data
933
 */
934
int check_redistribution(int wait_completed) {
935
  int completed, local_completed, all_completed;
936
  size_t i, req_qty;
937
  MPI_Request *req_completed;
938
939
  MPI_Win window;
  local_completed = 1;
940
  #if MAM_DEBUG >= 2
941
    DEBUG_FUNC("Sources are testing for all asynchronous redistributions", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
942
  #endif
943

944
  if(wait_completed) {
945
946
947
    if(MAM_Contains_strat(MAM_RED_STRATEGIES, MAM_STRAT_RED_WAIT_TARGETS, NULL) && !mall->wait_targets_posted) {
      MPI_Ibarrier(mall->intercomm, &mall->wait_targets);
      mall->wait_targets_posted = 1;
948
949
950
951
    }
    for(i=0; i<dist_a_data->entries; i++) {
      req_completed = dist_a_data->requests[i];
      req_qty = dist_a_data->request_qty[i];
952
      async_communication_wait(req_completed, req_qty);
953
    }
954
955
956
    for(i=0; i<rep_a_data->entries; i++) {
      req_completed = rep_a_data->requests[i];
      req_qty = rep_a_data->request_qty[i];
957
      async_communication_wait(req_completed, req_qty);
958
    }
959
960

    if(MAM_Contains_strat(MAM_RED_STRATEGIES, MAM_STRAT_RED_WAIT_TARGETS, NULL)) { MPI_Wait(&mall->wait_targets, MPI_STATUS_IGNORE); }
961
  } else {
962
963
964
965
966
967
    if(mall->wait_targets_posted) { 
      MPI_Test(&mall->wait_targets, &local_completed, MPI_STATUS_IGNORE); 
    } else {
      for(i=0; i<dist_a_data->entries; i++) {
        req_completed = dist_a_data->requests[i];
        req_qty = dist_a_data->request_qty[i];
968
        completed = async_communication_check(MAM_SOURCES, req_completed, req_qty);
969
970
971
972
973
        local_completed = local_completed && completed;
      }
      for(i=0; i<rep_a_data->entries; i++) {
        req_completed = rep_a_data->requests[i];
        req_qty = rep_a_data->request_qty[i];
974
        completed = async_communication_check(MAM_SOURCES, req_completed, req_qty);
975
976
977
978
979
980
981
982
        local_completed = local_completed && completed;
      }

      if(local_completed && MAM_Contains_strat(MAM_RED_STRATEGIES, MAM_STRAT_RED_WAIT_TARGETS, NULL)) {
        MPI_Ibarrier(mall->intercomm, &mall->wait_targets);
        mall->wait_targets_posted = 1;
        MPI_Test(&mall->wait_targets, &local_completed, MPI_STATUS_IGNORE); //TODO - Figure out if last process takes profit from calling here
      }
983
    }
984
    #if MAM_DEBUG >= 2
985
986
987
988
      DEBUG_FUNC("Sources will now check a global decision", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
    #endif

    MPI_Allreduce(&local_completed, &all_completed, 1, MPI_INT, MPI_MIN, mall->comm);
989
    if(!all_completed) return MAM_I_DIST_PENDING; // Continue only if asynchronous send has ended 
990
991
  }

992
  #if MAM_DEBUG >= 2
993
    DEBUG_FUNC("Sources sent asynchronous redistributions", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(MPI_COMM_WORLD);
994
  #endif
995

996
997
998
999
  for(i=0; i<dist_a_data->entries; i++) {
    req_completed = dist_a_data->requests[i];
    req_qty = dist_a_data->request_qty[i];
    window = dist_a_data->windows[i];
1000
    async_communication_end(req_completed, req_qty, &window);
1001
  }
1002
1003
1004
1005
  for(i=0; i<rep_a_data->entries; i++) {
    req_completed = rep_a_data->requests[i];
    req_qty = rep_a_data->request_qty[i];
    window = rep_a_data->windows[i];
1006
    async_communication_end(req_completed, req_qty, &window);
1007
  }
1008

1009
  #if MAM_USE_BARRIERS
1010
1011
    MPI_Barrier(mall->intercomm);
  #endif
1012
1013
  if(mall_conf->spawn_method == MAM_SPAWN_MERGE) mall_conf->times->async_end = MPI_Wtime(); // Merge method only
  return MAM_I_USER_START;
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
}

/*
 * Termina la redistribución de los datos con los hijos, comprobando
 * si se han realizado iteraciones con comunicaciones en segundo plano
 * y enviando cuantas iteraciones se han realizado a los hijos.
 *
 * Además se realizan las comunicaciones síncronas se las hay.
 * Finalmente termina enviando los datos temporales a los hijos.
 */ 
int end_redistribution() {
1025
  size_t i;
1026
  int local_state;
1027

1028
  comm_data_info(rep_s_data, dist_s_data, MAM_SOURCES);
1029
  if(dist_s_data->entries || rep_s_data->entries) { // Enviar datos sincronos
1030
    #if MAM_USE_BARRIERS
1031
1032
      MPI_Barrier(mall->intercomm);
    #endif
1033
    mall_conf->times->sync_start = MPI_Wtime();
1034
    send_data(mall->numC, dist_s_data, MAM_USE_SYNCHRONOUS);
1035
1036

    for(i=0; i<rep_s_data->entries; i++) {
1037
      MPI_Bcast(rep_s_data->arrays[i], rep_s_data->qty[i], rep_s_data->types[i], mall->root_collectives, mall->intercomm);
1038
1039
    }

1040
    #if MAM_USE_BARRIERS
1041
1042
      MPI_Barrier(mall->intercomm);
    #endif
1043
    if(mall_conf->spawn_method == MAM_SPAWN_MERGE) mall_conf->times->sync_end = MPI_Wtime(); // Merge method only
1044
  }
1045
1046
1047
  #if MAM_DEBUG
    DEBUG_FUNC("Sources have completed synchronous data redistribution step", mall->myId, mall->numP); fflush(stdout); MPI_Barrier(mall->comm);
  #endif
iker_martin's avatar
iker_martin committed
1048

1049
1050
1051
  local_state = MAM_I_DIST_COMPLETED;
  if(mall_conf->spawn_method == MAM_SPAWN_MERGE && mall->numP > mall->numC) { // Merge Shrink
    local_state = MAM_I_SPAWN_ADAPT_PENDING;
1052
  }
1053

1054
  return local_state;
1055
1056
1057
1058
1059
1060
1061
1062
1063
}

// TODO MOVER A OTRO LADO??
//======================================================||
//================PRIVATE FUNCTIONS=====================||
//===============COMM PARENTS THREADS===================||
//======================================================||
//======================================================||

1064
1065

int comm_state; //FIXME Usar un handler
1066
1067
1068
1069
/*
 * Crea una hebra para ejecutar una comunicación en segundo plano.
 */
int thread_creation() {
1070
  comm_state = MAM_I_DIST_PENDING;
1071
1072
1073
1074
1075
  if(pthread_create(&(mall->async_thread), NULL, thread_async_work, NULL)) {
    printf("Error al crear el hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -1;
  }
1076
  return comm_state;
1077
1078
1079
1080
1081
1082
1083
1084
}

/*
 * Comprobación por parte de una hebra maestra que indica
 * si una hebra esclava ha terminado su comunicación en segundo plano.
 *
 * El estado de la comunicación es devuelto al finalizar la función. 
 */
1085
int thread_check(int wait_completed) {
1086
  int all_completed = 0;
1087

1088
  if(wait_completed && comm_state == MAM_I_DIST_PENDING) {
1089
1090
1091
1092
1093
1094
1095
    if(pthread_join(mall->async_thread, NULL)) {
      printf("Error al esperar al hilo\n");
      MPI_Abort(MPI_COMM_WORLD, -1);
      return -2;
    } 
  }

1096
  // Comprueba que todos los hilos han terminado la distribucion (Mismo valor en commAsync)
1097
  MPI_Allreduce(&comm_state, &all_completed, 1, MPI_INT, MPI_MAX, mall->comm);
1098
  if(all_completed != MAM_I_DIST_COMPLETED) return MAM_I_DIST_PENDING; // Continue only if asynchronous send has ended 
1099
1100
1101
1102
1103
1104

  if(pthread_join(mall->async_thread, NULL)) {
    printf("Error al esperar al hilo\n");
    MPI_Abort(MPI_COMM_WORLD, -1);
    return -2;
  } 
1105

1106
  #if MAM_USE_BARRIERS
1107
1108
    MPI_Barrier(mall->intercomm);
  #endif
1109
1110
  if(mall_conf->spawn_method == MAM_SPAWN_MERGE) mall_conf->times->async_end = MPI_Wtime(); // Merge method only
  return MAM_I_USER_START;
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
}


/*
 * Función ejecutada por una hebra.
 * Ejecuta una comunicación síncrona con los hijos que
 * para el usuario se puede considerar como en segundo plano.
 *
 * Cuando termina la comunicación la hebra maestra puede comprobarlo
 * por el valor "commAsync".
 */
1122
void* thread_async_work() {
1123
1124
  size_t i;

1125
  send_data(mall->numC, dist_a_data, MAM_USE_SYNCHRONOUS);
1126
  for(i=0; i<rep_a_data->entries; i++) {
1127
    MPI_Bcast(rep_a_data->arrays[i], rep_a_data->qty[i], rep_a_data->types[i], mall->root_collectives, mall->intercomm);
1128
  } 
1129
  comm_state = MAM_I_DIST_COMPLETED;
1130
1131
  pthread_exit(NULL);
}
1132
1133
1134


//==============================================================================
1135
1136
1137
1138

/*
 * TODO Por hacer
 */
1139
void MAM_I_create_user_struct(int is_children_group) {
1140
1141
1142
  user_reconf->comm = mall->tmp_comm;

  if(is_children_group) {
1143
    user_reconf->rank_state = MAM_PROC_NEW_RANK;
iker_martin's avatar
iker_martin committed
1144
    user_reconf->numS = mall->num_parents;
1145
    user_reconf->numT = mall->numP;
1146
1147
1148
  } else {
    user_reconf->numS = mall->numP;
    user_reconf->numT = mall->numC;
1149
1150
    if(mall->zombie) user_reconf->rank_state = MAM_PROC_ZOMBIE;
    else user_reconf->rank_state = MAM_PROC_CONTINUE;
1151
1152
  }
}